A Model Incorporating Serum Alkaline Phosphatase for Prediction of Liver Fibrosis in Adults with Obesity and Nonalcoholic Fatty Liver Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Statistical Analysis
2.2.1. Identifying Risk Factors for Significant Fibrosis
2.2.2. Developing a Model for Predicting Significant Fibrosis
3. Results
3.1. Subjects Characteristics
3.2. Risk Factors for Significant Fibrosis
3.3. Predictors of Significant Fibrosis
3.4. Model for Predicting Significant Fibrosis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hagstrom, H.; Nasr, P.; Ekstedt, M.; Hammar, U.; Stal, P.; Hultcrantz, R.; Kechagias, S. Fibrosis stage but not NASH predicts mortality and time to development of severe liver disease in biopsy-proven NAFLD. J. Hepatol. 2017, 67, 1265–1273. [Google Scholar] [CrossRef]
- Ekstedt, M.; Hagstrom, H.; Nasr, P.; Fredrikson, M.; Stal, P.; Kechagias, S.; Hultcrantz, R. Fibrosis stage is the strongest predictor for disease-specific mortality in NAFLD after up to 33 years of follow-up. Hepatology 2015, 61, 1547–1554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angulo, P.; Kleiner, D.E.; Dam-Larsen, S.; Adams, L.A.; Bjornsson, E.S.; Charatcharoenwitthaya, P.; Mills, P.R.; Keach, J.C.; Lafferty, H.D.; Stahler, A.; et al. Liver fibrosis, but no other histologic features, is associated with long-term outcomes of patients with nonalcoholic fatty liver disease. Gastroenterology 2015, 149, 389–397.e310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Younossi, Z.M.; Stepanova, M.; Rafiq, N.; Henry, L.; Loomba, R.; Makhlouf, H.; Goodman, Z. Nonalcoholic steatofibrosis independently predicts mortality in nonalcoholic fatty liver disease. Hepatol. Commun. 2017, 1, 421–428. [Google Scholar] [CrossRef] [PubMed]
- Younossi, Z.M.; Loomba, R.; Rinella, M.E.; Bugianesi, E.; Marchesini, G.; Neuschwander-Tetri, B.A.; Serfaty, L.; Negro, F.; Caldwell, S.H.; Ratziu, V.; et al. Current and future therapeutic regimens for nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Hepatology 2018, 68, 361–371. [Google Scholar] [CrossRef] [PubMed]
- Schauer, P.R.; Kashyap, S.R.; Wolski, K.; Brethauer, S.A.; Kirwan, J.P.; Pothier, C.E.; Thomas, S.; Abood, B.; Nissen, S.E.; Bhatt, D.L. Bariatric surgery versus intensive medical therapy in obese patients with diabetes. N. Engl. J. Med. 2012, 366, 1567–1576. [Google Scholar] [CrossRef] [PubMed]
- Mingrone, G.; Panunzi, S.; De Gaetano, A.; Guidone, C.; Iaconelli, A.; Leccesi, L.; Nanni, G.; Pomp, A.; Castagneto, M.; Ghirlanda, G.; et al. Bariatric surgery versus conventional medical therapy for type 2 diabetes. N. Engl. J. Med. 2012, 366, 1577–1585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lassailly, G.; Caiazzo, R.; Buob, D.; Pigeyre, M.; Verkindt, H.; Labreuche, J.; Raverdy, V.; Leteurtre, E.; Dharancy, S.; Louvet, A.; et al. Bariatric surgery reduces features of nonalcoholic steatohepatitis in morbidly obese patients. Gastroenterology 2015, 149, 379–388, quiz e315-376. [Google Scholar] [CrossRef] [Green Version]
