Growth Hormone (GH) Treatment Decreases Plasma Kisspeptin Levels in GH-Deficient Adults with Prader–Willi Syndrome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Methods
2.3. Statistical Analyses
3. Results
3.1. Baseline Findings
3.1.1. Patient Characteristics
3.1.2. Kisspeptin Levels
3.1.3. Leptin Levels
3.2. Comparison between Baseline and Post-GH-Treatment Findings in the PWS Group
4. Correlations
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gahete, M.D.; Vázquez-Borrego, M.C.; Martínez-Fuentes, A.J.; Tena-Sempere, M.; Castaño, J.P.; Luque, R.M. Role of the Kiss1/Kiss1r System in the Regulation of Pituitary Cell Function. Mol. Cell. Endocrinol. 2016, 438, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Castellano, J.M.; Tena-Sempere, M. Metabolic Regulation of Kisspeptin. Adv. Exp. Med. Biol. 2013, 784, 363–383. [Google Scholar] [CrossRef]
- Allaway, H.C.M.; Southmayd, E.A.; De Souza, M.J. The Physiology of Functional Hypothalamic Amenorrhea Associated with Energy Deficiency in Exercising Women and in Women with Anorexia Nervosa. Horm. Mol. Biol. Clin. Investig. 2016, 25, 91–119. [Google Scholar] [CrossRef]
- George, J.T.; Millar, R.P.; Anderson, R.A. Hypothesis: Kisspeptin Mediates Male Hypogonadism in Obesity and Type 2 Diabetes. Neuroendocrinology 2010, 91, 302–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castellano, J.M.; Bentsen, A.H.; Mikkelsen, J.D.; Tena-Sempere, M. Kisspeptins: Bridging Energy Homeostasis and Reproduction. Brain Res. 2010, 1364, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Dudek, M.; Ziarniak, K.; Sliwowska, J.H. Kisspeptin and Metabolism: The Brain and Beyond. Front. Endocrinol. 2018, 9, 145. [Google Scholar] [CrossRef] [PubMed]
- Cassidy, S.B.; Schwartz, S.; Miller, J.L.; Driscoll, D.J. Prader-Willi Syndrome. Genet. Med. 2012, 14, 10–26. [Google Scholar] [CrossRef] [Green Version]
- Butler, M.G. Prader-Willi Syndrome: Obesity Due to Genomic Imprinting. Curr. Genomics 2011, 12, 204–215. [Google Scholar] [CrossRef] [PubMed]
- Moix Gil, E.; Giménez-Palop, O.; Caixàs, A. Treatment with Growth Hormone in the Prader-Willi Syndrome. Endocrinol. Diabetes Nutr. 2018, 65, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Novell-Alsina, R.; Esteba-Castillo, S.; Caixàs, A.; Gabau, E.; Giménez-Palop, O.; Pujol, J.; Deus, J.; Torrents-Rodas, D. Compulsions in Prader-Willi Syndrome: Occurrence and Severity as a Function of Genetic Subtype. Actas Esp. Psiquiatr. 2019, 47, 79–87. [Google Scholar] [PubMed]
- Guinovart, M.; Coronas, R.; Caixàs, A. Psychopathological Disorders in Prader-Willi Syndrome. Endocrinol. Diabetes Nutr. 2019, 66, 579–587. [Google Scholar] [CrossRef]
- Caixàs, A.; Blanco-Hinojo, L.; Pujol, J.; Deus, J.; Giménez-Palop, O.; Torrents-Rodas, D.; Coronas, R.; Novell, R.; Esteba-Castillo, S. Altered Gesture Imitation and Brain Anatomy in Adult Prader-Willi Syndrome Patients. J. Int. Neuropsychol. Soc. 2021, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Ortiga, R.; Klibanski, A.; Tritos, N.A. Effects of Recombinant Human Growth Hormone Therapy in Adults with Prader-Willi Syndrome: A Meta-Analysis. Clin. Endocrinol. 2012, 77, 86–93. [Google Scholar] [CrossRef]
