Current Concepts of Pediatric Acute Kidney Injury—Are We Ready to Translate Them into Everyday Practice?
Abstract
:1. Introduction
2. Classical AKI Definitions
3. Expanded AKI Definition
4. Markers of Injury
4.1. Neutrophil Gelatinase-Associated Lipocalin (NGAL)
4.2. Insulin-Like Growth Factor-Binding Protein (IGFBP)-7
4.3. Tissue Inhibitor of Metalloproteinase (TIMP)-2
5. From AKI into Acute Kidney Disease (AKD)
6. AKI–AKD–CKD Continuum
AKI in the Presence of Pre-Existing CKD
7. Renal Functional Reserve
The Mechanism of eGFR Increase
8. Tubuloglomerular Feedback
9. Tubular Function Testing
Furosemide Stress Test
10. Risk Stratification Strategy
10.1. Renal Angina Index (RAI)
10.2. Fluid Overload Kidney Injury Score (FOKIS)
11. How to Prevent Kidney Injury in Children?
12. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Basu, R.K.; Kaddourah, A.; Terrell, T.; Mottes, T.; Arnold, P.; Jacobs, J.; Andringa, J.; Goldstein, S.L. Assessment of worldwide acute kidney injury, renal angina and epidemiology in critically ill children (AWARE): Study protocol for a prospective observational study. BMC Nephrol. 2015, 16, 24. [Google Scholar] [CrossRef] [Green Version]
- Kaddourah, A.; Basu, R.K.; Goldstein, S.L.; Sutherland, S.M.; AWARE Investigators. Oliguria and acute kidney injury in critically ill children: Implications for diagnosis and outcomes. Pediatr. Crit. Care Med. 2019, 20, 332–339. [Google Scholar] [CrossRef]
- Jetton, J.; Boohaker, L.J.; Sethi, S.K.; Wazir, S.; Rohatgi, S.; E Soranno, D.; Chishti, A.S.; Woroniecki, R.; Mammen, C.; Swanson, J.R.; et al. Incidence and outcomes of neonatal acute kidney injury (AWAKEN): A multicentre, multinational, observational cohort study. Lancet Child. Adolesc. Health 2017, 1, 184–194. [Google Scholar] [CrossRef]
- Bellomo, R.; Ronco, C.; Kellum, J.A.; Mehta, R.L.; Palevsky, P. Acute Dialysis Quality Initiative workgroup: Acute renal failure—Definition, outcome measures, animal models, fluid therapy and information technology needs: The Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit. Care 2004, 8, R204–R212. [Google Scholar]
- Akcan-Arikan, A.; Zappitelli, M.; Loftis, L.L.; Washburn, K.K.; Jefferson, L.S.; Goldstein, S.L. Modified RIFLE criteria in critically ill children with acute kidney injury. Kidney Int. 2007, 71, 1028–1035. [Google Scholar] [CrossRef] [Green Version]
- Mehta, R.L.; Kellum, J.A.; Shah, S.V.; Molitoris, B.A.; Ronco, C.; Warnock, D.G.; Levin, A. Acute Kidney Injury Network: Acute kidney injury network: Report of an initiative to improve outcomes in acute kidney injury. Crit. Care 2007, 11, R31. [Google Scholar] [CrossRef] [Green Version]
- Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney Int. Suppl. 2012, 2, 1–138. [Google Scholar]
- Levey, A.S.; Eckardt, K.U.; Dorman, N.M.; Christiansen, S.L.; Hoorn, E.J.; Ingelfinger, J.R.; Inker, L.A.; Levin, A.; Mehrotra, R.; Palevsky, P.M.; et al. Nomenclature for kidney function and disease: Report of a Kidney Disease: Improving Global Outcomes (KDIGO) Consensus Conference. Kidney Int. 2020, 97, 1117–1129. [Google Scholar] [CrossRef]
- Sethi, S.K.; Bunchman, T.; Chakraborty, R.; Raina, R. Pediatric acute kidney injury: New advances in the last decade. Kidney Res. Clin. Pract. 2021, 40, 40–51. [Google Scholar] [CrossRef]
- Murray, P.T.; Mehta, R.L.; Shaw, A.; Ronco, C.; Endre, Z.H.; Kellum, J.A.; Chawla, L.S.; Cruz, D.N.; Ince, C.; Okusa, M.D.; et al. Potential use of biomarkers in acute kidney injury: Report and summary of recommendations from the 10th Acute Dialysis Quality Initiative consensus conference. Kidney Int. 2014, 85, 513–521. [Google Scholar] [CrossRef] [Green Version]
