Muscle Activation during Gait in Unilateral Transtibial Amputee Patients with Prosthesis: The Influence of the Insole Material Density
Abstract
:1. Introduction
2. Methods
2.1. Design
2.2. Participants
2.3. Electromyographic Study
- Subject with bare feet.
- Subject wearing running shoes (all with the same model).
- Subject with running shoes and hard textured surface insole (Figure 4); 4 mm stiff material: Polypropylene PP-DWST. Made by the company SIMONA. (D-55606 Kirn, Germany) and distributed in Spain by Al-Mar Técnicas Ortopédicas S.L. (Arganda del Rey, Madrid, Spain).
- Subject with running shoe and silicone comfort soft textured surface insole (Figure 5). Soft silicone material. (Varisan© hydrogel insoles, Farmavari S.A.U., Meres, Spain).
2.4. Statistical Analysis
3. Results
3.1. Sociodemographic Characteristics Attending to the Division by Treatment Groups
3.2. EMG Results
3.2.1. Intra-Group Analysis
3.2.2. Inter-Group Analysis
3.3. Reliability Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Appendix A
Healthy Leg | Amputated Leg | Difference | p-Value | |
---|---|---|---|---|
Barefoot V1 Quadriceps | 40.4 (20.2) | 40.1 (21.0) | 0.3 (20.4) | 0.967 2 |
Hamstring | 80.7 (28.2) | 77.5 (32.4) | 3.2 (29.0) | 0.710 2 |
V2 Quadriceps | 51.2 (21.9) | 46.0 (23.2) | 5.2 (22.7) | 0.415 2 |
Hamstring | 92.8 (34.3) | 90.9 (35.9) | 1.9 (30.4) | 0.662 1 |
V3 Quadriceps | 69.5 (26.1) | 55.7 (27.2) | 13.8 (24.0) | 0.074 2 |
Hamstring | 109.6 (42.2) | 111.7 (42.0) | -2.1 (42.0) | 0.915 1 |
V4 Quadriceps | 86.4 (30.9) | 67.4 (34.0) | 19.0 (28.7) | 0.044 2 |
Hamstring | 132.6 (52.8) | 130.5 (49.2) | 2.1 (44.1) | 0.938 1 |
No insole V1 Quadriceps | 42.9 (18.5) | 39.3 (19.8) | 3.6 (20.8) | 0.510 2 |
Hamstring | 76.9 (30.1) | 72.4 (29.3) | 4.5 (33.0) | 0.595 2 |
V2 Quadriceps | 52.4 (22.3) | 45.5 (24.7) | 6.9 (27.2) | 0.305 2 |
Hamstring | 90.3 (36.5) | 86.4 (32.5) | 3.9 (34.2) | 0.846 1 |
V3 Quadriceps | 65.1 (23.4) | 54.6 (30.2) | 10.5 (31.2) | 0.175 2 |
Hamstring | 106.5 (43.0) | 100.7 (36.6) | 5.8 (37.1) | 0.923 1 |
V4 Quadriceps | 80.0 (26.1) | 63.6 (34.7) | 16.4 (33.2) | 0.066 2 |
Hamstring | 122.2 (50.4) | 115.8 (41.6) | 6.4 (39.7) | 0.626 2 |
Soft ins. V1 Quadriceps | 44.7 (21.5) | 36.0 (12.1) | 8.6 (22.2) | 0.087 2 |
Hamstring | 77.3 (30.1) | 72.7 (32.3) | 4.6 (32.3) | 0.607 2 |
