Electrocardiographic Versus Echocardiographic Left Ventricular Hypertrophy in Severe Aortic Stenosis
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
4.1. The ECG-LVH Criteria vs. Echocardiographic LVH
4.2. The ECG-LVH Criteria vs. Aortic Stenosis Severity
4.3. Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kannel, W.B.; Gordon, T.; Offutt, D. Left ventricular hypertrophy by electrocardiogram. Prevalence, incidence, and mortality in the Framingham study. Ann. Intern. Med. 1969, 71, 89–105. [Google Scholar] [CrossRef] [PubMed]
- Kannel, W.B.; Doyle, J.T.; McNamara, P.M.; Quickenton, P.; Gordon, T. Precursors of sudden coronary death. Factors related to the incidence of sudden death. Circulation 1975, 51, 606–613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kannel, W.B.; Abbott, R.D. A prognostic comparison of asymptomatic left ventricular hypertrophy and unrecognized myocardial infarction: The Framingham Study. Am. Heart J. 1986, 111, 391–397. [Google Scholar] [CrossRef]
- Devereux, R.B.; Bella, J.; Roman, K.; Gerdts, E.; Nieminen, M.S.; Rokkedal, J.; Papademetriou, V.; Wachtell, K.; Wright, J.; Paranicas, M.; et al. Echocardiographic left ventricular geometry in hypertensive patients with electrocardiographic left ventricular hypertrophy: The LIFE Study. Blood Press. 2001, 10, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Pewsner, D.; Jüni, P.; Egger, M.; Battaglia, M.; Sundström, J.; Bachmann, L.M. Accuracy of electrocardiography in diagnosis of left ventricular hypertrophy in arterial hypertension: Systematic review. BMJ 2007, 335, 711. [Google Scholar] [CrossRef] [Green Version]
- Hancock, E.W.; Deal, B.J.; Mirvis, D.M.; Okin, P.; Kligfield, P.; Gettes, L.S.; Bailey, J.J.; Childers, R.; Gorgels, A.; Josephson, M.; et al. AHA/ACCF/HRS recommendations for the standardization and interpretation of the electrocardiogram: Part V: Electrocardiogram changes associated with cardiac chamber hypertrophy: A scientific statement from the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; the American College of Cardiology Foundation; and the Heart Rhythm Society: Endorsed by the International Society for Computerized Electrocardiology. Circulation 2009, 119, e251–e261. [Google Scholar]
- Jain, A.; Tandri, H.; Dalal, D.; Chahal, H.; Soliman, E.Z.; Prineas, R.J.; Folsom, A.R.; Lima, J.A.; Bluemke, D.A. Diagnostic and prognostic utility of electrocardiography for left ventricular hypertrophy defined by magnetic resonance imaging in relationship to ethnicity: The Multi-Ethnic Study of Atherosclerosis (MESA). Am. Heart J. 2010, 159, 652–658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aro, A.L.; Chugh, S.S. Clinical Diagnosis of Electrical Versus Anatomic Left Ventricular Hypertrophy: Prognostic and Therapeutic Implications. Circ. Arrhythm. Electrophysiol. 2016, 9, e003629. [Google Scholar] [CrossRef] [Green Version]
- Sundström, J.; Lind, L.; Arnlöv, J.; Zethelius, B.; Andrén, B.; Lithell, H.O. Echocardiographic and electrocardiographic diagnoses of left ventricular hypertrophy predict mortality independently of each other in a population of elderly men. Circulation 2001, 103, 2346–2351. [Google Scholar] [CrossRef] [Green Version]
- Narayanan, K.; Reinier, K.; Teodorescu, C.; Uy-Evanado, A.; Chugh, H.; Gunson, K.; Jui, J.; Chugh, S.S. Electrocardiographic versus echocardiographic left ventricular hypertrophy and sudden cardiac arrest in the community. Heart Rhythm. 2014, 11, 1040–1046. [Google Scholar] [CrossRef] [Green Version]
