Prediction of Intraoperative Fluorescence of Brain Gliomas: Correlation between Tumor Blood Flow and the Fluorescence
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Limitations of the Study
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Corns, R.; Mukherjee, S.; Johansen, A.; Siva, G. 5-aminolevulinic acid guidance during awake craniotomy to maximize the ex-tent of safe resection of glioblastoma multiforme. BMJ Case Rep. 2015, 2015, bcr2014208575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roessler, K.; Becherer, A.; Donat, M.; Cejna, M.; Zachenhofer, I. Intraoperative tissue fluorescence using 5-aminolevolinic acid (5-ALA) is more sensitive than contrast MRI or amino acid positron emission tomography (18F-FET PET) in glioblastoma surgery. Neurol. Res. 2012, 34, 314–317. [Google Scholar] [CrossRef] [PubMed]
- Duffau, H. Is Supratotal Resection of Glioblastoma in Noneloquent Areas Possible? World Neurosurg. 2014, 82, e101–e103. [Google Scholar] [CrossRef] [PubMed]
- Guyotat, J.; Pallud, J.; Armoiry, X.; Pavlov, V.; Metellus, P. 5-Aminolevulinic Acid Protoporphyrin IX Fluorescence-Guided Sur-gery of High-Grade Gliomas: A Systematic Review. Adv. Tech. Stand. Neurosurg. 2016, 61–90. [Google Scholar] [CrossRef]
- Barbagallo, G.M.V.; Certo, F.; Heiss, K.; Albanese, V. 5-ALA fluorescence-assisted surgery in pediatric brain tumors: Report of three cases and review of the literature. Br. J. Neurosurg. 2014, 28, 750–754. [Google Scholar] [CrossRef]
- Lacerda, S.; Law, M. Magnetic Resonance Perfusion and Permeability Imaging in Brain Tumors. Neuroimaging Clin. N. Am. 2009, 19, 527–557. [Google Scholar] [CrossRef]
- Unsgaard, G.; Rygh, O.M.; Selbekk, T.; Müller, T.B.; Kolstad, F.; Lindseth, F.; Hernes, T.A. Intra-operative 3D ultrasound in neurosur-gery. Acta Neurochir. 2006, 148, 235–253; discussion 253. [Google Scholar] [CrossRef]
- Prada, F.; Del Bene, M.; Fornaro, R.; Vetrano, I.G.; Martegani, A.; Aiani, L.; Sconfienza, L.M.; Mauri, G.; Solbiati, L.; Pollo, B.; et al. Identification of residual tumor with intraoperative contrast-enhanced ultrasound during glioblastoma resection. Neurosurg. Focus 2016, 40, E7. [Google Scholar] [CrossRef]
- Stummer, W.; Tonn, J.C.; Goetz, C.; Ulrich, W.; Stepp, H.; Bink, A.; Pietsch, T.; Pichlmeier, U. 5-Aminolevulenic Acid-derived Tumor Fluorecence: The Diagnostic Accuracy of Visible Fluorescence Qualities as Corroborated by Spectrometry and His-tology and Postoperative Imaging. Neurosurgery 2014, 74, 309–319. [Google Scholar]
- Potapov, A.A.; Goryainov, S.A.; Okhlopkov, V.A.; Zhukov, V.Y.; Chumakova, A.P.; Shishkin, L.V.; Loschenov, V.B.; Savelyeva, T.A.; Varyukhina, M.D.; Goldberg, M.F. Experience in using fluorescence navigation and laser spectroscopy with 5-aminolevulinic acid in brain tumor surgery. RFBR Bull. 2016, 50–62. [Google Scholar] [CrossRef]
- Stummer, W.; Suero Molina, E. Fluorescence Imaging/Agents in Tumor Resection. Neurosurg. Clin. N. Am. 2017, 28, 569–583. [Google Scholar] [CrossRef]