- Grugni, G.; Sartorio, A.; Crinò, A. Growth Hormone Therapy for Prader-Willi Syndrome: Challenges and Solutions. Ther. Clin. Risk Manag. 2016, 12, 873–881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lafortuna, C.L.; Minocci, A.; Capodaglio, P.; Gondoni, L.A.; Sartorio, A.; Vismara, L.; Rizzo, G.; Grugni, G. Skeletal Muscle Characteristics and Motor Performance after 2-Year Growth Hormone Treatment in Adults with Prader-Willi Syndrome. J. Clin. Endocrinol. Metab. 2014, 99, 1816–1824. [Google Scholar] [CrossRef] [Green Version]
- Myers, S.E.; Whitman, B.Y.; Carrel, A.L.; Moerchen, V.; Bekx, M.T.; Allen, D.B. Two Years of Growth Hormone Therapy in Young Children with Prader-Willi Syndrome: Physical and Neurodevelopmental Benefits. Am. J. Med. Genet. 2007, 143, 443–448. [Google Scholar] [CrossRef]
- Deal, C.L.; Tony, M.; Höybye, C.; Allen, D.B.; Tauber, M.; Christiansen, J.S. 2011 Growth Hormone in Prader-Willi Syndrome Clinical Care Guidelines Workshop Participants GrowthHormone Research Society Workshop Summary: Consensus Guidelines for Recombinant Human Growth Hormone Therapy in Prader-Willi Syndrome. J. Clin. Endocrinol. Metab. 2013, 98, E1072–E1087. [Google Scholar] [CrossRef] [PubMed]
- Yuen, K.C.J.; Tritos, N.A.; Samson, S.L.; Hoffman, A.R.; Katznelson, L. American association of Clinical Endocrinologists and American Collage of Endocrinology disease state clinical review: Update on growth hormone stimulation testing and proposed revised cut-point for the glucagon stimulation test in the diagnosis of adult growth hormone deficiency. Endocr. Pract. 2016, 22, 1235–1244. [Google Scholar] [CrossRef]
- Casamitjana, L.; Giménez-Palop, O.; Corripio, R.; Pareja, R.; Berlanga, E.; Rigla, M.; Oliva, J.C.; Caixàs, A. Glucagon Stimulation Test to Assess Growth Hormone Status in Prader-Willi Syndrome. J. Endocrinol. Invest. 2021, 44, 621–629. [Google Scholar] [CrossRef]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis Model Assessment: Insulin Resistance and Beta-Cell Function from Fasting Plasma Glucose and Insulin Concentrations in Man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [Green Version]
- Hestiantoro, A.; Astuti, B.P.K.; Muharam, R.; Pratama, G.; Witjaksono, F.; Wiweko, B. Dysregulation of Kisspeptin and Leptin, as Anorexigenic Agents, Plays Role in the Development of Obesity in Postmenopausal Women. Int. J. Endocrinol. 2019, 2019, 1347208. [Google Scholar] [CrossRef]
- Pita, J.; Barrios, V.; Gavela-Pérez, T.; Martos-Moreno, G.Á.; Muñoz-Calvo, M.T.; Pozo, J.; Rovira, A.; Argente, J.; Soriano-Guillén, L. Circulating Kisspeptin Levels Exhibit Sexual Dimorphism in Adults, Are Increased in Obese Prepubertal Girls and Do Not Suffer Modifications in Girls with Idiopathic Central Precocious Puberty. Peptides 2011, 32, 1781–1786. [Google Scholar] [CrossRef] [PubMed]