- Chrispin, J.; Jain, A.; Soliman, E.Z.; Guallar, E.; Alonso, A.; Heckbert, S.R.; Bluemke, D.A.; Lima, J.A.; Nazarian, S. Association of electrocardiographic and imaging surrogates of left ventricular hypertrophy with incident atrial fibrillation: MESA (Multi-Ethnic Study of Atherosclerosis). J. Am. Coll. Cardiol. 2014, 63, 2007–2013. [Google Scholar] [CrossRef] [Green Version]
- Bacharova, L.; Chen, H.; Estes, E.H.; Mateasik, A.; Bluemke, D.A.; Lima, J.A.; Burke, G.L.; Soliman, E.Z. Determinants of discrepancies in detection and comparison of the prognostic significance of left ventricular hypertrophy by electrocardiogram and cardiac magnetic resonance imaging. Am. J. Cardiol. 2015, 115, 515–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greve, A.M.; Boman, K.; Gohlke-Baerwolf, C.; Kesäniemi, Y.A.; Nienaber, C.; Ray, S.; Egstrup, K.; Rossebø, A.B.; Devereux, R.B.; Køber, L.; et al. Clinical implications of electrocardiographic left ventricular strain and hypertrophy in asymptomatic patients with aortic stenosis: The Simvastatin and Ezetimibe in Aortic Stenosis study. Circulation 2012, 125, 346–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bula, K.; Ćmiel, A.; Sejud, M.; Sobczyk, K.; Ryszkiewicz, S.; Szydło, K.; Wita, M.; Mizia-Stec, K. Electrocardiographic criteria for left ventricular hypertrophy in aortic valve stenosis: Correlation with echocardiographic parameters. Ann. Noninvasive Electrocardiol. 2019, 24, e12645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baumgartner, H.; Hung, J.; Bermejo, J.; Chambers, J.B.; Edvardsen, T.; Goldstein, S.; Lancellotti, P.; LeFevre, M.; Miller, F.; Otto, C.M. Recommendations on the Echocardiographic Assessment of Aortic Valve Stenosis: A Focused Update from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. J. Am. Soc. Echocardiogr. 2017, 30, 372–392. [Google Scholar] [CrossRef] [PubMed]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 233–270. [Google Scholar] [CrossRef]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.; Coca, A.; De Simone, G.; Dominiczak, A.; et al. Practice Guidelines for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension. Blood Press. 2018, 27, 314–340. [Google Scholar] [CrossRef]
- Watson, P.F.; Petrie, A. Method agreement analysis: A review of correct methodology. Theriogenology 2010, 73, 1167–1179. [Google Scholar] [CrossRef] [Green Version]
- Rodilla, E.; Costa, J.A.; Martín, J.; González, C.; Pascual, J.M.; Redon, J. Impact of abdominal obesity and ambulatory blood pressure in the definitione of left ventricular hypertrophy in never treated hypertensives. Med. Clin. (Barc.) 2014, 142, 235–242. [Google Scholar] [CrossRef]
- Peguero, J.G.; Lo Presti, S.; Perez, J.; Issa, O.; Brenes, J.C.; Tolentino, A. Electrocardiographic Criteria for the Diagnosis of Left Ventricular Hypertrophy. J. Am. Coll. Cardiol. 2017, 69, 1694–1703. [Google Scholar] [CrossRef]
- Sjöberg, S.; Sundh, F.; Schlegel, T.; Maynard, C.; Rück, A.; Wagner, G.; Ugander, M. The relationship between electrocardiographic left ventricular hypertrophy criteria and echocardiographic mass in patients undergoing transcatheter aortic valve replacement. J. Electrocardiol. 2015, 48, 630–636. [Google Scholar] [CrossRef]