- Valdes, P.A.; Millesi, M.; Widhalm, G.; Roberts, D.W. 5-aminolevulinic acid induced protoporphyrin IX (ALA-PpIX) fluores-cence guidance in meningioma surgery. J. Neurooncol. 2019, 141, 555–565. [Google Scholar] [CrossRef]
- Stummer, W.; Pichlmeier, U.; Meinel, T.; Wiestler, O.D.; Zanella, F.; Reulen, H.-J. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: A randomised controlled multicentre phase III trial. Lancet Oncol. 2006, 7, 392–401. [Google Scholar] [CrossRef]
- Stummer, W.; Novotny, A.; Stepp, H.; Goetz, C.; Bise, K.; Reulen, H.J. Fluorescence-guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: A prospective study in 52 consecutive patients. J. Neurosurg. 2000, 93, 1003–1013. [Google Scholar] [CrossRef]
- Widhalm, G.; Kiesel, B.; Woehrer, A.; Traub-Weidinger, T.; Preusser, M.; Marosi, C.; Prayer, D.; Hainfellner, J.A.; Knosp, E.; Wolfsberger, S. 5-Aminolevulinic Acid Induced Fluorescence Is a Powerful Intraoperative Marker for Precise Histopathological Grading of Gliomas with Non-Significant Contrast-Enhancement. PLoS ONE 2013, 8, e76988. [Google Scholar] [CrossRef] [Green Version]
- Valdés, P.A.; Kim, A.; Brantsch, M.; Niu, C.; Moses, Z.B.; Tosteson, T.D.; Wilson, B.C.; Paulsen, K.D.; Roberts, D.W.; Harris, B.T. δ-aminolevulinic acid-induced protoporphyrin IX concentration correlates with histopathologic markers of malignancy in human gliomas: The need for quantitative fluorescence-guided resection to identify regions of increasing malignancy. Neuro Oncol. 2011, 13, 846–856. [Google Scholar] [CrossRef] [Green Version]
- Goryaynov, S.A.; Okhlopkov, V.A.; Golbin, D.A.; Chernyshov, K.A.; Svistov, D.V.; Martynov, B.V.; Kim, A.V.; Byvaltsev, V.; Pavlova, G.V.; Batalov, A.; et al. Fluorescence Diagnosis in Neurooncology: Retrospective Analysis of 653 Cases. Front. Oncol. 2019, 9, 830. [Google Scholar] [CrossRef] [Green Version]
- Floeth, F.W.; Sabel, M.; Ewelt, C.; Stummer, W.; Felsberg, J.; Reifenberger, G.; Steiger, H.J.; Stoffels, G.; Coenen, H.H.; Langen, K.-J. Comparison of 18F-FET PET and 5-ALA fluorescence in cerebral gliomas. Eur. J. Nucl. Med. Mol. Imaging 2010, 38, 731–741. [Google Scholar] [CrossRef]
- Goryaynov, S.A.; Widhalm, G.; Goldberg, M.F.; Chelushkin, D.; Spallone, A.; Chernyshov, K.A.; Ryzhova, M.; Pavlova, G.; Revischin, A.; Shishkina, L.; et al. The Role of 5- ALA in Low-Grade Gliomas and the Influence of An-tiepileptic Drugs on Intraoperative Fluorescence. Front. Oncol. 2019, 9, 423. [Google Scholar] [CrossRef] [Green Version]
- Warmuth, C.; Günther, M.; Zimmer, C. Quantification of Blood Flow in Brain Tumors: Comparison of Arterial Spin Labeling and Dynamic Susceptibility-weighted Contrast-enhanced MR Imaging. Radiology 2003, 228, 523–532. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Li, J.; Zhang, Z.; Xu, Q.; Zhou, Z.; Zhang, Z.; Zhang, Y.; Zhang, Z. Comparison of Intravoxel Incoherent Motion Diffusion-Weighted MR Imaging and Arterial Spin Labeling MR Imaging in Gliomas. BioMed Res. Int. 2015, 2015, 234245. [Google Scholar] [CrossRef]