V2 Quadriceps | 53.1 (23.0) | 40.5 (13.0) | 12.6 (23.7) | 0.043 1 |
Hamstring | 91.3 (35.5) | 85.7 (34.4) | 5.6 (33.9) | 0.614 1 |
V3 Quadriceps | 67.7 (26.5) | 49.4 (23.2) | 18.3 (28.3) | 0.012 2 |
Hamstring | 105.7 (44.8) | 102.6 (42.5) | 3.1 (35.8) | 0.915 1 |
V4 Quadriceps | 84.9 (30.1) | 59.4 (28.5) | 25.5 (34.0) | 0.004 2 |
Hamstring | 123.7 (56.0) | 118.6 (48.6) | 5.1 (45.3) | 0.733 2 |
Hard ins. V1 Quadriceps | 44.7 (17.4) | 37.3 (14.5) | 7.4 (19.6) | 0.107 2 |
Hamstring | 79.5 (31.6) | 72.5 (32.6) | 7.0 (30.3) | 0.440 2 |
V2 Quadriceps | 52.4 (20.3) | 43.4 (18.2) | 9.0 (24.5) | 0.106 2 |
Hamstring | 93.8 (35.4) | 85.5 (34.0) | 8.3 (28.6) | 0.432 1 |
V3 Quadriceps | 69.2 (26.8) | 51.5 (22.2) | 17.7 (28.7) | 0.015 2 |
Hamstring | 111.8 (44.9) | 103.7 (41.9) | 8.1 (36.8) | 0.778 1 |
V4 Quadriceps | 87.9 (30.5) | 61.6 (27.6) | 26.3 (33.9) | 0.002 2 |
Hamstring | 128.9 (54.2) | 122.5 (47.1) | 6.4 (41.0) | 0.969 1 |
Variable | ICC | Lower Limit | Limit |
---|---|---|---|
HAMSTRING_DS_V1 | 0.966 | 0.953 | 0.976 |
HAMSTRING_DS_V2 | 0.949 | 0.930 | 0.964 |
HAMSTRING_DS_V3 | 0.940 | 0.917 | 0.957 |
HAMSTRING_DS_V4 | 0.955 | 0.938 | 0.968 |
HAMSTRING_SIN_V1 | 0.958 | 0.942 | 0.970 |
HAMSTRING_SIN_V2 | 0.946 | 0.925 | 0.962 |
HAMSTRING_SIN_V3 | 0.961 | 0.946 | 0.972 |
HAMSTRING_SIN_V4 | 0.959 | 0.944 | 0.971 |
HAMSTRING_B_V1 | 0.925 | 0.898 | 0.947 |
HAMSTRING_B_V2 | 0.947 | 0.926 | 0.963 |
HAMSTRING_B_V3 | 0.953 | 0.934 | 0.967 |
HAMSTRING_B_V4 | 0.965 | 0.952 | 0.975 |
HAMSTRING_D_V1 | 0.955 | 0.938 | 0.968 |
HAMSTRING_D_V2 | 0.948 | 0.928 | 0.963 |
HAMSTRING_D_V3 | 0.960 | 0.943 | 0.972 |
HAMSTRING_D_V4 | 0.967 | 0.954 | 0.977 |
References
- Collado Vázquez, S. Análisis de la Marcha Humana con Plataformas Dinamométricas. Influencia del Transporte de Carga. Ph.D. Thesis, Complutense University of Madrid, Faculty of Medicine, Department of Physical Medicine and Rehabilitation (Medical Hydrology), Madrid, Spain, 13 December 2003. [Google Scholar]
- Gómez-Ferrer Sapiña, R. Estudio Biomecánico de la Marcha en Pacientes con Artrosis de Cadera. Thesis, University of Valencia, Department of Medicine, Faculty of Medicine and Dentistry, Valencia, Spain, 2005. Available online: https://roderic.uv.es/handle/10550/15636 (accessed on 14 May 2021).