- McCaffrey, J.; Dhakal, A.K.; Milford, D.V.; Webb, N.J.A.; Lennon, R. Recent developments in the detection and management of acute kidney injury. Arch. Dis. Child. 2017, 102, 91–96. [Google Scholar] [CrossRef] [Green Version]
- van Donge, T.; Welzel, T.; Atkinson, A.; van den Anker, J.; Pfister, M. Age-dependent changes in kidney injury biomarkers in pediatrics. J. Clin. Pharmacol. 2019, 59, S21–S32. [Google Scholar]
- Musiał, K.; Zwolińska, D. New markers of acute kidney injury in children undergoing hematopoietic stem cell transplantation. In Advances in Critical Care Pediatric Nephrology; Sethi, S.K., Raina, R., McCulloch, M., Bunchman, T.E., Eds.; Springer: Singapore, 2021; Chapter 14; pp. 133–140. [Google Scholar]
- Morgans, H.A.; Warady, B.A. CKD management post-AKI: The role of biomarkers. In Advances in Critical Care Pediatric Nephrology; Sethi, S.K., Raina, R., McCulloch, M., Bunchman, T.E., Eds.; Springer: Singapore, 2021; Chapter 17; pp. 167–176. [Google Scholar] [CrossRef]
- Selewski, D.T.; Askenazi, D.J.; Kashani, K.; Basu, R.K.; Gist, K.M.; Harer, M.W.; Jetton, J.G.; Sutherland, S.M.; Zappitelli, M.; Ronco, C.; et al. Quality improvement goals for pediatric acute kidney injury: Pediatric applications of the 22nd Acute Disease Quality Initiative (ADQI) conference. Pediatr. Nephrol. 2021, 36, 733–746. [Google Scholar] [CrossRef]
- Zhou, H.; Cui, J.; Lu, Y.; Sun, J.; Liu, J. Meta-analysis of the diagnostic value of serum, plasma and urine neutrophil gelatinase-associated lipocalin for the detection of acute kidney injury in patients with sepsis. Exp. Ther. Med. 2021, 21, 836. [Google Scholar] [CrossRef]
- Westhoff, J.H.; Seibert, F.S.; Waldherr, S.; Bauer, F.; Tönshoff, B.; Fichtner, A.; Westhoff, T.H. Urinary calprotectin, kidney injury molecule-1, and neutrophil gelatinase-associated lipocalin for the prediction of adverse outcome in pediatric acute kidney injury. Eur. J. Pediatr. 2017, 176, 745–755. [Google Scholar] [CrossRef]
- Goldstein, S.L.; Krallman, K.A.; Schmerge, A.; Dill, L.; Gerhardt, B.; Chodaparavu, P.; Radomsky, A.; Kirby, C.; Askenazi, D.J. Urinary neutrophil gelatinase-associated lipocalin rules out nephrotoxic acute kidney injury in children. Pediatr. Nephrol. 2021, 36, 1915–1921. [Google Scholar] [CrossRef]
- He, L.; Zhang, Q.; Li, Z.; Shen, L.; Zhang, J.; Wang, P.; Wu, S.; Zhou, T.; Xu, Q.; Chen, X.; et al. Incorporation of urinary neutrophil gelatinase-associated lipocalin and computed tomography quantification to predict acute kidney injury and in-hospital death in COVID-19 patients. Kidney Dis. 2021, 7, 120–130. [Google Scholar] [CrossRef]
- Bai, Z.; Fang, F.; Xu, Z.; Lu, C.; Wang, X.; Chen, J.; Pan, J.; Wang, J.; Li, Y. Serum and urine FGF23 and IGFBP-7 for the prediction of acute kidney injury in critically ill children. BMC Pediatr. 2018, 18, 192. [Google Scholar] [CrossRef]
- Chen, J.; Sun, Y.; Wang, S.; Dai, X.; Huang, H.; Bai, Z.; Li, X.; Wang, J.; Li, Y. The effectiveness of urinary TIMP-2 and IGFBP-7 in predicting acute kidney injury in critically ill neonates. Pediatr. Res. 2020, 87, 1052–1059. [Google Scholar] [CrossRef]
- Westhoff, J.H.; Tönshoff, B.; Waldherr, S.; Pöschl, J.; Teufel, E.; Westhoff, T.H.; Fichtner, A. Urinary tissue inhibitor of metalloproteinase-2 (TIMP-2)x insulin-like growth factor-binding protein 7 (IGFBP-7) predicts adverse outcome in pediatric acute kidney injury. PLoS ONE 2015, 10, e0143628. [Google Scholar] [CrossRef]
