Differences in Frontal Lobe Dysfunction in Patients with Episodic and Chronic Migraine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Neuropsychological Evaluation
2.3. Statistical Analysis
3. Results
3.1. Clinical Characteristics
3.2. Neuropsychological Tests
3.3. Correlation between Headache Parameters and Neuropsychological Variables
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Gil-Gouveia, R.; Oliveira, A.G.; Martins, I.P. The impact of cognitive symptoms on migraine attack-related disability. Cephalalgia 2015, 36, 422–430. [Google Scholar] [CrossRef] [PubMed]
- Gil-Gouveia, R.; Martins, I.P. Clinical description of attack-related cognitive symptoms in migraine: A systematic review. Cephalalgia 2017, 38, 1335–1350. [Google Scholar] [CrossRef]
- Vuralli, D.; Ayata, C.; Bolay, H. Cognitive dysfunction and migraine. J. Headache Pain 2018, 19, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gil-Gouveia, R.; Oliveira, A.G.; Martins, I.P. Assessment of cognitive dysfunction during migraine attacks: A systematic review. J. Neurol. 2015, 262, 654–665. [Google Scholar] [CrossRef]
- Tolner, E.A.; Chen, S.-P.; Eikermann-Haerter, K. Current understanding of cortical structure and function in migraine. Cephalalgia 2019, 39, 1683–1699. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, N.; Arkink, E.B.; Mulder, M.; Rubia, K.; Admiraal-Behloul, F.; Schoonmann, G.G.; Kruit, M.; Ferrari, M.D.; van Buchem, M.A. Frontal lobe structure and executive function in migraine patients. Neurosci. Lett. 2008, 440, 92–96. [Google Scholar] [CrossRef]
- Evers, S.; Marziniak, M. Clinical features, pathophysiology, and treatment of medication-overuse headache. Lancet Neurol. 2010, 9, 391–401. [Google Scholar] [CrossRef]
- Biagianti, B.; Grazzi, L.; Gambini, O.; Usai, S.; Muffatti, R.; Scarone, S.; Bussone, G. Orbitofrontal Dysfunction and Medication Overuse in Patients with Migraine. Headache 2012, 52, 1511–1519. [Google Scholar] [CrossRef]
- Biagianti, B.; Grazzi, L.; Gambini, O.; Usai, S.; Muffatti, R.; Scarone, S.; Bussone, G. Decision-making deficit in chronic migraine patients with medication overuse. Neurol. Sci. 2012, 33, 151–155. [Google Scholar] [CrossRef] [Green Version]
- Hornak, J.; O’Doherty, J.; Bramham, J.; Rolls, E.; Morris, R.G.; Bullock, P.R.; Polkey, C.E. Reward-related Reversal Learning after Surgical Excisions in Orbito-frontal or Dorsolateral Prefrontal Cortex in Humans. J. Cogn. Neurosci. 2004, 16, 463–478. [Google Scholar] [CrossRef]
- Schoenbaum, G.; Shaham, Y. The Role of Orbitofrontal Cortex in Drug Addiction: A Review of Preclinical Studies. Biol. Psychiatry 2008, 63, 256–262. [Google Scholar] [CrossRef] [Green Version]
- Mongini, F.; Keller, R.; Deregibus, A.; Barbalonga, E.; Mongini, T. Frontal lobe dysfunction in patients with chronic migraine: A clinical–neuropsychological study. Psychiatry Res. 2005, 133, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Tombaugh, T.N. Trail Making Test A and B: Normative data stratified by age and education. Arch. Clin. Neuropsychol. 2004, 19, 203–214. [Google Scholar] [CrossRef]
