The Number of Myomas Is the Most Important Risk Factor for Blood Loss and Total Operation Time in Robotic Myomectomy: Analysis of 242 Cases
Abstract
:1. Introduction
2. Materials and Methods
2.1. Definitions of Primary and Secondary Outcomes
2.2. Study Design and Patients
2.3. Surgical Procedures
2.4. Statistical Analysis
3. Results
3.1. Patient Baseline Characteristics
3.2. Multivariate Logistic Regression Analyses of EBL
3.3. Multivariate Logistic Regression Analyses of Total OT
4. Discussion
4.1. Previous Reports on EBL and Total OT in RM
4.2. Our Opinion on the Innate Limited Advantages of RM Compared with LM in Terms of EBL
4.3. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stewart, E.A. Clinical practice. Uterine fibroids. N. Engl. J. Med. 2015, 372, 1646–1655. [Google Scholar] [CrossRef]
- Stewart, E.A.; Cookson, C.L.; Gandolfo, R.A.; Schulze-Rath, R. Epidemiology of Uterine Fibroids: A Systematic Review. BJOG Int. J. Obstet. Gynaecol. 2017, 124, 1501–1512. [Google Scholar] [CrossRef]
- Laughlin-Tommaso, S.K.; Lu, D.; Thomas, L.; Diamond, M.P.; Wallace, K.; Wegienka, G.; Vines, A.I.; Anchan, R.M.; Wang, T.; Maxwell, G.L.; et al. Short-term quality of life after myomectomy for uterine fibroids from the COMPARE-UF Fibroid Registry. Am. J. Obstet. Gynecol. 2020, 222, 345.e1–345.e22. [Google Scholar] [CrossRef]
- Kim, T.; Purdy, M.P.; Kendall-Rauchfuss, L.; Habermann, E.B.; Bews, K.A.; Glasgow, A.E.; Khan, Z. Myomectomy Associated Blood Transfusion Risk and Morbidity After Surgery. Fertil. Steril. 2020, 114, 175–184. [Google Scholar] [CrossRef]
- Jansen, L.J.; Clark, N.V.; Dmello, M.; Gu, X.; Einarsson, J.I.; Cohen, S.L. Perioperative Outcomes of Myomectomy for Extreme Myoma Burden: Comparison of Surgical Approaches. J. Minim. Invasive Gynecol. 2019, 26, 1095–1103. [Google Scholar] [CrossRef] [PubMed]
- Bhave Chittawar, P.; Franik, S.; Pouwer, A.W.; Farquhar, C. Minimally invasive surgical techniques versus open myomectomy for uterine fibroids. Cochrane Database Syst. Rev. 2014, 21, CD004638. [Google Scholar] [CrossRef] [PubMed]
- Bean, E.M.; Cutner, A.; Holland, T.; Vashisht, A.; Jurkovic, D.; Saridogan, E. Laparoscopic Myomectomy: A Single-Center Retrospective Review of 514 Patients. J. Minim. Invasive Gynecol. 2017, 24, 485–493. [Google Scholar] [CrossRef]
- Koo, Y.-J.; Lee, J.-K.; Lee, Y.-K.; Kwak, D.-W.; Lee, I.-H.; Lim, K.-T.; Lee, K.-H.; Kim, T.-J. Pregnancy Outcomes and Risk Factors for Uterine Rupture After Laparoscopic Myomectomy: A Single-Center Experience and Literature Review. J. Minim. Invasive Gynecol. 2015, 22, 1022–1028. [Google Scholar] [CrossRef]
