OCT-Derived Plaque Morphology and FFR-Determined Hemodynamic Relevance in Intermediate Coronary Stenoses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Optical Coherence Tomography Imaging
2.3. Fractional Flow Reserve Examination
2.4. OCT Definitions
2.5. Quantitative Coronary Angiography
2.6. Ethics
2.7. Statistical Analysis
3. Results
4. Discussion
- OCT-derived MLA and mean lesion length demonstrated a weak to moderate correlation with hemodynamic relevance.
- No significant differences were identified in the morphometric characteristics of coronary plaques in relation to FFR.
4.1. Future Directions
4.2. Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Neumann, F.J.; Sousa-Uva, M.; Ahlsson, A.; Alfonso, F.; Banning, A.P.; Benedetto, U.; Byrne, R.A.; Collet, J.-P.; Falk, V.; Head, S.J.; et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur. Heart J. 2019, 40, 87–165. [Google Scholar] [CrossRef]
- De Bruyne, B.; Fearon, W.F.; Pijls, N.H.; Barbato, E.; Tonino, P.; Piroth, Z.; Jagic, N.; Mobius-Winckler, S.; Rioufol, G.; Witt, N.; et al. Fractional flow reserve-guided PCI for stable coronary artery disease. N. Engl. J. Med. 2014, 371, 1208–1217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reith, S.; Battermann, S.; Hellmich, M.; Marx, N.; Burgmaier, M. Correlation between optical coherence tomography-derived intraluminal parameters and fractional flow reserve measurements in intermediate grade coronary lesions: A comparison between diabetic and non-diabetic patients. Clin. Res. Cardiol. 2015, 104, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Burzotta, F.; Nerla, R.; Hill, J.; Paraggio, L.; Leone, A.M.; Byrne, J.; Porto, I.; Niccoli, G.; Aurigemma, C.; Trani, C.; et al. Correlation between frequency-domain optical coherence tomography and fractional flow reserve in angiographically-intermediate coronary lesions. Int. J. Cardiol. 2018, 253, 55–60. [Google Scholar] [CrossRef]
- Driessen, R.S.; Stuijfzand, W.J.; Raijmakers, P.G.; Danad, I.; Min, J.K.; Leipsic, J.A.; Ahmadi, A.; Narula, J.; van de Ven, P.M.; Huisman, M.C.; et al. Effect of Plaque Burden and Morphology on Myocardial Blood Flow and Fractional Flow Reserve. J. Am. Coll. Cardiol. 2018, 71, 499–509. [Google Scholar] [CrossRef] [PubMed]
- Jang, I.-K.; Tearney, G.J.; MacNeill, B.; Takano, M.; Moselewski, F.; Iftima, N.; Shishkov, M.; Houser, S.; Aretz, H.T.; Halpern, E.F.; et al. In Vivo Characterization of Coronary Atherosclerotic Plaque by Use of Optical Coherence Tomography. Circulation 2005, 111, 1551–1555. [Google Scholar] [CrossRef]
- Park, H.B.; Heo, R.; ó Hartaigh, B.; Cho, I.; Gransar, H.; Nakazato, R.; Leipsic, J.; Mancini, G.B.J.; Koo, B.K.; Otake, H.; et al. Atherosclerotic plaque characteristics by CT angiography identify coronary lesions that cause ischemia: A direct comparison to fractional flow reserve. JACC Cardiovasc. Imaging 2015, 8, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Shiono, Y.; Kitabata, H.; Kubo, T.; Masuno, T.; Ohta, S.; Ozaki, Y.; Sougawa, H.; Orii, M.; Shimamura, K.; Ishibashi, K.; et al. Optical Coherence Tomography-Derived Anatomical Criteria for Functionally Significant Coronary Stenosis Assessed by Fractional Flow Reserve. Circ. J. 2012, 76, 2218–2225. [Google Scholar] [CrossRef] [Green Version]