- Sadeghi, H.; Allard, P.; Duhaime, P.M. Muscle power compensatory mechanisms in below-knee amputee gait. Am. J. Phys. Med. Rehabil. 2001, 80, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Czerniecki, J.; Gitter, A. Gait analysis in the amputee: Has it helped the amputee or contributed to the development of improved prosthetic components? GaitPosture 1996, 4, 258–268. [Google Scholar] [CrossRef]
- Centomo, H.; Amarantini, D.; Martin, L.; Prince, F. Muscle adaptation patterns of children with a trans-tibial amputation during walking. Clin. Biomech. 2007, 22, 457–463. [Google Scholar] [CrossRef]
- Gallagher, P.; Maclachlan, M. The Trinity Amputation and Prosthesis Experience Scales and quality of life in people with lower-limb amputation. Arch. Phys. Med. Rehabil. 2004, 85, 730–736. [Google Scholar] [CrossRef]
- Sanderson, D.; Matrin, P. Lower extremity kinematic and kinetic adaptations in unilateral below-knee amputees during walking. Gait Posture 1997, 6, 126–136. [Google Scholar] [CrossRef]
- Chen, J.J.; Shiavi, R.G.; Zhang, L.Q. A Quantitative and Qualitative Description of Electroyogrphic Linear Envelopes for Synergy Analysis. IEEE Trans. Biomed. Eng. 1992, 39, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Bekey, G.; Chang, C.; Perry, J.; Hoffer, M. Pattern recognition of multiple EMG signals applied to the description of human gait. Proc. IEEE 1977, 65, 674–681. [Google Scholar] [CrossRef]
- Powers, C.M.; Rao, S.; Perry, J. Knee kinetics in trans-tibial amputee gait. Gait Posture 1998, 8, 1–7. [Google Scholar] [CrossRef]
- Beyaert, C.; Grumillier, C.; Martinet, N.; Paysant, J.; André, J.M. Compensatory mechanism involving the knee joint of the intact limb during gait in unilateral below-knee amputees. Gait Posture 2008, 28, 278–284. [Google Scholar] [CrossRef]
- Winter, D.A.; Sienko, S.E. Biomechanics of below-knee amputee gait. J. Biomech. 1988, 21, 361–367. [Google Scholar] [CrossRef]
- Fey, N.P.; Silverman, A.K.; Neptune, R.R. The influence of increasing steady-state walking speed on muscle activity in below-knee amputees. J. Electromyogr. Kinesiol. 2010, 20, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Isakov, E.; Keren, O.; Benjuya, N. Trans-tibial amputee gait: Time-distance parameters and EMG activity. Prosthet. Orthot. Int. 2000, 24, 216–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silverman, A.K.; Fey, N.P.; Portillo, A.; Walden, J.G.; Bosker, G.; Neptune, R.R. Compensatory mechanisms in below-knee amputee gait in response to increasing steady-state walking speeds. Gait Posture 2008, 28, 602–609. [Google Scholar] [CrossRef] [PubMed]
- Asociación Médica Mundial. Declaracion De Helsinki De La Asociacion Medica Mundial Principios Éticos Para las Investigaciones Médicas en seres Humanos. An. Sist. Sanit. Navar. 2008, 24, 209–212. [Google Scholar]
- Voinescu, M.; Soares, D.P.; Natal Jorge, R.M.; Davidescu, A.; Machado, L.J. Estimation of the forces generated by the thigh muscles for transtibial amputee gait. J. Biomech. 2012, 45, 972–977. [Google Scholar] [CrossRef]