- Tanos, V.; Toney, Z.A. Uterine Scar Rupture—Prediction, Prevention, Diagnosis, and Management. Best Pract. Res. Clin. Obstet. Gynaecol. 2019, 59, 115–131. [Google Scholar] [CrossRef] [PubMed]
- Hurst, B.; Matthews, M.; Marshburn, P. Laparoscopic Myomectomy for Symptomatic Uterine Myomas. Fertil. Steril. 2005, 83, 1–23. [Google Scholar] [CrossRef]
- Lee, S.R.; Lee, E.S.; Eum, H.L.; Lee, Y.J.; Lee, S.W.; Park, J.Y.; Suh, D.S.; Kim, D.Y.; Kim, S.H.; Kim, Y.M.; et al. New Surgical Technique for Robotic Myomectomy: Continuous Locking Suture on Myoma (LSOM) Technique. J. Clin. Med. 2021, 10, 654. [Google Scholar] [CrossRef]
- Stanhiser, J.; Mouille, B.; Flyckt, R.; Goldberg, J.; Falcone, T.; Goodman, L. Trends Over Time and Surgical Outcomes of Abdominal, Mini-Laparotomy, and Traditional and Robotic-Assisted Laparoscopy With and Without Tandem Mini-Laparotomy: A Comparison of Myomectomy Techniques. J. Minim. Invasive Gynecol. 2015, 22, S1. [Google Scholar] [CrossRef]
- Stentz, N.C.; Cooney, L.G.; Sammel, M.; Shah, D.K. Changes in Myomectomy Practice After the U.S. Food and Drug Administration Safety Communication on Power Morcellation. Obstet. Gynecol. 2017, 129, 1007–1013. [Google Scholar] [CrossRef]
- Varghese, A.; Doglioli, M.; Fader, A.N. Updates and Controversies of Robotic-Assisted Surgery in Gynecologic Surgery. Clin. Obstet. Gynecol. 2019, 62, 733–748. [Google Scholar] [CrossRef] [PubMed]
- Ascher-Walsh, C.J.; Capes, T.L. Robot-Assisted Laparoscopic Myomectomy Is an Improvement Over Laparotomy in Women with a Limited Number of Myomas. J. Minim. Invasive Gynecol. 2010, 17, 306–310. [Google Scholar] [CrossRef] [PubMed]
- Lonnerfors, C. Robot-assisted myomectomy. Best Pract. Res. Clin. Obstet. Gynaecol. 2018, 46, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Iavazzo, C.; Mamais, I.; Gkegkes, I.D. Robotic Assisted vs Laparoscopic and/or Open Myomectomy: Systematic Review and Meta-Analysis of the Clinical Evidence. Arch. Gynecol. Obstet. 2016, 294, 5–17. [Google Scholar] [CrossRef]
- Conforti, A.; Mollo, A.; Alviggi, C.; Tsimpanakos, I.; Strina, I.; Magos, A.; De Placido, G. Techniques to Reduce Blood Loss During Open Myomectomy: A Qualitative Review of Literature. Eur. J. Obstet. Gynecol. Reprod. Biol. 2015, 192, 90–95. [Google Scholar] [CrossRef]
- Hickman, L.C.; Kotlyar, A.; Shue, S.; Falcone, T. Hemostatic Techniques for Myomectomy: An Evidence-Based Approach. J. Minim. Invasive Gynecol. 2016, 23, 497–504. [Google Scholar] [CrossRef]
- Iverson, R.E., Jr.; Chelmow, D.; Strohbehn, K.; Waldman, L.; Evantash, E.G. Relative morbidity of abdominal hysterectomy and myomectomy for management of uterine leiomyomas. Obstet. Gynecol. 1996, 88, 415–419. [Google Scholar] [CrossRef]