- Gonzalo, N.; Escaned, J.; Alfonso, F.; Nolte, C.; Rodriguez, V.; Jimenez-Quevedo, P.; Bañuelos, C.; Fernández-Ortiz, A.; Garcia, E.; Hernandez-Antolin, R.; et al. Morphometric assessment of coronary stenosis relevance with optical coherence tomography: A comparison with fractional flow reserve and intravascular ultrasound. J. Am. Coll. Cardiol. 2012, 59, 1080–1089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pawlowski, T.; Prati, F.; Kulawik, T.; Ficarra, E.; Bil, J.; Gil, R. Optical coherence tomography criteria for defining functional severity of intermediate lesions: A comparative study with FFR. Int. J. Cardiovasc. Imaging 2013, 29, 1685–1691. [Google Scholar] [CrossRef]
- Kini, A.S.; Motoyama, S.; Vengrenyuk, Y.; Feig, J.E.; Pena, J.; Baber, U.; Bhat, A.M.; Moreno, P.; Kovacic, J.C.; Narula, J.; et al. Multimodality Intravascular Imaging to Predict Periprocedural Myocardial Infarction During Percutaneous Coronary Intervention. JACC: Cardiovasc. Interv. 2015, 8, 937–945. [Google Scholar] [CrossRef] [Green Version]
- Niccoli, G.; Montone, R.A.; Di Vito, L.; Gramegna, M.; Refaat, H.; Scalone, G.; Leone, A.M.; Trani, C.; Burzotta, F.; Porto, I.; et al. Plaque rupture and intact fibrous cap assessed by optical coherence tomography portend different outcomes in patients with acute coronary syndrome. Eur. Hear. J. 2015, 36, 1377–1384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prati, F.; Romagnoli, E.; Gatto, L.; La Manna, A.; Burzotta, F.; Ozaki, Y.; Marco, V.; Boi, A.; Fineschi, M.; Fabbiocchi, F.; et al. Relationship between coronary plaque morphology of the left anterior descending artery and 12 months clinical outcome: The CLIMA study. Eur. Hear. J. 2020, 41, 383–391. [Google Scholar] [CrossRef]
- Yu, W.; Huang, J.; Jia, D.; Chen, S.; Raffel, O.C.; Ding, D.; Tian, F.; Kan, J.; Zhang, S.; Yan, F.; et al. Diagnostic accuracy of intracoronary optical coherence tomography-derived fractional flow reserve for assessment of coronary stenosis severity. EuroIntervention 2019, 15, 189–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kennedy, M.W.; Fabris, E.; Ijsselmuiden, A.J.; Nef, H.; Reith, S.; Escaned, J.; Alfonso, F.; Van Royen, N.; Wojakowski, W.; Witkowski, A.; et al. Combined optical coherence tomography morphologic and fractional flow reserve hemodynamic assessment of non- culprit lesions to better predict adverse event outcomes in diabetes mellitus patients: COMBINE (OCT-FFR) prospective study. Rationale and design. Cardiovasc. Diabetol. 2016, 15, 144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tearney, G.J.; Regar, E.; Akasaka, T.; Adriaenssens, T.; Barlis, P.; Bezerra, H.G.; Bouma, B.; Bruining, N.; Cho, J.M.; Chowdhary, S.; et al. Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: A report from the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation. J. Am. Coll. Cardiol. 