- Huang, S.; Ferris, D.P. Muscle activation patterns during walking from transtibial amputees recorded within the residual limb-prosthetic interface. J. Neuroeng. Rehabil. 2012, 9, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finni, T.; Hu, M.; Kettunen, P.; Vilavuo, T.; Cheng, S. Measurement of EMG activity with textile electrodes embedded into clothing. Physiol. Meas. 2007, 28, 1405–1419. [Google Scholar] [CrossRef] [PubMed]
- Grumillier, C.; Martinet, N.; Paysant, J.; André, J.M.; Beyaert, C. Compensatory mechanism involving the hip joint of the intact limb during gait in unilateral trans-tibial amputees. J. Biomech. 2008, 41, 2926–2931. [Google Scholar] [CrossRef]
- Molina Rueda, F. Estrategias de Control Motor en Sujetos Protetizados con Amputación Transtibial Unilateral: Análisis Instrumental. Ph.D. Thesis, Rey Juan Carlos University, Mostoles, Spain, 2012. [Google Scholar]
- Sanderson, D.J.; Martin, E. Joint kinetics in unilateral below-knee amputee patients during running. Arch. Phys. Med. Rehabil. 1996, 77, 1279–1285. [Google Scholar] [CrossRef]
- Massó, N.; Rey, F.; Romero, D.; Gual, G.; Costaa, L.L.; Germán, A. Aplicaciones de la electromiografía de superficie en el deporte. Apunt. Med. Esports 2010, 45, 127–136. [Google Scholar] [CrossRef]
- Tikkanen, O.; Hu, M.; Vilavuo, T.; Tolvanen, P.; Cheng, S.; Finni, T. Ventilatory threshold during incremental running can be estimated using EMG shorts. Physiol. Meas. 2012, 33, 603–614. [Google Scholar] [CrossRef] [PubMed]
- De Vito, G.; McHugh, D.; Macaluso, A.; Riches, P.E. Is the coactivation of biceps femoris during isometric knee extension affected by adiposity in healthy young humans? J. Electromyogr Kinesiol. 2003, 13, 425–431. [Google Scholar] [CrossRef]
- Sullivan, M.K.; Dejulia, J.J.; Worrell, T.W. Effect of pelvic position and stretching method on hamstring muscle flexibility. Med. Sci. Sports Exerc. 1992, 24, 1383–1389. [Google Scholar] [CrossRef] [PubMed]
- Osternig, L.R.; Robertson, R.; Troxel, R.; Hansen, P. Muscle activation during proprioceptive neuromuscular facilitation (PNF) stretching techniques. Am. J. Phys. Med. 1998, 66, 298–307. [Google Scholar] [CrossRef]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [Green Version]
- Portney, L.G.; Watkins, M.P. Foundations of Clinical Research: Applications to Practice, 3rd ed.; Pearson Prentice Hall: Hoboken, NJ, USA, 2009. [Google Scholar]
- Burdock, E.I.; Fleiss, J.L.; Hardesty, A.S. A new view of inter-observer agreement. Pers. Psychol. 1963, 16, 373–384. [Google Scholar] [CrossRef]
- Kautz, S.A.; Bowden, M.G.; Clark, D.J.; Neptune, R.R. Comparison of motor control deficits during treadmill and overground walking poststroke. Neurorehabil. Neural. Repair. 2011, 25, 756–765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.J.; Hidler, J. Biomechanics of overground vs. treadmill walking in healthy individuals. J. Appl. Physiol. 2008, 104, 747–755. [Google Scholar] [CrossRef] [PubMed]
- Van Ingen Schenau, G.J. Some fundamental aspects of the biomechanics of overground versus treadmill locomotion. Med. Sci. Sport. Exerc. 1980, 12, 257–261. [Google Scholar] [CrossRef]