- Kim, M.H.M. Relationships between Trail Making Test (A, B, B-A, B/A) scores and age, education, comparison of performance head injury patient and psychiatric patient. Korean J. Clin. Psychol. 2004, 23, 353–366. [Google Scholar]
- Reitan, R.M.; Herring, S. A short screening device for identification of cerebral dysfunction in children. J. Clin. Psychol. 1985, 41, 643–650. [Google Scholar] [CrossRef]
- Lange, F.; Brückner, C.; Knebel, A.; Seer, C.; Kopp, B. Executive dysfunction in Parkinson’s disease: A meta-analysis on the Wisconsin Card Sorting Test literature. Neurosci. Biobehav. Rev. 2018, 93, 38–56. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Wang, T.-Y.; Chen, S.L.; Chang, Y.-H.; Chen, P.-S.; Huang, S.-Y.; Tzeng, N.-S.; Wang, L.-J.; Lee, I.H.; Chen, K.C.; et al. The correlation between plasma brain-derived neurotrophic factor and cognitive function in bipolar disorder is modulated by the BDNF Val66Met polymorphism. Sci. Rep. 2016, 6, 37950. [Google Scholar] [CrossRef] [PubMed]
- Eling, P.; Derckx, K.; Maes, R. On the historical and conceptual background of the Wisconsin Card Sorting Test. Brain Cogn. 2008, 67, 247–253. [Google Scholar] [CrossRef]
- Clark, L.; Bechara, A.; Damasio, H.; Aitken, M.R.F.; Sahakian, B.J.; Robbins, T.W. Differential effects of insular and ventromedial prefrontal cortex lesions on risky decision-making. Brain 2008, 131, 1311–1322. [Google Scholar] [CrossRef] [Green Version]
- Bechara, A. Iowa Gambling Task Professional Manual. Version 1; Raton, B., Ed.; Psychological Assessment Resources, Inc.: Lutz, Germany, 2007. [Google Scholar]
- Bechara, A. Decision making, impulse control and loss of willpower to resist drugs: A neurocognitive perspective. Nat. Neurosci. 2005, 8, 1458–1463. [Google Scholar] [CrossRef]
- Baena, C.P.; Goulart, A.C.; Santos, I.D.S.; Suemoto, C.K.; Lotufo, P.A.; Bensenor, I.J. Migraine and cognitive function: Baseline findings from the Brazilian Longitudinal Study of Adult Health: ELSA-Brasil. Cephalalgia 2017, 38, 1525–1534. [Google Scholar] [CrossRef]
- Martins, I.P.; Gil-Gouveia, R.; Silva, C.; Maruta, C.; Oliveira, A.G. Migraine, Headaches, and Cognition. Headache J. Head Face Pain 2012, 52, 1471–1482. [Google Scholar] [CrossRef]
- Zeitlin, C.; Oddy, M. Cognitive impairment in patients with severe migraine. Br. J. Clin. Psychol. 1984, 23 Pt 1, 27–35. [Google Scholar] [CrossRef]
- Hooker, W.D.; Raskin, N.H. Neuropsychologic Alterations in Classic and Common Migraine. Arch. Neurol. 1986, 43, 709–712. [Google Scholar] [CrossRef] [PubMed]
- Le Pira, F.; Zappalà, G.; Giuffrida, S.; Bartolo, M.L.; Reggio, E.; Morana, R.; Lanaia, F. Memory Disturbances in Migraine with and Without Aura: A Strategy Problem? Cephalalgia 2000, 20, 475–478. [Google Scholar] [CrossRef] [PubMed]
- Calandre, E.P.; Bembibre, J.; Arnedo, M.L.; Becerra, D. Cognitive Disturbances and Regional Cerebral Blood Flow Abnormalities in Migraine Patients: Their Relationship with the Clinical Manifestations of the Illness. Cephalalgia 2002, 22, 291–302. [Google Scholar] [CrossRef] [PubMed]