- Slotman, G.J.; Jed, E.H.; Burchard, K.W. Adverse effects of hypothermia in postoperative patients. Am. J. Surg. 1985, 149, 495–501. [Google Scholar] [CrossRef]
- Lethaby, A.; Puscasiu, L.; Vollenhoven, B. Preoperative Medical Therapy before Surgery for Uterine Fibroids. Cochrane Database Syst. Rev. 2017, 11, CD000547. [Google Scholar] [CrossRef]
- Hoenig, J.M.; Heisey, D.M. The abuse of power: The pervasive fallacy of power calculations for data analysis. Am. Stat. 2001, 55, 19–24. [Google Scholar] [CrossRef]
- Levine, M.; Ensom, M.H.H. Post Hoc Power Analysis: An Idea Whose Time Has Passed? Pharmacotherapy 2001, 21, 405–409. [Google Scholar] [CrossRef]
- Zhang, Y.; Hedo, R.; Rivera, A.; Rull, R.; Richardson, S.; Tu, X.M. Post Hoc Power Analysis: Is It an Informative and Meaningful Analysis? Gen. Psychiatry 2019, 32, e100069. [Google Scholar] [CrossRef] [Green Version]
- Munro, M.G.; Critchley, H.O.; Fraser, I.S.; The FIGO Menstrual Disorders Committee. The Two FIGO Systems for Normal and Abnormal Uterine Bleeding Symptoms and Classification of Causes of Abnormal Uterine Bleeding in the Reproductive Years: 2018 Revisions. Int. J. Gynecol. Obstet. 2018, 143, 393–408. [Google Scholar] [CrossRef] [Green Version]
- Frascà, C.; Tuzzato, G.; Arena, A.; Degli Esposti, E.; Zanello, M.; Raimondo, D.; Seracchioli, R. The Role of Pelvic Ultrasound in Preoperative Evaluation for Laparoscopic Myomectomy. J. Minim. Invasive Gynecol. 2018, 25, 679–683. [Google Scholar] [CrossRef] [PubMed]
- Won, S.; Lee, N.; Kim, M.; Kim, M.K.; Jung, Y.W.; Yun, B.S.; Seong, S.J.; Kim, M.-L. Robotic single-site Myomectomy: A Hybrid Technique Reducing Operative Time and Blood Loss. Int. J. Med. Robot. 2019, 16, e2061. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 19 March 2021).
- Advincula, A.P.; Song, A.; Burke, W.; Reynolds, R.K. Preliminary Experience with Robot-Assisted Laparoscopic Myomectomy. J. Am. Assoc. Gynecol. Laparosc. 2004, 11, 511–518. [Google Scholar] [CrossRef]
- Vargas, M.V.; Moawad, G.N.; Sievers, C.; Opoku-Anane, J.; Marfori, C.Q.; Tyan, P.; Robinson, J.K. Feasibility, Safety, and Prediction of Complications for Minimally Invasive Myomectomy in Women With Large and Numerous Myomata. J. Minim. Invasive Gynecol. 2017, 24, 315–322. [Google Scholar] [CrossRef] [PubMed]
- Saccardi, C.; Gizzo, S.; Noventa, M.; Ancona, E.; Borghero, A.; Litta, P.S. Limits and Complications of Laparoscopic Myomectomy: Which Are the Best Predictors? A Large Cohort Single-Center Experience. Arch. Gynecol. Obstet. 2014, 290, 951–956. [Google Scholar] [CrossRef] [PubMed]
- Advincula, A.P.; Xu, X.; Goudeau, S., 4th; Ransom, S.B. Robot-assisted laparoscopic myomectomy versus abdominal myomectomy: A comparison of short-term surgical outcomes and immediate costs. J. Minim. Invasive Gynecol. 2007, 14, 698–705. [Google Scholar] [CrossRef]