- Nalesso, F.; Cattarin, L.; Gobbi, L.; Fragasso, A.; Garzotto, F.; Calo, L.A. Evaluating Nephrocheck as a predictive tool for acute kidney injury. Int. J. Nephrol. Renovasc. Dis. 2020, 13, 85–96. [Google Scholar] [CrossRef] [Green Version]
- Vanmassenhove, J.; Kielstein, J.T.; Ostermann, M. Have renal biomarkers failed in acute kidney injury? Yes. Intensive Care Med. 2017, 43, 883–886. [Google Scholar] [CrossRef]
- McMahon, B.; Koyner, J.L. Have renal biomarkers failed in acute kidney injury? No. Intensive Care Med. 2017, 43, 887–889. [Google Scholar] [CrossRef] [Green Version]
- Prowle, J.R.; Rosner, M.H. Have renal biomarkers failed in acute kidney injury? We are not sure. Intensive Care Med. 2017, 43, 890–892. [Google Scholar] [CrossRef] [Green Version]
- Chawla, L.; Bellomo, R.; Bihorac, A.; Goldstein, S.L.; Siew, E.D.; Bagshaw, S.M.; Fitzgerald, D.B.R.L.; Fitzgerald, D.B.R.L.; Mehta, D.C.E.M.R.; Mehta, D.C.E.M.R.; et al. Acute kidney disease and renal recovery: Consensus report of the Acute Disease Quality Initiative (ADQI) 16 workgroup. Nat. Rev. Nephrol. 2017, 13, 241–257. [Google Scholar] [CrossRef] [Green Version]
- Bosch, J.P.; Saccaggi, A.; Lauer, A.; Ronco, C.; Belledonne, M.; Glabman, S. Renal functional reserve in humans. Effect of protein intake on glomerular filtration rate. Am. J. Med. 1983, 75, 943–950. [Google Scholar] [CrossRef]
- Ronco, C.; Bellomo, R.; Kellum, J. Understanding renal functional reserve. Intensive Care Med. 2017, 43, 917–920. [Google Scholar] [CrossRef]
- Jufar, A.H.; Lankadeva, Y.R.; May, C.N.; Cochrane, A.D.; Bellomo, R.; Evans, R.G. Renal functional reserve: From physiological phenomenon to clinical biomarker and beyond. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2020, 319, R690–R702. [Google Scholar] [CrossRef]
- Shimada, Y.; Nakasone, Y.; Hirabayashi, K.; Sakuma, T.; Koike, H.; Oguchi, T.; Yamashita, K.; Uchimido, R.; Moriya, T.; Komatsu, M.; et al. Development of glomerular hyperfiltration, a multiphasic phenomenon. Am. J. Physiol. Renal. Physiol. 2020, 319, F1037–F1041. [Google Scholar] [CrossRef]
- Oh, S.W.; Yang, J.H.; Kim, M.-G.; Cho, W.Y.; Jo, S.K. Renal hyperfiltration as a risk factor for chronic kidney disease: A health checkup cohort study. PLoS ONE 2020, 15, e0238177. [Google Scholar] [CrossRef]
- Low, S.; Zhang, X.; Wang, J.; Yeoh, L.Y.; Liu, Y.L.; Ang, K.K.L.; Tang, W.E.; Kwan, P.Y.; Tavintharan, S.; Sum, C.F.; et al. Long-term prospective observation suggests that glomerular hyperfiltration is associated with rapid decline in renal filtration function: A multiethnic study. Diab. Vasc. Dis. Res. 2018, 15, 417–423. [Google Scholar] [CrossRef] [Green Version]
- Fuhrman, D.Y. The role of renal functional reserve in predicting acute kidney injury. Crit. Care Clin. 2020. [Google Scholar] [CrossRef]
- Vallon, V.; Thomson, S.C. The tubular hypothesis of nephron filtration and diabetic kidney disease. Nat. Rev. Nephrol. 2020, 16, 317–336. [Google Scholar] [CrossRef]
- Wei, J.; Zhang, J.; Jiang, S.; Wang, L.; Persson, E.G.; Liu, R. High protein diet-induced glomerular hyperfiltration is dependent on NOS1β in the macula densa via tubuloglomerular feedback response. Hypertension 2019, 74, 864–871. [Google Scholar] [CrossRef]
- Mittal, A.; Sethi, S.K. Functional renal reserve and furosemide stress test. In Advances in Critical Care Pediatric Nephrology; Sethi, S.K., Raina, R., McCulloch, M., Bunchman, T.E., Eds.; Springer: Singapore, 2021. [Google Scholar] [CrossRef]