- Sitticharoon, C.; Mutirangura, P.; Chinachoti, T.; Iamaroon, A.; Triyasunant, N.; Churintaraphan, M.; Keadkraichaiwat, I.; Maikaew, P.; Sririwichitchai, R. Associations of Serum Kisspeptin Levels with Metabolic and Reproductive Parameters in Men. Peptides 2021, 135, 170433. [Google Scholar] [CrossRef]
- Sitticharoon, C.; Boonpuan, V.; Mitrpant, C. Determination of KISS1, KISS1R and Kisspeptin in Fat Tissue of Normal Weight and Obese Humans and Correlations between Serum Kisspeptin and Leptin. Siriraj Med. J. 2013, 65, 112–116. [Google Scholar]
- Sitticharoon, C.; Sukharomana, M.; Likitmaskul, S.; Churintaraphan, M.; Maikaew, P. Increased High Molecular Weight Adiponectin, but Decreased Total Adiponectin and Kisspeptin, in Central Precocious Puberty Compared with Aged-Matched Prepubertal Girls. Reprod. Fertil. Dev. 2017, 29, 2466–2478. [Google Scholar] [CrossRef] [PubMed]
- Latif, R.; Rafique, N. Serum Kisspeptin Levels across Different Phases of the Menstrual Cycle and Their Correlation with Serum Oestradiol. Neth. J. Med. 2015, 73, 175–178. [Google Scholar]
- Sukhbaatar, U.; Kanasaki, H.; Mijiddorj, T.; Oride, A.; Hara, T.; Yamada, T.; Kyo, S. Expression of GnRH and Kisspeptin in Primary Cultures of Fetal Rat Brain. Reprod. Sci. 2017, 24, 227–233. [Google Scholar] [CrossRef]
- Zhu, H.J.; Li, S.J.; Pan, H.; Li, N.; Zhang, D.X.; Wang, L.J.; Yang, H.B.; Wu, Q.; Gong, F.Y. The Changes of Serum Leptin and Kisspeptin Levels in Chinese Children and Adolescents in Different Pubertal Stages. Int. J. Endocrinol. 2016, 2016, 6790794. [Google Scholar] [CrossRef]
- Andreozzi, F.; Mannino, G.C.; Mancuso, E.; Spiga, R.; Perticone, F.; Sesti, G. Plasma Kisspeptin Levels Are Associated with Insulin Secretion in Nondiabetic Individuals. PLoS ONE 2017, 12, e0179834. [Google Scholar] [CrossRef] [Green Version]
- Bacopoulou, F.; Lambrou, G.I.; Rodanaki, M.-E.; Stergioti, E.; Efthymiou, V.; Deligeoroglou, E.; Markantonis, S.L. Serum Kisspeptin Concentrations Are Negatively Correlated with Body Mass Index in Adolescents with Anorexia Nervosa and Amenorrhea. Hormones 2017, 16, 33–41. [Google Scholar] [CrossRef] [Green Version]
- Höybye, C. Endocrine and Metabolic Aspects of Adult Prader-Willi Syndrome with Special Emphasis on the Effect of Growth Hormone Treatment. Growth Horm. IGF Res. 2004, 14, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sode-Carlsen, R.; Farholt, S.; Rabben, K.F.; Bollerslev, J.; Schreiner, T.; Jurik, A.G.; Frystyk, J.; Christiansen, J.S.; Höybye, C. Growth Hormone Treatment for Two Years Is Safe and Effective in Adults with Prader-Willi Syndrome. Growth Horm. IGF Res. 2011, 21, 185–190. [Google Scholar] [CrossRef]
- Wolfe, A.; Hussain, M.A. The Emerging Role(s) for Kisspeptin in Metabolism in Mammals. Front. Endocrinol. 2018, 9, 184. [Google Scholar] [CrossRef] [PubMed]
- Friedman, J.M.; Halaas, J.L. Leptin and the Regulation of Body Weight in Mammals. Nature 1998, 395, 763–770. [Google Scholar] [CrossRef]