- Kawashima, N.; Mita, T.; Yoshikawa, M. Inter-individual difference in the effect of mirror reflection induced visual feedback on phantom limb awareness in forearm amputees. PLoS ONE 2013, 8, e69324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arifin, N.; Abu Osman, N.A.; Ali, S.; Gholizadeh, H.; Wan Abas, W.A.B. Postural Stability Characteristics of Transtibial Amputees Wearing Different Prosthetic Foot Types When Standing on Various Support Surfaces. Sci. World J. 2014, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Centomo, H.; Amarantini, D.; Martin, L.; Prince, F. Differences in the coordination of agonist and antagonist muscle groups in below-knee amputee and able-bodied children during dynamic exercise. J. Electromyogr. Kinesiol. 2008, 18, 487–494. [Google Scholar] [CrossRef] [PubMed]
- Torburn, L.; Perry, J.; Ayyappa, E.; Shanfield, S.L. Below-knee amputee gait with dynamic elastic response prosthetic feet: A pilot study. J. Rehabil. Res. Dev. 1990, 27, 369–384. [Google Scholar] [PubMed]
- Powers, C.M.; Boyd, L.A.; Torburn, L.; Perry, J. Stair ambulation in persons with transtibial amputation: An analysis of the Seattle LightFoot. J. Rehabil. Res. Dev. 1997, 34, 9–18. [Google Scholar] [PubMed]
- Damiano, D. Reviewing Muscle Cocontraction: Is It a Developmental, Pathological, or Motor Control Issue? Phys. Occup. Ther. Pediatr. 1993, 12, 3–20. [Google Scholar] [CrossRef]
- Mc Geer, T. Passive dynamic walking. Int. J. Rob. Res. 1990, 9, 62. [Google Scholar] [CrossRef]
- Rietman, J.S.; Postema, K.; Geertzen, J.H.B. Gait analysis in prosthetics: Opinions, ideas and conclusions. Prosthet. Orthot. Int. 2002, 26, 50–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variable | Total n = 50 | Controls n = 25 | Amputee Participants n = 25 | p Value * |
---|---|---|---|---|
Male | 20 (80.0%) | 20 (80.0%) | 20 (80.0%) | 1.000 |
Age (years) mean ± SD | 41.2 ± 12.9 | 38.4 ± 12.4 | 44.0 ± 12.9 | 0.124 |
BMI (kg/m2) mean ± SD | 25.7 ± 4.0 | 25.0 ± 3.1 | 26.4 ± 4.8 | 0.220 |
Quadriceps | Hamstring | |||||
---|---|---|---|---|---|---|
Difference (SD) | %Difference | p-Value | Difference (SD) | %Difference | p-Value | |
Barefoot V1 | 1.2 (6.2) | 2.9% | 0.977 1 | −6.7 (8.0) | −9.5% | 0.5281 |
V2 | 4.9 (6.7) | 9.6% | 0.491 1 | −6.5 (8.9) | −7.7% | 0.4672 |
V3 | 13.2 (7.8) | 19.2% | 0.049 1 | −10.2 (10.2) | −10.2% | 0.3212 |
V4 | 22.2 (9.1) | 24.9% | 0.011 1 | −7.6 (11.9) | −6.2% | 0.5272 |
No insole V1 | 0.3 (5.6) | 0.8% | 0.946 1 | −2.8 (7.0) | −4.0% | 0.8311 |
V2 | 1.7 (6.3) | 3.6% | 0.535 1 | −4.2 (7.6) | −5.1% | 0.5822 |
V3 | 11.0 (7.5) | 16.8% | 0.030 1 | −0.4 (8.4) | −0.4% | 0.9672 |
V4 | 20.7 (8.8) | 24.6% | 0.002 1 | 5.4 (9.8) | 4.5% | 0.5882 |
Soft insole V1 | 0.3 (4.6) | 0.8% | 0.473 1 | 1.6 (8.0) | 2.2% | 0.6771 |
V2 | 7.2 (5.0) | 15.1% | 0.156 2 | 1.6 (8.2) | 1.8% | 0.8472 |
V3 | 15.6 (7.0) | 24.0% | 0.009 1 | 1.0 (9.5) | 1.0% | 0.9202 |
V4 | 25.1 (7.8) | 29.7% | <0.001 1 | 2.5 (11.0) | 2.1% | 0.8232 |
Hard insole V1 | 0.0 (4.9) | 0.0% | 0.691 1 | 3.1 (7.8) | 4.1% | 0.3221 |
V2 | 6.5 (5.9) | 13.0% | 0.221 1 | 4.1 (8.5) | 4.6% | 0.5091 |
V3 | 16.1 (6.6) | 23.8% | 0.013 1 | 3.1 (10.1) | 2.9% | 0.7642 |
V4 | 24.6 (8.4) | 28.5% | 0.002 1 | 8.6 (11.2) | 6.6% | 0.4442 |
Hamstring | Barefoot | No Insole | Soft Insole | Hard Insole |
---|---|---|---|---|
Barefoot | 0.001 | 0.009 | 0.110 | |