- Pundir, J.; Pundir, V.; Walavalkar, R.; Omanwa, K.; Lancaster, G.; Kayani, S. Robotic-Assisted Laparoscopic vs Abdominal and Laparoscopic Myomectomy: Systematic Review and Meta-Analysis. J. Minim. Invasive Gynecol. 2013, 20, 335–345. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.R.; Lee, E.S.; Lee, Y.J.; Lee, S.W.; Park, J.Y.; Kim, D.Y.; Kim, S.H.; Kim, Y.M.; Suh, D.S.; Kim, Y.T. Robot-Assisted Laparoscopic Myomectomy versus Abdominal Myomectomy for Large Myomas Sized over 10 cm or Weighing 250 g. Yonsei Med. J. 2020, 61, 1054–1059. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Lin, H.-H.; Hsiao, S.-M. Comparison of Robotic Assisted Laparoscopic Myomectomy With Barbed Sutures and Traditional Laparoscopic Myomectomy with Barbed Sutures. Taiwan. J. Obstet. Gynecol. 2018, 57, 709–712. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.Y.; Kim, S.Y.; Kim, M.-A.; Kim, B.W.; Cho, H.; Cho, S.; Chay, D.B.; Kim, J.H.; Kim, Y.T.; Lee, B.S.; et al. The Feasibility of Robot-Assisted Laparoscopic Myomectomy: Compared with Standard Laparoscopic and Abdominal Myomectomy. Korean J. Obstet. Gynecol. 2011, 54, 784–793. [Google Scholar] [CrossRef] [Green Version]
- Arena, A.; Degli Esposti, E.; Cristani, G.; Orsini, B.; Moro, E.; Raimondo, D.; Del Forno, S.; Lenzi, J.; Casadio, P.; Seracchioli, R. Comparison of Fertility Outcomes After Laparoscopic Myomectomy for Barbed Versus Nonbarbed Sutures. Fertil. Steril. 2021, 115, 248–255. [Google Scholar] [CrossRef]
- Angioli, R.; Plotti, F.; Montera, R.; Damiani, P.; Terranova, C.; Oronzi, I.; Luvero, D.; Scaletta, G.; Muzii, L.; Panici, P.B. A new type of absorbable barbed suture for use in laparoscopic myomectomy. Int. J. Gynaecol. Obstet. 2012, 117, 220–223. [Google Scholar] [CrossRef] [PubMed]
Factors | Total (n = 242) | EBL ≤ 320 mL (n = 155) | EBL > 320 mL (n = 87) | p-Value | OT ≤ 3 h (n = 180) | OT > 3 h (n = 62) | p-Value | |
---|---|---|---|---|---|---|---|---|
Age (years, mean ± SD) | 38.01 ± 5.66 | 37.57 ± 5.73 | 38.80 ± 5.47 | 0.103 | 37.88 ± 5.59 | 38.40 ± 5.89 | 0.529 | |
BMI (kg/m2, mean ± SD) | 22.68 ± 3.62 | 22.61 ± 3.68 | 22.82 ± 3.52 | 0.665 | 22.61 ± 3.68 | 22.89 ± 3.46 | 0.598 | |
Parity (%) | 0 | 192 (79.3%) | 120 (77.4%) | 72 (82.8%) | 0.325 | 139 (77.2%) | 53 (85.5%) | 0.166 |
≥1 | 50 (20.7%) | 35 (22.6%) | 15 (17.2%) | 41 (22.8%) | 9 (14.5%) | |||
Gravidity (%) | 0 | 166 (68.6%) | 103 (66.5%) | 63 (72.4%) | 0.338 | 123 (68.3%) | 43 (69.4%) | 0.881 |
≥1 | 76 (31.4%) | 52 (33.5%) | 24 (27.6%) | 57 (31.7%) | 19 (30.6%) | |||
Previous cesarean section | No | 227 (93.8%) | 145 (93.5%) | 82 (94.3%) | 0.827 | 167 (92.8%) | 60 (96.8%) | 0.366 |