- Harvey, J. Leptin Regulation of Neuronal Morphology and Hippocampal Synaptic Function. Front. Synaptic Neurosci. 2013, 5, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guzmán, A.; Hernández-Coronado, C.G.; Rosales-Torres, A.M.; Hernández-Medrano, J.H. Leptin Regulates Neuropeptides Associated with Food Intake and GnRH Secretion. Ann. Endocrinol. 2019, 80, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Höybye, C.; Barkeling, B.; Espelund, U.; Petersson, M.; Thorén, M. Peptides Associated with Hyperphagia in Adults with Prader-Willi Syndrome before and during GH Treatment. Growth Horm. IGF Res. 2003, 13, 322–327. [Google Scholar] [CrossRef]
- Myers, S.E.; Davis, A.; Whitman, B.Y.; Santiago, J.V.; Landt, M. Leptin Concentrations in Prader-Willi Syndrome before and after Growth Hormone Replacement. Clin. Endocrinol. 2000, 52, 101–105. [Google Scholar] [CrossRef]
- Holmes, D. Metabolism: Kisspeptin Signalling Linked to Obesity. Nat. Rev. Endocrinol. 2014, 10, 511. [Google Scholar] [CrossRef]
- Izzi-Engbeaya, C.; Comninos, A.N.; Clarke, S.A.; Jomard, A.; Yang, L.; Jones, S.; Abbara, A.; Narayanaswamy, S.; Eng, P.C.; Papadopoulou, D.; et al. The Effects of Kisspeptin on β-Cell Function, Serum Metabolites and Appetite in Humans. Diabetes Obes. Metab. 2018, 20, 2800–2810. [Google Scholar] [CrossRef] [Green Version]
PWS Patients (n = 27) | Obese Subjects (n = 27) | Healthy Subjects (n = 22) | p-Value | |
---|---|---|---|---|
Sex (female) | 15 (55.6%) | 15 (55.6%) | 11 (50%) | * 0.907 |
Age (years) | 26 (24–37) | 28 (24–37) | 27.5 (21.5–37.5) | * 0.909 |
Weight (kg) | 89.6 (70.5–105.5) | 95.5 (81.8–121.1) | 65.8 (58.1–71.6) | * <0.001 ⴕ 0.135 λ <0.001 ** <0.001 |
Height (cm) | 156 (148.0–165.0) | 169 (162.0–173.0) | 169 (164.5–181.5) | * <0.001 ⴕ <0.001 λ <0.001 ** 0.344 |
BMI (kg/m2) | 34.6 (30.9–41.3) | 32.1 (29.3–41.9) | 22.2 (20.9–22.9) | * <0.001 ⴕ 0.580 λ <0.001 ** <0.001 |
Waist (cm) | 110.0 (101.0–124.0) | 107.0 (99.0–121.0) | 78.5 (71.5–83.7) | * <0.001 ⴕ 0.387 λ <0.001 ** <0.001 |
Glucose (mmol/L) | 5.00 (4.55–6.99) | 4.83 (4.77–5.49) | 4.36 (4.16–5.02) | * 0.006 ⴕ 0.827 λ 0.004 ** 0.006 |
HOMA-IR | 2.26 (1.52–4.80) | 2.58 (1.79–3.96) | 1.37 (0.84–1.84) | * <0.001 ⴕ 0.710 λ 0.001 ** <0.001 |
IGF-I (ng/mL) | 143.0 (95.0–188.0) | 171 (139.5–257.5) | 226.0 (192.7–312.0) | * <0.001 ⴕ =0.007 λ <0.001 ** 0.084 |
LH (IU/L) | 1.21 (0,36–6.29) | 6.01 (4.1–7.75) | 5.48 (3.5–12.75) | * 0.001 ⴕ 0.001 λ 0.001 ** 0.947 |
FSH (IU/L) | 3.63 (0.3–7.28) | 5.19 (2.9–6.76) | 3.31 (2.3–7.22) | * 0.301 |
Testosterone, in males (ng/mL) | 2.08 (0.51–3.61) | 3.82 (2.47–4.44) | 5.63(4.82–8.11) | * <0.001 ⴕ 0.75 λ <0.001 ** 0.002 |
Estradiol, in females (pg/mL) | 23 (16–44) | 94 (60–164) | 63 (5–168) | * 0.001 ⴕ <0.001 λ 0.253 ** 0.287 |
Fat mass (%) | 56.3 (49.3–61.1) | 50.8 (41.9–61.9) | 38.7(28.1–39.5) | * <0.001 ⴕ 0.640 λ <0.001 ** <0.001 |
Lean mass (%) | 43.6(38.9–50.2) | 49.2 (36.4–51.3) | 69.2 (56.4–71.8) | * < 0.001 ⴕ 0.891 λ <0.001 ** <0.001 |
Kisspeptin (pg/mL) | 140.20 (123.5–156.8) | 141.96 (113.9–165.6) | 124.58 (107.3–139.0) | * 0.094 ⴕ 0.979 λ 0.019 ** 0.154 |