- Ma, H.; Wang, Z.; Xu, K.; Shao, Z.; Yang, C.; Xu, P.; Liu, X.; Hu, C.; Lu, X.; Rong, Y. Three-dimensional arterial spin labeling imaging and dynamic susceptibility contrast perfu-sion-weighted imaging value in diagnosing glioma grade prior to surgery. Exp. Ther. Med. 2017, 13, 2691–2698. [Google Scholar] [CrossRef] [Green Version]
- Xiao, H.F.; Chen, Z.Y.; Lou, X.; Wang, Y.L.; Gui, Q.P.; Wang, Y.; Shi, K.N.; Zhou, Z.Y.; Zheng, D.D.; Wang, D.J.; et al. Astrocytic tumour grading: A comparative study of three-dimensional pseudocontinuous arte-rial spin labeling, dynamic susceptibility contrast-enhanced perfusion-weighted imaging, and diffusion-weighted imaging. Eur. Radiol. 2015, 25, 3423–3430. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Q.; Jiang, B.; Shi, F.; Ling, C.; Dong, F.; Zhang, J. 3D Pseudocontinuous Arterial Spin-Labeling MR Imaging in the Preopera-tive Evaluation of Gliomas. Am. J. Neuroradiol. 2017, 38, 1876–1883. [Google Scholar] [CrossRef] [Green Version]
- Batalov, A.I.; Zakharova, N.E.; Pogosbekyan, E.L.; Fadeeva, L.M.; Goryaynov, S.A.; Baev, A.A.; Shul’Ts, E.I.; Chelushkin, D.M.; Potapov, A.A.; Pronin, I.N. Non-contrast ASL perfusion in preoperative diagnosis of supratentorial gliomas. Voprosy Neirokhirurgii Imeni NN Bu Rdenko 2018, 82, 15–22. [Google Scholar] [CrossRef]
- Louis, D.N.; Perry, A.; Reifenberger, G.; Von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.; Kleihues, P.; Ellison, D.W. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A summary. Acta Neuropathol. 2016, 131, 803–820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stockhammer, F.; Misch, M.; Horn, P.; Koch, A.; Fonyuy, N.; Plotkin, M. Association of F18-fluoro-ethyl-tyrosin uptake and 5-aminolevulinic acid-induced fluorescence in gliomas. Acta Neurochir. 2009, 151, 1377–1383. [Google Scholar] [CrossRef]
- Roberts, D.W.; Valdés, P.A.; Harris, B.T.; Fontaine, K.M.; Hartov, A.; Fan, X.; Ji, S.; Lollis, S.S.; Pogue, B.W.; Leblond, F.; et al. Coregistered fluorescence-enhanced tumor resection of malignant glioma: Relati onships between δ-aminolevulinic acid- induced protoporphyrin IX fluorescence, ma gnetic resonance imaging enhancement, and neuropa-thological parameters. J. Neurosurg. 2011, 114, 595–603. [Google Scholar] [CrossRef] [Green Version]
- Goryaynov, S.A. Fluorescence diagnostics and laser spectroscopy in brain glioma surgery. In Abstract of the Dissertation for the Degree of Candidate of Medical Sciences; N. N. Burdenko National Medical Research Center of Neurosurgery: Moscow, Russia, 2013. [Google Scholar]
- Gumprecht, H.; Grosu, A.L.; Souvatsoglou, M.; Dzewas, B.; Weber, W.A.; Lumenta, C.B. 11C-Methionine positron emission tomography for preoperative evaluation of suggestive low-grade gliomas. Zentralbl. Neurochir. 2007, 68, 19–23. [Google Scholar] [CrossRef]