- Laursen, T.L.; Hagemann, C.A.; Wei, C.; Kazankov, K.; Thomsen, K.L.; Knop, F.K.; Grønbæk, H. Bariatric surgery in patients with non-alcoholic fatty liver disease—from pathophysiology to clinical effects. World J. Hepatol. 2019, 11, 138–149. [Google Scholar] [CrossRef]
- Angulo, P.; Hui, J.M.; Marchesini, G.; Bugianesi, E.; George, J.; Farrell, G.C.; Enders, F.; Saksena, S.; Burt, A.D.; Bida, J.P.; et al. The NAFLD fibrosis score: A noninvasive system that identifies liver fibrosis in patients with NAFLD. Hepatology 2007, 45, 846–854. [Google Scholar] [CrossRef]
- Wai, C.T.; Greenson, J.K.; Fontana, R.J.; Kalbfleisch, J.D.; Marrero, J.A.; Conjeevaram, H.S.; Lok, A.S. A simple noninvasive index can predict both significant fibrosis and cirrhosis in patients with chronic hepatitis C. Hepatology 2003, 38, 518–526. [Google Scholar] [CrossRef] [Green Version]
- Sterling, R.K.; Lissen, E.; Clumeck, N.; Sola, R.; Correa, M.C.; Montaner, J.; Sulkowski, M.S.; Torriani, F.J.; Dieterich, D.T.; Thomas, D.L.; et al. Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection. Hepatology 2006, 43, 1317–1325. [Google Scholar] [CrossRef] [PubMed]
- Machado, M.; Marques-Vidal, P.; Cortez-Pinto, H. Hepatic histology in obese patients undergoing bariatric surgery. J. Hepatol. 2006, 45, 600–606. [Google Scholar] [CrossRef]
- Pollock, G.; Minuk, G.Y. Diagnostic considerations for cholestatic liver disease. J. Gastroenterol. Hepatol. 2017, 32, 1303–1309. [Google Scholar] [CrossRef] [Green Version]
- Noureddin, M.; Loomba, R. Nonalcoholic fatty liver disease: Indications for liver biopsy and noninvasive biomarkers. Clin. Liver Dis. 2012, 1, 104–107. [Google Scholar] [CrossRef] [PubMed]
- Pantsari, M.W.; Harrison, S.A. Nonalcoholic fatty liver disease presenting with an isolated elevated alkaline phosphatase. J. Clin. Gastroenterol. 2006, 40, 633–635. [Google Scholar] [CrossRef]
- Mechanick, J.I.; Apovian, C.; Brethauer, S.; Timothy Garvey, W.; Joffe, A.M.; Kim, J.; Kushner, R.F.; Lindquist, R.; Pessah-Pollack, R.; Seger, J.; et al. Clinical Practice Guidelines for the Perioperative Nutrition, Metabolic, and Nonsurgical Support of Patients Undergoing Bariatric Procedures—2019 Update: Cosponsored by American Association of Clinical Endocrinologists/American College of Endocrinology, The Obesity Society, American Society for Metabolic and Bariatric Surgery, Obesity Medicine Association, and American Society of Anesthesiologists. Obesity 2020, 28, O1–O58. [Google Scholar] [CrossRef]
- Mattar, S.G.; Velcu, L.M.; Rabinovitz, M.; Demetris, A.J.; Krasinskas, A.M.; Barinas-Mitchell, E.; Eid, G.M.; Ramanathan, R.; Taylor, D.S.; Schauer, P.R. Surgically-induced weight loss significantly improves nonalcoholic fatty liver disease and the metabolic syndrome. Ann. Surg. 2005, 242, 610–620. [Google Scholar] [CrossRef]
- Brunt, E.M.; Kleiner, D.E. Challenges in the hepatic histopathology in non-alcoholic fatty liver disease. Gut 2017, 66, 1539–1540. [Google Scholar] [CrossRef] [PubMed]