- Oikonomou, E.; Theofilis, P.; Mpahara, A.; Lazaros, G.; Niarchou, P.; Vogiatzi, G.; Tsalamandris, S.; Fountoulakis, P.; Christoforatou, E.; Mystakidou, V.; et al. Diagnostic performance of electrocardiographic criteria in echocardiographic diagnosis of different patterns of left ventricular hypertrophy. Ann. Noninvasive Electrocardiol. 2020, 25, e12728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomita, S.; Ueno, H.; Takata, M.; Yasumoto, K.; Tomoda, F.; Inoue, H. Relationship between electrocardiographic voltage and geometric patterns of left ventricular hypertrophy in patients with essential hypertension. Hypertens. Res. 1998, 21, 259–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okin, P.M.; Roman, M.J.; Devereux, R.B.; Kligfield, P. ECG identification of left ventricular hypertrophy. Relationship of test performance to body habitus. J. Electrocardiol. 1996, 29 (Suppl. 1), 256–261. [Google Scholar] [CrossRef]
- Abergel, E.; Tase, M.; Menard, J.; Chatellier, G. Influence of obesity on the diagnostic value of electrocardiographic criteria for detecting left ventricular hypertrophy. Am. J. Cardiol. 1996, 77, 739–744. [Google Scholar] [CrossRef]
- Rider, O.J.; Ntusi, N.; Bull, S.C.; Nethononda, R.; Ferreira, V.; Holloway, C.J.; Holdsworth, D.; Mahmod, M.; Rayner, J.J.; Banerjee, R.; et al. Improvements in ECG accuracy for diagnosis of left ventricular hypertrophy in obesity. Heart 2016, 102, 1566–1572. [Google Scholar] [CrossRef]
- Bacharova, L.; Mateasik, A.; Krause, R.; Prinzen, F.W.; Auricchio, A.; Potse, M. The effect of reduced intercellular coupling on electrocardiographic signs of left ventricular hypertrophy. J. Electrocardiol. 2011, 44, 571–576. [Google Scholar] [CrossRef]
- Greve, A.M.; Gerdts, E.; Boman, K.; Gohlke-Baerwolf, C.; Rossebø, A.B.; Hammer-Hansen, S.; Køber, L.; Willenheimer, R.; Wachtell, K. Differences in cardiovascular risk profile between electrocardiographic hypertrophy versus strain in asymptomatic patients with aortic stenosis (from SEAS data). Am. J. Cardiol. 2011, 108, 541–547. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, J.; Yamanaka, Y.; Watanabe, S.; Toba, A.; Harada, K. Cornell product in an electrocardiogram is related to reduced LV regional wall motion. Hypertens. Res. 2019, 42, 541–548. [Google Scholar] [CrossRef]
- Beladan, C.C.; Popescu, B.A.; Calin, A.; Rosca, M.; Matei, F.; Gurzun, M.M.; Popara, A.V.; Curea, F.; Ginghina, C. Correlation between global longitudinal strain and QRS voltage on electrocardiogram in patients with left ventricular hypertrophy. Echocardiography 2014, 31, 325–334. [Google Scholar] [CrossRef]
- Magne, J.; Cosyns, B.; Popescu, B.A.; Carstensen, H.G.; Dahl, J.; Desai, M.Y.; Kearney, L.; Lancellotti, P.; Marwick, T.H.; Sato, K.; et al. Distribution and Prognostic Significance of Left Ventricular Global Longitudinal Strain in Asymptomatic Significant Aortic Stenosis: An Individual Participant Data Meta-Analysis. JACC Cardiovasc. Imaging 2019, 12, 84–92. [Google Scholar] [CrossRef]