- Camarda, C.; Monastero, R.; Pipia, C.; Recca, D.; Camarda, R. Interictal Executive Dysfunction in Migraineurs without Aura: Relationship with Duration and Intensity of Attacks. Cephalalgia 2007, 27, 1094–1100. [Google Scholar] [CrossRef] [PubMed]
- Le Pira, F.; Reggio, E.; Quattrocchi, G.; Sanfilippo, C.; Maci, T.; Cavallaro, T.; Zappia, M. Executive Dysfunctions in Migraine with and Without Aura: What Is the Role of White Matter Lesions? Headache 2013, 54, 125–130. [Google Scholar] [CrossRef]
- Santangelo, G.; Russo, A.; Trojano, L.; Falco, F.; Marcuccio, L.; Siciliano, M.; Conte, F.; Garramone, F.; Tessitore, A.; Tedeschi, G. Cognitive dysfunctions and psychological symptoms in migraine without aura: A cross-sectional study. J. Headache Pain 2016, 17, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Dong, H.J.; Wang, X.; Wang, Y.; Xiao, Z. Duration and frequency of migraines affect cognitive function: Evidence from neuropsychological tests and event-related potentials. J. Headache Pain 2017, 18, 54. [Google Scholar] [CrossRef] [Green Version]
- McKendrick, A.M.; Badcock, D.; Gurgone, M. Motion Perception in Migraineurs: Abnormalities are Not Related to Attention. Cephalalgia 2006, 26, 1131–1136. [Google Scholar] [CrossRef]
- Stenfors, C.U.D.; Marklund, P.; Hanson, L.L.M.; Theorell, T.; Nilsson, L.-G. Subjective Cognitive Complaints and the Role of Executive Cognitive Functioning in the Working Population: A Case-Control Study. PLoS ONE 2013, 8, e83351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Onyper, S.V.; Searleman, A.; Thacher, P.V.; Maine, E.E.; Johnson, A.G. Executive functioning and general cognitive ability in pregnant women and matched controls. J. Clin. Exp. Neuropsychol. 2010, 32, 986–995. [Google Scholar] [CrossRef]
- Drogos, L.; Rubin, L.H.; Geller, S.E.; Banuvar, S.; Shulman, L.P.; Maki, P.M. Objective cognitive performance is related to subjective memory complaints in midlife women with moderate to severe vasomotor symptoms. Menopause 2013, 20, 1236–1242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kececi, H.; Atakay, S. Effects of topiramate on neurophysiological and neuropsychological tests in migraine patients. J. Clin. Neurosci. 2009, 16, 1588–1591. [Google Scholar] [CrossRef] [PubMed]
- Samson, R.; Barnes, C.A. Impact of aging brain circuits on cognition. Eur. J. Neurosci. 2013, 37, 1903–1915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chu, H.-T.; Liang, C.-S.; Lee, J.-T.; Lee, M.-S.; Sung, Y.-F.; Tsai, C.-L.; Lin, Y.-K.; Ho, T.-H.; Yang, F.-C.; Tsai, C.-K. Subjective cognitive complaints and migraine characteristics: A cross-sectional study. Acta Neurol. Scand. 2019, 141, 319–327. [Google Scholar] [CrossRef]
- Martins, I.P.; Maruta, C.; Alves, P.N.; Loureiro, C.; Morgado, J.; Tavares, J.; Gil-Gouveia, R. Cognitive aging in migraine sufferers is associated with more subjective complaints but similar age-related decline: A 5-year longitudinal study. J. Headache Pain 2020, 21, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Fumal, A.; Laureys, S.; Di Clemente, L.; Boly, M.; Bohotin, V.; Vandenheede, M.; Coppola, G.; Salmon, E.; Kupers, R.; Schoenen, J. Orbitofrontal cortex involvement in chronic analgesic-overuse headache evolving from episodic migraine. Brain 2005, 129, 543–550. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Beldarrain, M.; Carrasco, M.; Bilbao, A.; García-Moncó, J.C. Orbitofrontal dysfunction predicts poor prognosis in chronic migraine with medication overuse. J. Headache Pain 2011, 12, 459–466. [Google Scholar] [CrossRef] [Green Version]