2012, 59, 1058–1072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prati, F.; Guagliumi, G.; Mintz, G.S.; Costa, M.; Regar, E.; Akasaka, T.; Barlis, P.; Tearney, G.J.; Jang, I.-K.; Arbustini, E.; et al. Expert review document part 2: Methodology, terminology and clinical applications of optical coherence tomography for the assessment of interventional procedures. Eur. Hear. J. 2012, 33, 2513–2520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Räber, L.; Mintz, G.S.; Koskinas, K.C.; Johnson, T.; Holm, N.R.; Onuma, Y.; Radu, M.D.; Joner, M.; Yu, B.; Jia, H.; et al. Clinical use of intracoronary imaging. Part 1: Guidance and optimization of coronary interventions. An expert consensus document of the European Association of Percutaneous Cardiovascular Interventions. EuroIntervention 2018, 14, 656–677. [Google Scholar] [CrossRef]
- Prati, F.; Regar, E.; Mintz, G.S.; Arbustini, E.; Di Mario, C.; Jang, I.-K.; Akasaka, T.; Costa, M.; Guagliumi, G.; Grube, E.; et al. Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: Physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis. Eur. Hear. J. 2009, 31, 401–415. [Google Scholar] [CrossRef]
- Kini, A.S.; Vengrenyuk, Y.; Yoshimura, T.; Matsumura, M.; Pena, J.; Baber, U.; Moreno, P.; Mehran, R.; Maehara, A.; Sharma, S.; et al. Fibrous Cap Thickness by Optical Coherence Tomography In Vivo. J. Am. Coll. Cardiol. 2017, 69, 644–657. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Shin, D.-H.; Shehata, I.; Kim, J.-S.; Kim, B.-K.; Ko, Y.-G.; Choi, D.; Jang, Y.; Hong, M.-K. Association between fractional flow reserve and coronary plaque characteristics assessed by optical coherence tomography. J. Cardiol. 2016, 68, 342–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zafar, H.; Ullah, I.; Dinneen, K.; Matiullah, S.; Hanley, A.; Leahy, M.J.; Sharif, F. Evaluation of hemodynamically severe coronary stenosis as determined by fractional flow reserve with frequency domain optical coherence tomography measured anatomical parameters. J. Cardiol. 2014, 64, 19–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bialy, D.; Wawrzynska, M.; Arkowski, J.; Rogala, M.; Proniewska, K.; Wanha, W.; Wojakowski, W.; Roleder, T. Multimodality imaging of intermediate lesions: Data from fractional flow reserve, optical coherence tomography, near-infrared spectroscopy-intravascular ultrasound. Cardiol. J. 2018, 25, 196–202. [Google Scholar]
- Matsushita, K.; Hibi, K.; Okada, K.; Sakamaki, K.; Akiyama, E.; Kimura, Y.; Matsuzawa, Y.; Maejima, N.; Iwahashi, N.; Tsukahara, K.; et al. Comparison between instantaneous wave-free ratio versus morphometric assessments by intracoronary imaging. Hear. Vessel. 2018, 34, 926–935. [Google Scholar] [CrossRef]
- Rivero, F.; Antuña, P.; García-Guimaraes, M.; Jiménez, C.; Cuesta, J.; Bastante, T.; Alfonso, F. Correlation between fractional flow reserve and instantaneous wave-free ratio with morphometric assessment by optical coherence tomography in diabetic patients. Int. J. Cardiovasc. Imaging 2020, 36, 1193–1201. [Google Scholar] [CrossRef]