- Dahl, J.S.; Magne, J.; Pellikka, P.A.; Donal, E.; Marwick, T.H. Assessment of Subclinical Left Ventricular Dysfunction in Aortic Stenosis. JACC Cardiovasc. Imaging 2019, 12, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Weidemann, F.; Herrmann, S.; Störk, S.; Niemann, M.; Frantz, S.; Lange, V.; Beer, M.; Gattenlöhner, S.; Voelker, W.; Ertl, G.; et al. Impact of myocardial fibrosis in patients with symptomatic severe aortic stenosis. Circulation 2009, 120, 577–584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrmann, S.; Störk, S.; Niemann, M.; Lange, V.; Strotmann, J.M.; Frantz, S.; Beer, M.; Gattenlöhner, S.; Voelker, W.; Ertl, G.; et al. Low-gradient aortic valve stenosis myocardial fibrosis and its influence on function and outcome. J. Am. Coll. Cardiol. 2011, 58, 402–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristic | Echocardiographic LVH n = 32 | No Echocardiographic LVH n = 18 | p-Value |
---|---|---|---|
Age, years | 77 ± 10 | 77 ± 11 | NS |
Women/men, n | 19/13 | 11/7 | NS |
Hypertension, n (%) | 31 (97%) | 15 (83%) | NS |
Diabetes, n (%) | 16 (50%) | 10 (56%) | NS |
Body mass index, kg/m2 | 27.8 ± 4.2 | 25.2 ± 3.7 | 0.03 |
eGFR, mL/min/1.73 m2 | 67 ± 16 | 74 ± 16 | NS |
LV mass index, g/m2 | 141 ± 34 | 86 ± 14 | <0.001 |
LV end-diastolic diameter, mm | 48 ± 7 | 42 ± 5 | 0.0015 |
Relative LV wall thickness | 0.57 ± 14 | 0.50 ± 0.10 | 0.10 |
Concentric LV geometry (relative LV wall thickness ≥0.42) | 29 (90%) | 14 (78%) | NS |
LV ejection fraction, % | 59 ± 9 | 60 ± 9 | NS |
Peak aortic gradient, mm Hg | 91 ± 25 | 74 ± 26 | 0.03 |
Mean aortic gradient, mm Hg | 58 ± 17 | 45 ± 19 | 0.02 |
Aortic valve area, cm2 | 0.7 ± 0.2 | 0.8 ± 0.2 | 0.03 |
Medication, n (%) | |||
ACEI or ARB | 26 (81%) | 15 (83%) | NS |
Beta-blockers | 24 (75%) | 11 (61%) | NS |
Diuretics | 21 (66%) | 10 (56%) | NS |
Calcium-channel blockers | 11 (34%) | 6 (33%) | NS |
ECG Criteria for LVH | Sensitivity | Specificity | Positive Predictive Value | Negative Predictive Value | Accuracy | Cohen’s Kappa a | McNemar’s Test b |
---|---|---|---|---|---|---|---|
Single criterion | |||||||
Max. RV5,6 > 2.6 mV | 9% | 89% | 60% | 36% | 38% | −0.01 | <0.001 |
RV6 > RV5 | 13% | 94% | 80% | 38% | 42% | 0.05 | <0.001 |
SV1 + max RV5,6 > 3.5 mV | 28% | 89% | 82% | 41% | 50% | 0.14 | <0.001 |
SV2 + max RV5,6 > 4.5 mV | 16% | 100% | 100% | 40% | 46% | 0.12 | <0.001 |
RI > 1.5 mV | 22% | 94% | 88% | 41% | 48% | 0.13 | <0.001 |
RI + SIII > 2.5 mV | 22% | 89% | 78% | 39% | 46% | 0.08 | <0.001 |
RaVL ≥ 1.1 mV | 31% | 83% | 77% | 41% | 50% | 0.12 | <0.001 |
RaVL + SV3 > 2.0 mV (W) RaVL + SV3 > 2.8 mV (M) | 34% | 78% | 73% | 40% | 50% | 0.10 | 0.0014 |
Any of the above criteria | 66% | 56% | 72% | 48% | 62% | 0.20 | 0.6 |
QRS Voltage | Area under the Receiver Operating Characteristic (ROC) Curve Mean (95% Confidence Interval) | p-Value a |
---|---|---|
R-waves | ||
RV5 | 0.64 (0.47–0.81) | 0.1 |
RV6 | 0.58 (0.41–0.76) | 0.4 |
Max RV5,6 | 0.65 (0.48–0.82) | 0.08 |
RI | 0.58 (0.41–0.75) | 0.4 |
RaVL | 0.61 (0.44–0.77) | 0.2 |
S-waves | ||
SIII | 0.62 (0.45–0.79) | 0.2 |
SV1 | 0.70 (0.54–0.86) | 0.015 |
SV2 | 0.66 (0.50–0.82) | 0.06 |
SV3 | 0. 68 (0.53–0.83) | 0.02 |
Combinations of R-waves and S-waves | ||
SV1 + max RV5,6 | 0.68 (0.52–0.84) | 0.03 |
SV2 + max RV5,6 | 0.65 (0.49–0.80) | 0.06 |
RI + SIII | 0.62 (0.45–0.78) | 0.2 |
RaVL + SV3 | 0.71 (0.55–0.86) | 0.01 |
Predictors of the Cornell Voltage (RaVL + SV3) | Non-Standardized Regression Coefficient (mean ± SEM) | p-Value a |
---|---|---|
LV mass index, per increment by 10 g/m2 | 0.7 ± 0.2 | 0.005 |
Peak aortic pressure gradient, per rise by 10 mmHg | 0.5 ± 0.3 | 0.2 |
Age, per 10-year increase | −2.0 ± 0.9 | 0.03 |
Body mass index, per rise by 2.5 kg/m2 | 0.6 ± 0.5 | 0.24 |