- Chanraud, S.; Di Scala, G.; Dilharreguy, B.; Schoenen, J.; Allard, M.; Radat, F. Brain functional connectivity and morphology changes in medication-overuse headache: Clue for dependence-related processes? Cephalalgia 2014, 34, 605–615. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Chen, X.; Liu, M.; Dong, Z.; Ma, L.; Yu, S. Altered functional connectivity architecture of the brain in medication overuse headache using resting state fMRI. J. Headache Pain 2017, 18, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Coppola, G.; Petolicchio, B.; di Renzo, A.; Tinelli, E.; Di Lorenzo, C.; Parisi, V.; Serrao, M.; Calistri, V.; Tardioli, S.; Cartocci, G.; et al. Cerebral gray matter volume in patients with chronic migraine: Correlations with clinical features. J. Headache Pain 2017, 18, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Lai, T.-H.; Chou, K.-H.; Fuh, J.-L.; Lee, P.-L.; Kung, Y.-C.; Lin, C.-P.; Wang, S.-J. Gray matter changes related to medication overuse in patients with chronic migraine. Cephalalgia 2016, 36, 1324–1333. [Google Scholar] [CrossRef]
- Grazzi, L.; Chiapparini, L.; Ferraro, S.; Usai, S.; Andrasik, F.; Mandelli, M.L.; Bruzzone, M.G.; Bussone, G. Chronic Migraine with Medication Overuse Pre-Post Withdrawal of Symptomatic Medication: Clinical Results and fMRI Correlations. Headache 2010, 50, 998–1004. [Google Scholar] [CrossRef]
- Ferraro, S.; Grazzi, L.; Muffatti, R.; Nava, S.; Ghielmetti, F.; Bertolino, N.; Mandelli, M.L.; Visintin, E.; Bruzzone, M.G.; Nigri, A.; et al. In Medication-Overuse Headache, fMRI Shows Long-Lasting Dysfunction in Midbrain Areas. Headache 2012, 52, 1520–1534. [Google Scholar] [CrossRef]
- Ferraro, S.; Mandelli, M.L.; Di Fiore, D.; Usai, S.; Chiapparini, L.; Aquino, D.; Grazzi, L.; Bruzzone, M.G.; Di Salle, F.; Bussone, G. Pain Processing in Medication Overuse Headache: A Functional Magnetic Resonance Imaging (fMRI) Study. Pain Med. 2012, 13, 255–262. [Google Scholar] [CrossRef]
- Dai, L.; Yu, Y.; Zhao, H.; Zhang, X.; Su, Y.; Wang, X.; Hu, S.; Dai, H.; Hu, C.; Ke, J. Altered local and distant functional connectivity density in chronic migraine: A resting-state functional MRI study. Neuroradiology 2020, 63, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Tang, W.; Qiao, X.; Li, J. Aberrant modulations of static functional connectivity and dynamic functional network connectivity in chronic migraine. Quant. Imaging Med. Surg. 2021, 11, 2253–2264. [Google Scholar] [CrossRef] [PubMed]
- Chong, C.D. Brain Structural and Functional Imaging Findings in Medication-Overuse Headache. Front. Neurol. 2020, 10, 1336. [Google Scholar] [CrossRef]
Episodic Migraine (n = 30) | Chronic Migraine (n = 36) | Control (n = 30) | p-value | |
---|---|---|---|---|