No Insole | 0.788 | 0.840 | 0.093 | |
Soft Insole | 0.893 | 0.882 | 0.086 | |
Hard Insole | 0.029 | 0.011 | 0.002 |
Right Leg Controls | Leg Amputees | |
---|---|---|
Barefoot V1 Quadriceps | 41.3 (23.1) | 40.1 (21.0) |
Hamstring | 70.8 (23.7) | 77.5 (32.4) |
V2 Quadriceps | 50.9 (24.5) | 46.0 (23.2) |
Hamstring | 84.4 (26.1) | 90.9 (35.9) |
V3 Quadriceps | 68.9 (27.9) | 55.7 (27.2) |
Hamstring | 101.4 (28.7) | 111.7 (42.0) |
V4 Quadriceps | 89.7 (30.5) | 67.4 (34.0) |
Hamstring | 122.9 (33.6) | 130.5 (49.2) |
p-value Quadriceps | <0.001 1 | <0.001 1 |
p-value Hamstring | <0.001 1 | <0.001 1 |
No insole V1 Quadriceps | 39.6 (19.6) | 39.3 (19.8) |
Hamstring | 69.6 (18.9) | 72.4 (29.3) |
V2 Quadriceps | 47.2 (19.9) | 45.5 (24.7) |
Hamstring | 82.2 (19.2) | 86.4 (32.5) |
V3 Quadriceps | 65.6 (21.9) | 54.6 (30.2) |
Hamstring | 100.3 (20.8) | 100.7 (36.6) |
V4 Quadriceps | 84.3 (26.6) | 63.6 (34.7) |
Hamstring | 121.2 (26.3) | 115.8 (41.6) |
p-value Quadriceps | <0.001 1 | <0.001 1 |
p-value Hamstring | <0.001 1 | <0.001 1 |
Soft insole V1 Quadriceps | 36.3 (19.4) | 36.0 (12.1) |
Hamstring | 74.3 (23.4) | 72.7 (32.3) |
V2 Quadriceps | 47.7 (21.4) | 40.5 (13.0) |
Hamstring | 87.3 (22.3) | 85.7 (34.4) |
V3 Quadriceps | 65.0 (25.9) | 49.4 (23.2) |
Hamstring | 103.6 (21.4) | 102.6 (42.5) |
V4 Quadriceps | 84.5 (26.9) | 59.4 (28.5) |
Hamstring | 121.1 (25.9) | 118.6 (48.6) |
p-value Quadriceps | <0.001 1 | <0.001 1 |
p-value Hamstring | <0.001 1 | <0.001 1 |
Hard insole V1 Quadriceps | 37.3 (20.0) | 37.3 (14.5) |
Hamstring | 75.6 (21.0) | 72.5 (32.6) |
V2 Quadriceps | 49.9 (23.3) | 43.4 (18.2) |
Hamstring | 89.6 (25.3) | 85.5 (34.0) |
V3 Quadriceps | 67.6 (24.3) | 51.5 (22.2) |
Hamstring | 106.8 (28.0) | 103.7 (41.9) |
V4 Quadriceps | 86.2 (31.4) | 61.6 (27.6) |
Hamstring | 131.1 (29.8) | 122.5 (47.1) |
p-value Quadriceps | <0.001 1 | <0.001 1 |
p-value Hamstring | <0.001 1 | <0.001 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarroca, N.; Luesma, M.J.; Valero, J.; Deus, J.; Casanova, J.; Lahoz, M. Muscle Activation during Gait in Unilateral Transtibial Amputee Patients with Prosthesis: The Influence of the Insole Material Density. J. Clin. Med. 2021, 10, 3119. https://doi.org/10.3390/jcm10143119
Sarroca N, Luesma MJ, Valero J, Deus J, Casanova J, Lahoz M. Muscle Activation during Gait in Unilateral Transtibial Amputee Patients with Prosthesis: The Influence of the Insole Material Density. Journal of Clinical Medicine. 2021; 10(14):3119. https://doi.org/10.3390/jcm10143119
Chicago/Turabian StyleSarroca, Nuria, María José Luesma, José Valero, Javier Deus, Josefa Casanova, and Manuel Lahoz. 2021. "Muscle Activation during Gait in Unilateral Transtibial Amputee Patients with Prosthesis: The Influence of the Insole Material Density" Journal of Clinical Medicine 10, no. 14: 3119. https://doi.org/10.3390/jcm10143119
APA StyleSarroca, N., Luesma, M. J., Valero, J., Deus, J., Casanova, J., & Lahoz, M. (2021). Muscle Activation during Gait in Unilateral Transtibial Amputee Patients with Prosthesis: The Influence of the Insole Material Density. Journal of Clinical Medicine, 10(14), 3119. https://doi.org/10.3390/jcm10143119