Predictors of the Sokolow–Lyon voltage (SV1 + max RV5,6) | ||
LV mass index, per increment by 10 g/m2 | 0.7 ± 0.4 | 0.06 |
Peak aortic pressure gradient, per rise by 10 mmHg | 1.7 ± 0.5 | 0.002 |
Age, per 10-year increase | 0.7 ± 1.4 | 0.6 |
Body mass index, per rise by 2.5 kg/m2 | −0.7 ± 0.8 | 0.4 |
Predictors of the Romhilt voltage (SV2 + max RV5,6) | ||
LV mass index, per increment by 10 g/m2 | 0.9 ± 0.4 | 0.02 |
Peak aortic pressure gradient, per rise by 10 mmHg | 1.3 ± 0.5 | 0.01 |
Age, per 10-year increase | −0.5 ± 1.4 | 0.7 |
Body mass index, per rise by 2.5 kg/m2 | −1.0 ± 0.8 | 0.2 |
Predictors of the Gubner–Ungerleider voltage (RI + SIII) | ||
LV mass index, per increment by 10 g/m2 | 0.6 ± 0.4 | 0.08 |
Peak aortic pressure gradient, per rise by 10 mmHg | 0.0 ± 0.5 | >0.9 |
Age, per 10-year increase | −1.9 ± 1.4 | 0.2 |
Body mass index, per rise by 2.5 kg/m2 | 1.0 ± 0.8 | 0.2 |
Predictors of the Cornell Voltage (RaVL + SV3) | Non-Standardized Regression Coefficient (Mean ± SEM) | p-Value a |
---|---|---|
LV mass index, per increment by 5 g/m2.7 | 0.8 ± 0.3 | 0.004 |
Peak aortic pressure gradient, per rise by 10 mmHg | 0.4 ± 0.3 | 0.2 |
Age, per 10-year increase | −2.0 ± 0.9 | 0.03 |
Body mass index, per rise by 2.5 kg/m2 | 0.3 ± 0.6 | 0.6 |
Predictors of the Sokolow–Lyon voltage (SV1 + max RV5,6) | ||
LV mass index, per increment by 5 g/m2.7 | 0.7 ± 0.4 | 0.08 |
Peak aortic pressure gradient, per rise by 10 mmHg | 1.7 ± 0.5 | 0.002 |
Age, per 10-year increase | 0.7 ± 1.4 | 0.6 |
Body mass index, per rise by 2.5 kg/m2 | −1.0 ± 0.9 | 0.3 |
Predictors of the Romhilt voltage (SV2 + max RV5,6) | ||
LV mass index, per increment by 5 g/m2.7 | 0.8 ± 0.4 | 0.04 |
Peak aortic pressure gradient, per rise by 10 mmHg | 1.3 ± 0.5 | 0.01 |
Age, per 10-year increase | −0.5 ± 1.4 | 0.7 |
Body mass index, per rise by 2.5 kg/m2 | −1.2 ± 0.9 | 0.16 |
Predictors of the Gubner–Ungerleider voltage (RI + SIII) | ||
LV mass index, per increment by 5 g/m2.7 | 0.9 ± 0.4 | 0.02 |
Peak aortic pressure gradient, per rise by 10 mmHg | 0.1 ± 0.5 | 0.8 |
Age, per 10-year increase | −2.0 ± 1.3 | 0.13 |
Body mass index, per rise by 2.5 kg/m2 | 0.6 ± 0.8 | 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Budkiewicz, A.; Surdacki, M.A.; Gamrat, A.; Trojanowicz, K.; Surdacki, A.; Chyrchel, B. Electrocardiographic Versus Echocardiographic Left Ventricular Hypertrophy in Severe Aortic Stenosis. J. Clin. Med. 2021, 10, 2362. https://doi.org/10.3390/jcm10112362
Budkiewicz A, Surdacki MA, Gamrat A, Trojanowicz K, Surdacki A, Chyrchel B. Electrocardiographic Versus Echocardiographic Left Ventricular Hypertrophy in Severe Aortic Stenosis. Journal of Clinical Medicine. 2021; 10(11):2362. https://doi.org/10.3390/jcm10112362
Chicago/Turabian StyleBudkiewicz, Aleksandra, Michał A. Surdacki, Aleksandra Gamrat, Katarzyna Trojanowicz, Andrzej Surdacki, and Bernadeta Chyrchel. 2021. "Electrocardiographic Versus Echocardiographic Left Ventricular Hypertrophy in Severe Aortic Stenosis" Journal of Clinical Medicine 10, no. 11: 2362. https://doi.org/10.3390/jcm10112362
APA StyleBudkiewicz, A., Surdacki, M. A., Gamrat, A., Trojanowicz, K., Surdacki, A., & Chyrchel, B. (2021). Electrocardiographic Versus Echocardiographic Left Ventricular Hypertrophy in Severe Aortic Stenosis. Journal of Clinical Medicine, 10(11), 2362. https://doi.org/10.3390/jcm10112362