- Rawlins, S.; Mullen, C.; Simon, H.; Kim, T.; Landas, S.; Walser, M.; Levine, R. Wedge and needle liver biopsies show discordant histopathology in morbidly obese patients undergoing Roux-en-Y gastric bypass surgery. Gastroenterol. Rep. 2013, 1, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Xanthakos, S.A.; Jenkins, T.M.; Kleiner, D.E.; Boyce, T.W.; Mourya, R.; Karns, R.; Brandt, M.L.; Harmon, C.M.; Helmrath, M.A.; Michalsky, M.P.; et al. High prevalence of nonalcoholic fatty liver disease in adolescents undergoing bariatric surgery. Gastroenterology 2015, 149, 623–634.e628. [Google Scholar] [CrossRef] [Green Version]
- Kleiner, D.E.; Brunt, E.M.; Van Natta, M.; Behling, C.; Contos, M.J.; Cummings, O.W.; Ferrell, L.D.; Liu, Y.C.; Torbenson, M.S.; Unalp-Arida, A.; et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 2005, 41, 1313–1321. [Google Scholar] [CrossRef]
- Dulai, P.S.; Singh, S.; Patel, J.; Soni, M.; Prokop, L.J.; Younossi, Z.; Sebastiani, G.; Ekstedt, M.; Hagstrom, H.; Nasr, P.; et al. Increased risk of mortality by fibrosis stage in nonalcoholic fatty liver disease: Systematic review and meta-analysis. Hepatology 2017, 65, 1557–1565. [Google Scholar] [CrossRef] [PubMed]
- Heinze, G.; Wallisch, C.; Dunkler, D. Variable selection—A review and recommendations for the practicing statistician. Biom. J. 2018, 60, 431–449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Efron, B.; Tibshirani, R.J. An Introduction to the Bootstrap; Taylor & Francis: Abingdon, UK, 1994. [Google Scholar]
- Chawla, N.; Bowyer, K.; Hall, L.; Kegelmeyer, W. SMOTE: Synthetic Minority Over-sampling Technique. J. Artif. Intell. Res. (JAIR) 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Breiman, L.; Friedman, J.; Stone, C.J.; Olshen, R.A. Classification and Regression Trees; Taylor & Francis: Abingdon, UK, 1984. [Google Scholar]
- Boardman, J.; Biron, K.; Rimbey, R. Mitigating the Effects of Class Imbalance Using SMOTE and Tomek Link Undersampling in SAS®. Available online: https://pdfs.semanticscholar.org/bf3e/68c3e9cfe50b75897d6e6296c45f5bd30f82.pdf (accessed on 13 January 2021).
- Beymer, C.; Kowdley, K.V.; Larson, A.; Edmonson, P.; Dellinger, E.P.; Flum, D.R. Prevalence and predictors of asymptomatic liver disease in patients undergoing gastric bypass surgery. Arch. Surg. 2003, 138, 1240–1244. [Google Scholar] [CrossRef] [Green Version]
- Crespo, J.; Fernández-Gil, P.; Hernández-Guerra, M.; Cayón, A.; Mayorga, M.; Domínguez-Diez, A.; Fernández-Escalante, J.C.; Pons-Romero, F. Are there predictive factors of severe liver fibrosis in morbidly obese patients with non-alcoholic steatohepatitis? Obes. Surg. 2001, 11, 254–257. [Google Scholar] [CrossRef]
- Dixon, J.B.; Bhathal, P.S.; O’Brien, P.E. Nonalcoholic fatty liver disease: Predictors of nonalcoholic steatohepatitis and liver fibrosis in the severely obese. Gastroenterology 2001, 121, 91–100. [Google Scholar] [CrossRef]
- Gholam, P.M.; Flancbaum, L.; Machan, J.T.; Charney, D.A.; Kotler, D.P. Nonalcoholic fatty liver disease in severely obese subjects. Am. J. Gastroenterol. 2007, 102, 399–408. [Google Scholar] [CrossRef]
- Liew, P.L.; Lee, W.J.; Lee, Y.C.; Wang, H.H.; Wang, W.; Lin, Y.C. Hepatic histopathology of morbid obesity: Concurrence of other forms of chronic liver disease. Obes. Surg. 2006, 16, 1584–1593. [Google Scholar] [CrossRef]