Yes | 15 (6.2%) | 10 (6.5%) | 5 (5.7%) | 13 (7.2%) | 2 (3.2%) | |||
Previous pelvic surgery | No | 210 (86.8%) | 143 (92.3%) | 67 (77.0%) | 0.001 | 157 (87.2%) | 53 (85.5%) | 0.727 |
Yes | 32 (13.2%) | 12 (7.7%) | 20 (23.0%) | 23 (12.8%) | 9 (14.5%) | |||
No. of myomas (median [IQR]) | 2.00 [1.00–4.00] | 2.00 [1.00–3.50] | 3.00 [1.00–5.50] | 0.002 | 2.00 [1.00–3.25] | 4.00 [2.25–7.75] | <0.001 | |
No. of myomas (%) | 1–4 | 185 (76.4%) | 129 (83.2%) | 56 (64.4%) | 0.003 | 148 (82.2%) | 37 (59.7%) | <0.001 |
5–9 | 43 (17.8%) | 21 (13.5%) | 22 (25.3%) | 28 (15.6%) | 15 (24.2%) | |||
≥10 | 14 (5.8%) | 5 (3.2%) | 9 (10.3%) | 4 (2.2%) | 10 (16.1%) | |||
Maximal myoma diameter (median [IQR]) | 9.00 [7.00–10.00] | 9.00 [7.00–10.00] | 10.00 [8.00–12.00] | 0.001 | 9.00 [7.00–10.00] | 9.00 [8.00–10.00] | 0.126 | |
No. of myomas with Maximal diameter ≥ 3 cm | 1.00 [1.00–2.00] | 1.00 [1.00–2.00] | 2.00 [1.00–3.00] | 0.06 | 1.00 [1.00–2.00] | 2.00 [1.00–4.00] | <0.001 | |
Weight of removed myomas (g, median [IQR]) * | 249.75 [142.88–401.00] | 225.50 [132.88–347.00] | 369.50 [189.00–543.50] | <0.001 | 235.00 [140.00–370.00] | 346.00 [168.75–579.00] | 0.017 | |
Type of main myoma | Intramural (FIGO 3–4) | 179 (74.0%) | 110 (71.0%) | 69 (79.3%) | 0.630 | 134 (74.4%) | 45 (72.6%) | 0.614 |
Subserosal (FIGO 5–7) | 43 (17.8%) | 31 (20.0%) | 12 (13.8%) | 29 (16.1%) | 14 (22.6%) | |||
Others (FIGO 0–2 and 8) | 20 (8.2%) | 14 (9.0%) | 6 (6.9%) | 17 (9.4%) | 3 (4.8%) | |||
Operator (%) | K.S.H L.S.R | 83 (34.3%) 159 (65.7%) | 61 (39.4%) 94 (60.6%) | 22 (25.3%) 65 (74.7%) | 0.027 | 57 (31.7%) 123 (68.3%) | 26 (41.9%) 36 (58.1%) | 0.142 |
Medical agents (%) | GnRHa | 14 (5.8%) | 11 (7.1%) | 3 (3.4%) | 0.39 | 10 (5.6%) | 4 (6.5%) | 0.759 |
Tranexamic acid | 58 (24%) | 33 (21.3%) | 25 (28.7%) | 0.193 | 45 (25%) | 13 (21%) | 0.521 | |
Vasopressin | 15 (6.2%) | 9 (5.8%) | 6 (6.9%) | 0.784 | 8 (4.4%) | 7 (11.3%) | 0.068 |
Factors | Univariate OR (95% CI) p-Value | Multivariate OR (95% CI) p-Value | |||
---|---|---|---|---|---|
Age | 1.04 (0.99–1.09) | 0.104 | 1.02 (0.97–1.08) | 0.47 | |
BMI | 1.02 (0.94–1.09) | 0.663 | 1.00 (0.92–1.08) | 0.973 | |
Parity | 0 ≥1 | Reference 0.71 (0.36–1.40) | 0.326 | ||
Gravidity | 0 ≥1 | Reference 0.76 (0.42–1.34) | 0.338 | ||
Previous cesarean section | No Yes | Reference 0.88 (0.29–2.67) | 0.827 | ||
Previous pelvic surgery | No Yes | Reference 3.56 (1.64–7.70) | 0.001 | Reference 4.90 (2.02–11.92) | <0.001 |
No. of myomas | 1–4 5–9 ≥10 | Reference 2.41 (1.23–4.74) 4.15 (1.33–12.93) | 0.011 0.014 | Reference 2.51 (1.16–5.42) 6.47 (1.87–22.33) | 0.019 0.003 |
Maximal myoma diameter | 1.21 (1.10–1.34) | <0.001 | 1.28 (1.14–1.44) | <0.001 | |