- Samkoe, K.S.; Gibbs-Strauss, S.L.; Yang, H.H.; Hekmatyar, S.K.; Hoopes, P.J.; O’Hara, J.A.; Kauppinen, R.A.; Pogue, B.W. Protoporphyrin IX fluorescence contrast in invasive glioblastomas is linearly correlated with Gd enhanced magnetic resonance image contrast but has higher diagnostic accuracy. J. Biomed. Opt. 2011, 16, 096008. [Google Scholar] [CrossRef] [Green Version]
- Jaber, M.; Ewelt, C.; Wölfer, J.; Brokinkel, B.; Thomas, C.; Hasselblatt, M.; Grauer, O.; Stummer, W. Is Visible Aminolevulinic Acid-Induced Fluorescence an Independent Biomarker for Prognosis in Histologically Confirmed (World Health Organization 2016) Low-Grade Gliomas? Neurosurgery 2018, 84, 1214–1224. [Google Scholar] [CrossRef] [PubMed]
Histopathological Diagnosis | Grade, WHO | n |
---|---|---|
Gemistocytic astrocytoma | II | 2 |
Diffuse astrocytoma | II | 10 |
Oligodendroglioma | II | 4 |
Anaplastic astrocytoma | III | 7 |
Anaplastic oligodendroglioma | III | 6 |
Glioblastoma | IV | 46 |
Mean | St. Dev. | ||
---|---|---|---|
TBF (mL/100 g/min) | LGG | 30.75 | 13.67 |
HGG | 177.14 | 101.05 | |
nTBF | LGG | 1.57 | 0.63 |
HGG | 10.09 | 6.05 |
Presence of Intraoperativefluorescence | Mean Maximum Tumor Blood Flow (TBF) mL/100 g/min | Mean Normalized Maximum Blood Flow (nTBF) |
---|---|---|
Non-fluorescent gliomas | 88.53 ± 98,67 | 4.43 ± 4.97 |
Fluorescent gliomas | 158.13 ± 106.59 | 9.09 ± 6.40 |
Confidence level | p = 0.016 | p = 0.004 |
Fluorescent Status | n | TBF ± St. Dev | p Value | |
---|---|---|---|---|
Enhancing | Fluorescent | 53 | 170.17 ± 107.65 | >0.05 |
Non-fluorescent | 4 | 165.52 ± 141.71 | ||
Non-enhancing | Fluorescent | 9 | 54.58 ± 32.34 | >0.05 |
Non-fluorescent | 9 | 52.99 ± 53.61 |
<84.81 mL/100 mg/min | = or >84.81 mL/100 mg/min | |
---|---|---|
Enhancing | 11 (19.3%) | 46 (80.7%) |
Non-enhancing | 15 (83.3%) | 3 (16.7%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Batalov, A.I.; Goryaynov, S.A.; Zakharova, N.E.; Solozhentseva, K.D.; Kosyrkova, A.V.; Potapov, A.A.; Pronin, I.N. Prediction of Intraoperative Fluorescence of Brain Gliomas: Correlation between Tumor Blood Flow and the Fluorescence. J. Clin. Med. 2021, 10, 2387. https://doi.org/10.3390/jcm10112387
Batalov AI, Goryaynov SA, Zakharova NE, Solozhentseva KD, Kosyrkova AV, Potapov AA, Pronin IN. Prediction of Intraoperative Fluorescence of Brain Gliomas: Correlation between Tumor Blood Flow and the Fluorescence. Journal of Clinical Medicine. 2021; 10(11):2387. https://doi.org/10.3390/jcm10112387
Chicago/Turabian StyleBatalov, Artem I., Sergey A. Goryaynov, Natalya E. Zakharova, Kristina D. Solozhentseva, Alexandra V. Kosyrkova, Alexander A. Potapov, and Igor N. Pronin. 2021. "Prediction of Intraoperative Fluorescence of Brain Gliomas: Correlation between Tumor Blood Flow and the Fluorescence" Journal of Clinical Medicine 10, no. 11: 2387. https://doi.org/10.3390/jcm10112387