- Milzi, A.; Dettori, R.; Burgmaier, K.; Marx, N.; Reith, S.; Burgmaier, M. Quantitative Flow Ratio Is Related to Intraluminal Coronary Stenosis Parameters as Assessed with Optical Coherence Tomography. J. Clin. Med. 2021, 10, 1856. [Google Scholar] [CrossRef] [PubMed]
- Usui, E.; Yonetsu, T.; Kanaji, Y.; Hoshino, M.; Yamaguchi, M.; Hada, M.; Fukuda, T.; Ohya, H.; Sumino, Y.; Hamaya, R.; et al. Relationship between optical coherence tomography-derived morphological criteria and functional relevance as determined by fractional flow reserve. J. Cardiol. 2018, 71, 359–366. [Google Scholar] [CrossRef] [Green Version]
- Bourantas, C.V.; Garcia-Garcia, H.M.; Farooq, V.; Maehara, A.; Xu, K.; Généreux, P.; Diletti, R.; Muramatsu, T.; Fahy, M.; Weisz, G.; et al. Clinical and angiographic characteristics of patients likely to have vulnerable plaques: Analysis from the PROSPECT study. JACC Cardiovasc. Imaging 2013, 6, 1263–1272. [Google Scholar] [CrossRef] [Green Version]
- Kedhi, E.; Kennedy, M.W.; Maehara, A.; Lansky, A.J.; McAndrew, T.C.; Marso, S.P.; De Bruyne, B.; Serruys, P.W.; Stone, G.W. Impact of TCFA on Unanticipated Ischemic Events in Medically Treated Diabetes Mellitus: Insights From the PROSPECT Study. JACC Cardiovasc. Imaging 2017, 10, 451–458. [Google Scholar] [CrossRef]
- Tian, J.; Ren, X.; Vergallo, R.; Xing, L.; Yu, H.; Jia, H.; Soeda, T.; McNulty, I.; Hu, S.; Lee, H.; et al. Distinct morphological features of ruptured culprit plaque for acute coronary events compared to those with silent rupture and thin-cap fibroatheroma: A combined optical coherence tomography and intravascular ultrasound study. J. Am. Coll. Cardiol. 2014, 63, 2209–2216. [Google Scholar] [CrossRef] [Green Version]
- Dettori, R.; Milzi, A.; Burgmaier, K.; Almalla, M.; Hellmich, M.; Marx, N.; Reith, S.; Burgmaier, M. Prognostic irrelevance of plaque vulnerability following plaque sealing in high-risk patients with type 2 diabetes: An optical coherence tomography study. Cardiovasc. Diabetol. 2020, 19, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Stone, G.W.; Maehara, A.; Ali, Z.A.; Held, C.; Matsumura, M.; Kjøller-Hansen, L.; Bøtker, H.E.; Maeng, M.; Engstrøm, T.; Wiseth, R.; et al. Percutaneous Coronary Intervention for Vulnerable Coronary Atherosclerotic Plaque. J. Am. Coll. Cardiol. 2020, 76, 2289–2301. [Google Scholar] [CrossRef] [PubMed]
- Tomaniak, M.; Katagiri, Y.; Modolo, R.; De Silva, R.; Khamis, R.Y.; Bourantas, C.V.; Torii, R.; Wentzel, J.J.; Gijsen, F.J.H.; Van Soest, G.; et al. Vulnerable plaques and patients: State-of-the-art. Eur. Hear. J. 2020, 41, 2997–3004. [Google Scholar] [CrossRef] [PubMed]
- Reith, S.B.; Battermann, S.; Jaskolka, A.; Lehmacher, W.; Hoffmann, R.; Marx, N.; Burgmaier, M. Relationship between optical coherence tomography derived intraluminal and intramural criteria and haemodynamic relevance as determined by fractional flow reserve in intermediate coronary stenoses of patients with type 2 diabetes. Heart 2013, 99, 700–707. [Google Scholar] [CrossRef]