Age (years) | 41.57 ± 8.68 | 47.86 ± 11.49 | 43.03 ± 13.71 | ns |
Education (years) | 12.65 ± 3.28 | 10.93 ± 3.06 | 12.23 ± 2.55 | ns |
Headache frequency (days/month) | 5.09 ± 3.56 | 23.53 ± 6.26 | 0.000 | |
Headache duration (hours/day) | 23.37 ± 23.69 | 22.58 ± 22.27 | ns | |
Headache intensity (NRS) | 7.91 ± 1.56 | 7.28 ± 2.03 | ns | |
Days of drug intake (days/month) | 3.70 ± 3.69 | 14.33 ± 11.40 | 0.000 | |
MIDAS total scores | 20.61 ± 23.13 | 52.44 ± 51.49 | 0.007 | |
HIT-6 total scores | 59.30 ± 7.50 | 60.94 ± 13.20 | ns | |
GAD-7 | 7.87 ± 5.39 | 10.33 ± 6.17 | ns | |
PHQ-9 | 8.30 ± 6.48 | 13.06 ± 6.01 | 0.006 |
Control a (n = 30) | Episodic Migraine b (n = 30) | Chronic Migraine c (n = 36) | p-Value | Post-hoc | |
---|---|---|---|---|---|
TMT: A | 31.22 ± 23.76 | 28.00 ± 7.78 | 48.56 ± 25.95 | 0.001 | a = b < c |
TMT: B | 62.30 ± 24.71 | 76.17 ± 37.06 | 109.50 ± 59.62 | 0.001 | a = b < c |
WCST: TC | 50.70 ± 5.36 | 50.09 ± 4.04 | 44.58 ± 8.30 | 0.000 | a = b > c |
WCST: TE | 13.30 ± 5.36 | 13.91 ± 4.04 | 19.31 ± 8.29 | 0.000 | a = b < c |
WCST: PR | 7.23 ± 3.81 | 7.22 ± 2.78 | 9.44 ± 4.62 | 0.038 | ns |
WCST: PE | 6.97 ± 3.31 | 6.87 ± 2.53 | 8.75 ± 3.87 | 0.049 | ns |
WCST: CL | 47.93 ± 7.20 | 47.22 ± 6.30 | 39.58 ± 10.81 | 0.000 | a = b > c |
WCST: CC | 3.97 ± 0.89 | 3.78 ± 0.85 | 3.03 ± 1.23 | 0.001 | a = b > c |
WCST: TCFC | 13.03 ± 3.63 | 13.35 ± 5.51 | 16.11 ± 6.09 | 0.037 | ns |
IGT: net score | 14.80 ± 28.54 | 6.87 ± 21.39 | 3.06 ± 20.39 | ns | ns |
CM − MOH (n = 17) | CM + MOH (n = 19) | p-Value | |
---|---|---|---|
Age (years) | 48.76 ± 10.44 | 47.05 ± 12.59 | ns |
Education (years) | 10.73 ± 3.58 | 11.05 ± 2.61 | ns |
TMT: A | 48.82 ± 20.09 | 48.32 ± 30.83 | ns |
TMT: B | 122.35 ± 67.40 | 98.00 ± 50.79 | ns |
WCST: TC | 44.59 ± 8.62 | 44.58 ± 8.24 | ns |
WCST: TE | 19.41 ± 8.62 | 19.21 ± 8.22 | ns |
WCST: PR | 9.59 ± 4.54 | 9.32 ± 4.81 | ns |
WCST: PE | 8.94 ± 3.72 | 8.58 ± 4.10 | ns |
WCST: CL | 40.06 ± 11.05 | 39.16 ± 10.87 | ns |
WCST: CC | 2.94 ± 1.30 | 3.11 ± 1.20 | ns |
WCST: TCFC | 15.24 ± 5.61 | 16.89 ± 6.54 | ns |
IGT: net scores | 7.88 ± 20.55 | −1.26 ± 19.79 | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.-H.; Lee, Y.; Song, M.; Lee, J.J.; Sohn, J.-H. Differences in Frontal Lobe Dysfunction in Patients with Episodic and Chronic Migraine. J. Clin. Med. 2021, 10, 2779. https://doi.org/10.3390/jcm10132779
Lee S-H, Lee Y, Song M, Lee JJ, Sohn J-H. Differences in Frontal Lobe Dysfunction in Patients with Episodic and Chronic Migraine. Journal of Clinical Medicine. 2021; 10(13):2779. https://doi.org/10.3390/jcm10132779
Chicago/Turabian StyleLee, Sang-Hwa, Yeonkyeong Lee, Minji Song, Jae Jun Lee, and Jong-Hee Sohn. 2021. "Differences in Frontal Lobe Dysfunction in Patients with Episodic and Chronic Migraine" Journal of Clinical Medicine 10, no. 13: 2779. https://doi.org/10.3390/jcm10132779
APA StyleLee, S. -H., Lee, Y., Song, M., Lee, J. J., & Sohn, J. -H. (2021). Differences in Frontal Lobe Dysfunction in Patients with Episodic and Chronic Migraine. Journal of Clinical Medicine, 10(13), 2779. https://doi.org/10.3390/jcm10132779