- Ong, J.P.; Elariny, H.; Collantes, R.; Younoszai, A.; Chandhoke, V.; Reines, H.D.; Goodman, Z.; Younossi, Z.M. Predictors of nonalcoholic steatohepatitis and advanced fibrosis in morbidly obese patients. Obes. Surg. 2005, 15, 310–315. [Google Scholar] [CrossRef]
- Solga, S.F.; Clark, J.M.; Alkhuraishi, A.R.; Torbenson, M.; Tabesh, A.; Schweitzer, M.; Diehl, A.M.; Magnuson, T.H. Race and comorbid factors predict nonalcoholic fatty liver disease histopathology in severely obese patients. Surg. Obes. Relat. Dis. Off. J. Am. Soc. Bariatr. Surg. 2005, 1, 6–11. [Google Scholar] [CrossRef] [PubMed]
- Papadia, F.S.; Marinari, G.M.; Camerini, G.; Murelli, F.; Carlini, F.; Stabilini, C.; Scopinaro, N. Liver damage in severely obese patients: A clinical-biochemical-morphologic study on 1000 liver biopsies. Obes. Surg. 2004, 14, 952–958. [Google Scholar] [CrossRef]
- Habibzadeh, F.; Habibzadeh, P.; Yadollahie, M. On determining the most appropriate test cut-off value: The case of tests with continuous results. Biochem. Med. 2016, 26, 297–307. [Google Scholar] [CrossRef] [PubMed]
- Ozarda, Y. Reference intervals: Current status, recent developments and future considerations. Biochem. Med. 2016, 26, 5–16. [Google Scholar] [CrossRef] [Green Version]
Variable | All Subjects (n = 210) | F0–F1 (n = 189) | F2–F4 (n = 21) | p Value |
---|---|---|---|---|
Age, years | ||||
Median | 46 | 45 | 53 | 0.09 |
(Range) | (22.9–77.2) | (22.9–77.2) | (25–65.7) | |
Gender, female | ||||
Percentage | 82.9% | 82% | 90.5% | 0.33 |
Frequency | 174 | 155 | 19 | |
Tobacco smoking, yes | ||||
Percentage | 46.6% | 46.5% | 47.6% | 0.92 |
Frequency | 97 | 87 | 10 | |
Body weight, kg | ||||
Median | 129.1 | 129.1 | 138 | 0.39 |
(Range) | (87.2–238.9) | (87.2–238.9) | (106.9–173) | |
Body mass index, kg/m2 | ||||
Median | 46.2 | 46 | 52.7 | 0.19 |
(Range) | (33.2–67.3) | (33.2–67.3) | (38–63) | |
Diabetes mellitus *, yes | ||||
Percentage | 32.7% | 28.9% | 66.7% | <0.0001 |
Frequency | 68 | 54 | 14 | |
Hypertension †, yes | ||||
Percentage | 54.3% | 52.4% | 71.4% | 0.1 |
Frequency | 113 | 98 | 15 | |
Hyperlipidemia ‡, yes | ||||
Percentage | 43.8% | 41.7% | 61.9% | 0.08 |
Frequency | 91 | 78 | 13 | |
Glucose, mg/dL | ||||
Median | 94 | 92 | 120 | 0.0002 |
(Range) | (57–283) | (57–238) | (75–225) | |
HbA1c, % | ||||
Median | 5.8 | 5.7 | 7.3 | <0.0001 |
Range | (4.3–13.2) | (4.3–13.2) | (5.2–11.8) | |
Albumin, g/dL | ||||
Median | 4.3 | 4.3 | 4.6 | 0.08 |
(Range) | (3.4–5.4) | (3.4–5.3) | (4–5.4) | |
ALP, U/L | ||||
Median | 69 | 67 | 87 | 0.0015 |
(Range) | (26–157) | (26–157) | (53–127) | |
AST, U/L | ||||
Median | 26 | 25 | 38 | 0.0007 |
(Range) | (9–152) | (9–152) | (17–125) | |
ALT, U/L | ||||
Median | 29 | 27 | 43 | 0.0015 |
(Range) | (9–273) | (9–186) | (14–273) | |
AST/ALT ratio | ||||
Median | 0.89 | 0.89 | 0.88 | 0.46 |
(Range) | (0.35–1.92) | (0.35–1.92) | (0.46–1.64) | |
Hb g/dL | ||||
Median | 13.6 | 13.5 | 14.2 | 0.046 |
(Range) | (9.5–16.7) | (9.5–16.4) | (12–16.7) | |