- Tonino, P.A.; De Bruyne, B.; Pijls, N.H.; Siebert, U.; Ikeno, F.; Veer, M.V.; Klauss, V.; Manoharan, G.; Engstrøm, T.; Oldroyd, K.G.; et al. Fractional Flow Reserve versus Angiography for Guiding Percutaneous Coronary Intervention. N. Engl. J. Med. 2009, 360, 213–224. [Google Scholar] [CrossRef] [Green Version]
- Pijls, N.H.; Fearon, W.F.; Tonino, P.A.; Siebert, U.; Ikeno, F.; Bornschein, B.; van’t Veer, M.; Klauss, V.; Manoharan, G.; Engstrøm, T.; et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention in patients with multivessel coronary artery disease: 2-year follow-up of the FAME (Fractional Flow Reserve Versus Angiography for Multivessel Evaluation) study. J. Am. Coll. Cardiol. 2010, 56, 177–184. [Google Scholar] [CrossRef] [Green Version]
- Park, S.-J.; Kang, S.-J.; Ahn, J.-M.; Shim, E.B.; Kim, Y.-T.; Yun, S.-C.; Song, H.; Lee, J.-Y.; Kim, W.-J.; Park, D.-W.; et al. Visual-Functional Mismatch Between Coronary Angiography and Fractional Flow Reserve. JACC Cardiovasc. Interv. 2012, 5, 1029–1036. [Google Scholar] [CrossRef] [Green Version]
- Waksman, R.; Legutko, J.; Singh, J.; Orlando, Q.; Marso, S.; Schloss, T.; Tugaoen, J.; DeVries, J.; Palmer, N.; Haude, M.; et al. FIRST: Fractional Flow Reserve and Intravascular Ultrasound Relationship Study. J. Am. Coll. Cardiol. 2013, 61, 917–923. [Google Scholar] [CrossRef] [Green Version]
- Sakurai, S.; Takashima, H.; Waseda, K.; Gosho, M.; Kurita, A.; Ando, H.; Maeda, K.; Suzuki, A.; Fujimoto, M.; Amano, T. Influence of plaque characteristics on fractional flow reserve for coronary lesions with intermediate to obstructive stenosis: Insights from integrated-backscatter intravascular ultrasound analysis. Int. J. Cardiovasc. Imaging 2015, 31, 1295–1301. [Google Scholar] [CrossRef]
Baseline Characteristics | |||
---|---|---|---|
FFR ≤ 0.80 * | FFR > 0.80 | p | |
n = 65 | n = 40 | ||
Age (years) | 63.83 ± 9.2 | 66.47 ± 10.1 | 0.172 |
Male | 55 (84.62) | 31 (77.5) | 0.358 |
CCS 3 | 12 (18.46) | 5 (12.5) | 0.421 |
Diabetes mellitus | 21 (32.31) | 13 (32.5) | 0.984 |
Hypertension | 50 (76.92) | 38 (95.0) | 0.015 |
Dyslipidemia | 42 (64.62) | 27 (67.5) | 0.762 |
Chronic kidney disease | 8 (12.31) | 3(7.5) | 0.435 |
Chronic heart failure | 12 (18.46) | 4 (10.0) | 0.241 |
Previous PCI | 51 (78.46) | 26 (65.0) | 0.13 |
Previous CABG | 4 (6.15) | 1 (2.5) | 0.625 |
Previous MI | 37 (56.92) | 20 (50.0) | 0.489 |
TIA/stroke | 2 (3.08) | 1 (2.5) | 0.853 |
Current smoking | 14 (21.54) | 4 (10.0) | 0.119 |
Angiographic Characteristics | |||
---|---|---|---|
FFR ≤ 0.80 * L = 72 | FFR > 0.80 L = 52 | ||
LM | 3 (4.17) | 2 (3.85) | 0.929 |
LAD | 53 (73.61) | 21 (40.38) | <0.001 |
Cx | 4 (5.56) | 9 (17.3) | 0.035 |
RCA | 9 (12.5) | 16 (30.77) | 0.012 |
Lesion length (mm) | 28.4± 13 | 17.29 ± 7.5 | 0.001 |
Diameter stenosis (%) | 53.3 ± 8.7 | 47.6 ± 8.6 | 0.036 |
Proximal reference vessel diameter (mm) | 2.78 ± 0.61 | 3.12 ± 0.57 | 0.061 |
Distal reference vessel diameter (mm) | 2.3 ± 0.38 | 2.8 ± 0.6 | 0.003 |
A | 9 (12.5) | 4 (7.7) | 0.388 |
B1 | 22 (30.56) | 21 (40.38) | 0.256 |
B2 | 19 (26.38) | 19 (36.54) | 0.226 |