- Basu, R.K.; Wang, Y.; Wong, H.R.; Chawla, L.S.; Wheeler, D.S.; Goldstein, S.L. Incorporation of biomarkers with the renal angina index for prediction of severe AKI in critically ill children. Clin. J. Am. Soc. Nephrol. 2014, 9, 654–662. [Google Scholar] [CrossRef]
- Plaud, A.; Siddiqui, S.; Arikan, A.A. Fluid overload and kidney injury score. In Advances in Critical Care Pediatric Nephrology; Sethi, S.K., Raina, R., McCulloch, M., Bunchman, T.E., Eds.; Springer: Singapore, 2021; Chapter 10; pp. 93–102. [Google Scholar] [CrossRef]
- Musiał, K.; Kałwak, K.; Zwolińska, D. The impact of allogeneic hematopoietic stem cell transplantation on kidney function in children—A single center experience. J. Clin. Med. 2021, 10, 1113. [Google Scholar] [CrossRef]
- Musiał, K.; Augustynowicz, M.; Miśkiewicz-Migoń, I.; Kałwak, K.; Ussowicz, M.; Zwolińska, D. Clusterin as a new marker of kidney injury in children undergoing allogeneic hematopoietic stem cell transplantation—A pilot study. J. Clin. Med. 2020, 9, 2599. [Google Scholar] [CrossRef]
- Benoit, S.W.; Dixon, B.P.; Goldstein, S.L.; Bennett, M.R.; Lane, A.; Lounder, D.T.; Rotz, S.J.; Gloude, N.J.; Lake, K.E.; Litts, B.; et al. A novel strategy for identifying early acute kidney injury in pediatric hematopoietic stem cell transplantation. Bone Marrow Transplant. 2019, 54, 1453–1461. [Google Scholar] [CrossRef]
- Bennett, M.R.; Nehus, E.; Haffner, C.; Ma, Q.; Devarajan, P. Pediatric reference ranges for acute kidney injury biomarkers. Pediatr. Nephrol. 2015, 30, 677–685. [Google Scholar] [CrossRef] [Green Version]
Stages of AKI | Serum Creatinine | eGFR | Urine Output (UOP) |
---|---|---|---|
Stage 1 | 1.5-fold increase of baseline creatinine in 7 days or increase by ≥0.3 mg/dL within 48 h | - | <0.5 mL/kg b.w./h in 6–12 h |
Stage 2 | 2-fold increase | - | <0.5 mL/kg b.w./h in ≥12 h |
Stage 3 | 3-fold increase or increase by ≥0.5 mg/dL within 48 h or serum creatinine ≥4.0 mg/dL | decrease to <35 mL/min/1.73 m2 in patients <18 years or receipt of renal replacement therapy | <0.3 mL/kg b.w./h in ≥24 h or anuria in ≥12 h |
AKD | Serum creatinine | eGFR | Markers of damage |
For ≤3 months | increase by >50% | decrease by ≥35% | present |
Stages of AKD | Serum Creatinine | Markers of Damage |
---|---|---|
Stage 0A | Return to baseline values | No evidence of injury Risk of long-term events |
Stage 0B | Return to baseline values | Ongoing kidney damage/injury Loss of renal reserve |
Stage 0C | Increase less than 1.5-fold | Ongoing kidney damage/injury |
Stage 1 | 1.5-fold increase | Ongoing kidney damage/injury |
Stage 2 | 2-fold increase | Ongoing kidney damage/injury |
Stage 3 | 3-fold increase | Ongoing kidney damage/injury |
Ongoing RRT | Receipt of renal replacement therapy (RRT) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Musiał, K. Current Concepts of Pediatric Acute Kidney Injury—Are We Ready to Translate Them into Everyday Practice? J. Clin. Med. 2021, 10, 3113. https://doi.org/10.3390/jcm10143113
Musiał K. Current Concepts of Pediatric Acute Kidney Injury—Are We Ready to Translate Them into Everyday Practice? Journal of Clinical Medicine. 2021; 10(14):3113. https://doi.org/10.3390/jcm10143113
Chicago/Turabian StyleMusiał, Kinga. 2021. "Current Concepts of Pediatric Acute Kidney Injury—Are We Ready to Translate Them into Everyday Practice?" Journal of Clinical Medicine 10, no. 14: 3113. https://doi.org/10.3390/jcm10143113
APA StyleMusiał, K. (2021). Current Concepts of Pediatric Acute Kidney Injury—Are We Ready to Translate Them into Everyday Practice? Journal of Clinical Medicine, 10(14), 3113. https://doi.org/10.3390/jcm10143113