Leptin (ng/mL) | 48.15 (28.80–67.10) | 33.10 (20.50–67.30) | 14.8 (11.4–67.3) | * <0.001 ⴕ 0.152 λ <0.001 ** <0.001 |
Before GH Treatment Median (IQR) | After 12 Months’ GH Treatment Median (IQR) | p-Value * | |
---|---|---|---|
Weight (kg) | 89.6 (70.5–105.5) | 87.7 (74.3–100.2) | 0.990 |
BMI (kg/m2) | 34.6 (30.9–41.3) | 34.0 (31.8–41.6) | 0.692 |
Waist (cm) | 110.0 (101.0–124.0) | 112.0 (104.0–123.5) | 0.602 |
Glucose (mmol/L) | 5.00 (4.55–6.99) | 4.83 (4.33–5.49) | 0.107 |
HOMA-IR | 2.26 (1.52–4.80) | 2.95 (1.99–6.14) | 0.209 |
HbA1c (%) | 5.6 (5.3–6.9) | 5.6 (5.3–6.2) | 0.294 |
LH (IU/L) | 1.21 (0.36–6.29) | 2.71(0.3–5.81) | 0.841 |
FSH (IU/L) | 3.63 (0.3–7.28) | 5.82 (0.92–9.03) | 0.015 |
Testosterone, in males (ng/mL) | 2.08 (0.51–3.61) | 1.43 (0.43–3.22) | 0.814 |
Estradiol, in females (pg/mL) | 23 (16–44) | 16 (8–31) | 0.124 |
IGF-1 (ng/mL) | 143(95–188) | 217 (160–254) | <0.001 |
Fat mass (%) | 56.3 (49.3–61.1) | 52.1 (49.9–59.2) | 0.028 |
Lean mass (%) | 43.6(38.9–50.2) | 47.9 (40.8–50.1) | 0.002 |
Total body water (kg) | 37.6(32.2–43.0) | 37.1 (32.9–43.6) | 0.342 |
Extremities/trunk body fat index | 0.92(0.70–1.09) | 0.86 (0.75–1.11) | 0.637 |
Appendicular skeletal muscle mass index (kg/m2) | 6.6(5.6–7.7) | 7.2 (6.1–8.4) | 0.059 |
Total femur bone mineral density (Z-score) | −1.31(−1.8–(−0.65)) | −1.22 (−1.77–(−0.43)) | 0.485 |
Total spine bone mineral density Z-score | −1.61(−2.20–(−0.56)) | −1.90 (−2.49–(−0.51)) | 0.927 |
Kisspeptin (pg/mL) | 140.20 (123.5–156.8) | 125.1 (106.2–153.4) | 0.027 |
Leptin (ng/mL) | 48.15 (28.80–67.10) | 43.00 (21.75–68.32) | 0.144 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giménez-Palop, O.; Casamitjana, L.; Corripio, R.; Esteba-Castillo, S.; Pareja, R.; Albiñana, N.; Rigla, M.; Caixàs, A. Growth Hormone (GH) Treatment Decreases Plasma Kisspeptin Levels in GH-Deficient Adults with Prader–Willi Syndrome. J. Clin. Med. 2021, 10, 3054. https://doi.org/10.3390/jcm10143054
Giménez-Palop O, Casamitjana L, Corripio R, Esteba-Castillo S, Pareja R, Albiñana N, Rigla M, Caixàs A. Growth Hormone (GH) Treatment Decreases Plasma Kisspeptin Levels in GH-Deficient Adults with Prader–Willi Syndrome. Journal of Clinical Medicine. 2021; 10(14):3054. https://doi.org/10.3390/jcm10143054
Chicago/Turabian StyleGiménez-Palop, Olga, Laia Casamitjana, Raquel Corripio, Susanna Esteba-Castillo, Rocío Pareja, Néstor Albiñana, Mercedes Rigla, and Assumpta Caixàs. 2021. "Growth Hormone (GH) Treatment Decreases Plasma Kisspeptin Levels in GH-Deficient Adults with Prader–Willi Syndrome" Journal of Clinical Medicine 10, no. 14: 3054. https://doi.org/10.3390/jcm10143054
APA StyleGiménez-Palop, O., Casamitjana, L., Corripio, R., Esteba-Castillo, S., Pareja, R., Albiñana, N., Rigla, M., & Caixàs, A. (2021). Growth Hormone (GH) Treatment Decreases Plasma Kisspeptin Levels in GH-Deficient Adults with Prader–Willi Syndrome. Journal of Clinical Medicine, 10(14), 3054. https://doi.org/10.3390/jcm10143054