C | 22 (30.56) | 8 (15.38) | 0.052 |
Bifurcation | 30 (41.67) | 21 (40.38) | 0.886 |
Calcification | 9 (12.5) | 7 (13.46) | 0.875 |
Ostial lesion | 2 (2.78) | 6 (11.54) | 0.05 |
Severe tortuosity | 6 (8.33) | 7 (13.46) | 0.358 |
Optical coherence tomography measurements | |||
Mean lumen area (mm2) | 3.46 ± 1.29 | 4.65 ± 2.19 | <0.001 |
MLA (mm2) | 1.84 ± 0.97 | 2.66 ± 1.4 | <0.001 |
Mean lesion length (mm) | 15.62 ± 9.42 | 11.8 ± 7.79 | 0.018 |
Proximal RLA (mm2) | 7.27 ± 2.73 | 9.73 ± 5.31 | 0.002 |
Distal RLA (mm2) | 4.89 ± 1.93 | 6.85 ± 3.63 | <0.001 |
Calcified plaque | 26 (36.11) | 19 (36.54) | 0.961 |
Fibrous plaque | 24 (33.33) | 18 (34.6) | 0.882 |
Lipid-rich plaque | 27 (37.5) | 15 (28.8) | 0.315 |
TCFA | 13 (18.06) | 8 (15.38) | 0.696 |
Mean FCT (mm) | 0.11 ± 0.07 | 0.11 ± 0.07 | 0.882 |
Minimal FCT (mm) | 0.10 ± 0.07 | 0.10 ± 0.08 | 0.905 |
Mean lipid angle (°) | 119.59 ± 34.07 | 104.87 ± 41.03 | 0.294 |
Mean angle of the calcium (°) | 125.5 ± 68.38 | 99.54 ± 49.09 | 0.075 |
Maximal angle of the calcium (°) | 141.73 ± 77.38 | 113.85 ± 71.59 | 0.121 |
Mean cap thickness over the calcium (mm) | 0.1 ± 0.07 | 0.1 ± 0.07 | 0.882 |
Calcium volume index * (° × mm) | 2780.7 ± 689 | 1621.6 ± 201 | 0.306 |
Lipid volume index # (° × mm) | 1895.7 ± 386 | 1832.9 ± 283 | 0.997 |
Fractional Flow Reserve | ||
---|---|---|
Pearson Correlation | p Value | |
Mean lumen area (mm2) | 0.228 | 0.011 |
MLA (mm2) | 0.208 | 0.02 |
Mean lesion length (mm) | −0.38 | <0.001 |
Proximal RLA (mm2) | 0.229 | 0.017 |
Distal RLA (mm2) | 0.292 | 0.002 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomaniak, M.; Ochijewicz, D.; Kołtowski, Ł.; Rdzanek, A.; Pietrasik, A.; Jąkała, J.; Slezak, M.; Malinowski, K.P.; Zaleska, M.; Maksym, J.; et al. OCT-Derived Plaque Morphology and FFR-Determined Hemodynamic Relevance in Intermediate Coronary Stenoses. J. Clin. Med. 2021, 10, 2379. https://doi.org/10.3390/jcm10112379
Tomaniak M, Ochijewicz D, Kołtowski Ł, Rdzanek A, Pietrasik A, Jąkała J, Slezak M, Malinowski KP, Zaleska M, Maksym J, et al. OCT-Derived Plaque Morphology and FFR-Determined Hemodynamic Relevance in Intermediate Coronary Stenoses. Journal of Clinical Medicine. 2021; 10(11):2379. https://doi.org/10.3390/jcm10112379
Chicago/Turabian StyleTomaniak, Mariusz, Dorota Ochijewicz, Łukasz Kołtowski, Adam Rdzanek, Arkadiusz Pietrasik, Jacek Jąkała, Magdalena Slezak, Krzysztof P. Malinowski, Martyna Zaleska, Jakub Maksym, and et al. 2021. "OCT-Derived Plaque Morphology and FFR-Determined Hemodynamic Relevance in Intermediate Coronary Stenoses" Journal of Clinical Medicine 10, no. 11: 2379. https://doi.org/10.3390/jcm10112379
APA StyleTomaniak, M., Ochijewicz, D., Kołtowski, Ł., Rdzanek, A., Pietrasik, A., Jąkała, J., Slezak, M., Malinowski, K. P., Zaleska, M., Maksym, J., Barus, P., Roleder, T., Filipiak, K. J., Opolski, G., & Kochman, J. (2021). OCT-Derived Plaque Morphology and FFR-Determined Hemodynamic Relevance in Intermediate Coronary Stenoses. Journal of Clinical Medicine, 10(11), 2379. https://doi.org/10.3390/jcm10112379