Platelets, cell × 109 | ||||
Median | 268 | 268 | 283 | 0.79 |
(Range) | (88–510) | (88–510) | (117–437) | |
TC, mg/dL | ||||
Median | 160 | 159 | 172 | 0.62 |
(Range) | (77–294) | (104-294) | (77–244) | |
TG, mg/dL | ||||
Median | 123 | 120 | 139 | 0.048 |
(Range) | (37–454) | (37–454) | (78–243) | |
LDL, mg/dL | ||||
Median | 97 | 96 | 106 | 0.99 |
(Range) | (21–231) | (35–231) | (21–167) | |
HDL, mg/dL | ||||
Median | 39 | 39 | 37 | 0.71 |
(Range) | (20–82) | (20–82) | (27–64) | |
LDL/HDL ratio | ||||
Median | 2.48 | 2.56 | 2.13 | 0.17 |
(Range) | (0.6–8) | (0.6–8) | (0.6–6.2) | |
TC/HDL ratio | ||||
Median | 4.16 | 4.2 | 3.68 | 0.54 |
(Range) | (1.2–10.1) | (1.2–10.1) | (2.8–8.3) |
Biopsy Finding | % (Frequency) |
---|---|
Steatosis | |
<5% | 13% (27) |
5–33% | 27% (58) |
66% | 40% (83) |
>66% | 20% (42) |
Lobular inflammation * | |
None | 43% (92) |
<2 foci | 46% (97) |
2–4 foci | 10% (20) |
>4 foci | 1% (1) |
Ballooning | |
None | 61% (129) |
Few | 31% (64) |
Many | 8% (17) |
NAS | |
0 | 14% (29) |
1 | 18% (37) |
2 | 11% (24) |
3 | 19% (41) |
4 | 16% (33) |
5 | 15% (32) |
6 | 5% (12) |
7 | 2% (2) |
Fibrosis stage | |
0 | 71% (150) |
1 | 19% (39) |
2 | 4% (8) |
3 | 5% (10) |
4 | 1% (3) |
Parameter | Estimate | Odds Ratio | ||
---|---|---|---|---|
Intercept | −11.86 | Estimate | 95% Confidence Interval | |
HbA1c | 0.477 | 1.61 | 1.17 | 2.09 |
BMI | 0.066 | 1.07 | 1.00 | 1.16 |
ALP | 0.031 | 1.03 | 1.01 | 1.06 |
ALT | 0.021 | 1.02 | 1.01 | 1.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, A.H.; Petroski, G.F.; Diaz-Arias, A.A.; Al Juboori, A.; Wheeler, A.A.; Ganga, R.R.; Pitt, J.B.; Spencer, N.M.; Hammoud, G.M.; Rector, R.S.; et al. A Model Incorporating Serum Alkaline Phosphatase for Prediction of Liver Fibrosis in Adults with Obesity and Nonalcoholic Fatty Liver Disease. J. Clin. Med. 2021, 10, 3311. https://doi.org/10.3390/jcm10153311
Ali AH, Petroski GF, Diaz-Arias AA, Al Juboori A, Wheeler AA, Ganga RR, Pitt JB, Spencer NM, Hammoud GM, Rector RS, et al. A Model Incorporating Serum Alkaline Phosphatase for Prediction of Liver Fibrosis in Adults with Obesity and Nonalcoholic Fatty Liver Disease. Journal of Clinical Medicine. 2021; 10(15):3311. https://doi.org/10.3390/jcm10153311
Chicago/Turabian StyleAli, Ahmad Hassan, Gregory F. Petroski, Alberto A. Diaz-Arias, Alhareth Al Juboori, Andrew A. Wheeler, Rama R. Ganga, James B. Pitt, Nicole M. Spencer, Ghassan M. Hammoud, R. Scott Rector, and et al. 2021. "A Model Incorporating Serum Alkaline Phosphatase for Prediction of Liver Fibrosis in Adults with Obesity and Nonalcoholic Fatty Liver Disease" Journal of Clinical Medicine 10, no. 15: 3311. https://doi.org/10.3390/jcm10153311
APA StyleAli, A. H., Petroski, G. F., Diaz-Arias, A. A., Al Juboori, A., Wheeler, A. A., Ganga, R. R., Pitt, J. B., Spencer, N. M., Hammoud, G. M., Rector, R. S., Parks, E. J., & Ibdah, J. A. (2021). A Model Incorporating Serum Alkaline Phosphatase for Prediction of Liver Fibrosis in Adults with Obesity and Nonalcoholic Fatty Liver Disease. Journal of Clinical Medicine, 10(15), 3311. https://doi.org/10.3390/jcm10153311