Type of main myoma * | Intramural (FIGO 3–4) Subserosal (FIGO 5–7) Others (FIGO 0–2 and 8) | Reference 0.62 (0.30–1.28) 0.68 (0.25–1.86) | 0.196 0.456 | Reference 0.33 (0.14–0.80) 0.83 (0.26–2.63) | 0.014 0.752 |
Operator (%) | K.S.H L.S.R | Reference 1.92 (1.07–3.43) | 0.028 | Reference 1.23 (0.62–2.43) | 0.55 |
GnRHas | No Yes | Reference 0.47 (0.13–1.72) | 0.253 | Reference 0.59 (0.13–2.60) | 0.482 |
Tranexamic acid or vasopressin | No Yes | Reference 1.49 (0.85–2.62) | 0.166 | Reference 1.27 (0.66–2.45) | 0.465 |
Factors | Univariate OR (95% CI) p-Value | Multivariate OR (95% CI) p-Value | |||
---|---|---|---|---|---|
Age | 1.02 (0.97–1.07) | 0.528 | 1.02 (0.96–1.08) | 0.552 | |
BMI | 1.02 (0.94–1.10) | 0.596 | 1.03 (0.94–1.12) | 0.508 | |
Parity | 0 ≥1 | Reference 0.58 (0.26–1.27) | 0.170 | ||
Gravidity | 0 ≥1 | Reference 0.95 (0.51–1.78) | 0.881 | ||
Previous cesarean section | No Yes | Reference 0.43 (0.09–1.95) | 0.273 | Reference 0.46 (0.09–2.31) | 0.342 |
Previous pelvic surgery | No Yes | Reference 1.16 (0.50–2.66) | 0.728 | Reference 1.38 (0.56–3.40) | 0.488 |
No. of myomas | 1–4 5–9 ≥10 | Reference 2.14 (1.04–4.42) 10.00 (2.97–33.68) | 0.039 <0.001 | Reference 2.72 (1.22–6.07) 16.13 (4.36–59.71) | 0.014 <0.001 |
Maximal myoma diameter | 1.05 (0.95–1.16) | 0.290 | 1.10 (0.98–1.23) | 0.119 | |
Type of main myoma * | Intramural (FIGO 3–4) Subserosal (FIGO 5–7) Others (FIGO 0–2 and 8) | Reference 1.44 (0.70–2.96) 0.52 (0.15–1.88) | 0.324 0.322 | Reference 1.09 (0.49–2.42) 0.81 (0.21–3.05) | 0.838 0.756 |
Operator (%) | K.S.H L.S.R | Reference 0.64 (0.35–1.16) | 0.143 | Reference 0.34 (0.16–0.70) | 0.004 |
GnRHas | No Yes | Reference 1.17 (0.35–3.88) | 0.795 | ||
Tranexamic acid or vasopressin | No Yes | Reference 1.14 (0.61–2.12) | 0.677 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.R.; Kim, J.H.; Kim, S.; Kim, S.H.; Chae, H.D. The Number of Myomas Is the Most Important Risk Factor for Blood Loss and Total Operation Time in Robotic Myomectomy: Analysis of 242 Cases. J. Clin. Med. 2021, 10, 2930. https://doi.org/10.3390/jcm10132930
Lee SR, Kim JH, Kim S, Kim SH, Chae HD. The Number of Myomas Is the Most Important Risk Factor for Blood Loss and Total Operation Time in Robotic Myomectomy: Analysis of 242 Cases. Journal of Clinical Medicine. 2021; 10(13):2930. https://doi.org/10.3390/jcm10132930
Chicago/Turabian StyleLee, Sa Ra, Ju Hee Kim, Sehee Kim, Sung Hoon Kim, and Hee Dong Chae. 2021. "The Number of Myomas Is the Most Important Risk Factor for Blood Loss and Total Operation Time in Robotic Myomectomy: Analysis of 242 Cases" Journal of Clinical Medicine 10, no. 13: 2930. https://doi.org/10.3390/jcm10132930