Surgical Site Infection Following Intramedullary Nailing of Subtrochanteric Femoral Fractures
Abstract
:1. Introduction
2. Materials and Methods
3. Statistical Analysis
4. Results
4.1. Basic Demographics
4.2. Pathogenic Micro-Organisms
4.3. Outcomes
4.4. Associations with Deep Infection
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
BMAC | Bone Marrow Aspirate Concentrate |
BMP-2 | Bone Morphogenetic Protein-2 |
CAP | Community Acquired Pneumonia |
CDC | Centres for Disease Control and Prevention |
CKD | Chronic Kidney Disease |
CI | Confidence Interval |
CRP | C Reactive Protein |
DVT | Deep Vein Thrombosis |
ESR | Erythrocyte Sedimentation Rate |
FBC | Full Blood Count |
HAP | Hospital Acquired Pneumonia |
HDU | High Dependency Unit |
ICU | Intensive Care Unit |
IM nail | IntraMedullary Nail |
IQr | InterQuartile range |
LOS | Length Of Stay |
MRI | Magnetic Resonance Imaging |
OR | Odds Ratio |
PE | Pulmonary Embolism |
qPCR | Quantitative Polymerase Chain Reaction |
RIA | Reamer-Irrigator-Aspirator |
SIRS | Systemic Inflammatory Response Syndrome |
SSI | Surgical Site Infection |
U&E | Urea and Electrolytes |
UTI | Urinary Tract Infection |
WHO | World Health Organisation |
References
- Wiss, D.A.; Brien, W.W. Subtrochanteric fractures of the femur. Results of treatment by interlocking nailing. Clin. Orthop. Relat. Res. 1992, 283, 231–236. [Google Scholar] [CrossRef]
- Santolini, E.; Goumenos, S.D.; Giannoudi, M.; Sanguineti, F.; Stella, M.; Giannoudis, P.V. Femoral and tibial blood supply: A trigger for non-union? Injury 2014, 45, 1665–1673. [Google Scholar] [CrossRef]
- Panteli, M.; Mauffrey, C.; Giannoudis, P.V. Subtrochanteric fractures: Issues and challenges. Injury 2017, 48, 2023–2026. [Google Scholar] [CrossRef]
- Loizou, C.L.; McNamara, I.; Ahmed, K.; Pryor, G.A.; Parker, M.J. Classification of subtrochanteric femoral fractures. Injury 2010, 41, 739–745. [Google Scholar] [CrossRef]
- Haidukewych, G.L. Subtrochanteric fractures. In Rockwood and Green’s Fractures in Adults; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2010; pp. 1641–1654. [Google Scholar]
- Karayiannis, P.; James, A. The impact of cerclage cabling on unstable intertrochanteric and subtrochanteric femoral fractures: A retrospective review of 465 patients. Eur. J. Trauma Emerg. Surg. Off. Publ. Eur. Trauma Soc. 2020, 46, 969–975. [Google Scholar] [CrossRef]
- Trikha, V.; Das, S.; Agrawal, P.; Arkesh, M.; Kumar Dhaka, S. Role of percutaneous cerclage wire in the management of subtrochanteric fractures treated with intramedullary nails. Chin. J. Traumatol. 2018, 21, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Codesido, P.; Mejia, A.; Riego, J.; Ojeda-Thies, C. Subtrochanteric fractures in elderly people treated with intramedullary fixation: Quality of life and complications following open reduction and cerclage wiring versus closed reduction. Arch. Orthop. Trauma Surg. 2017, 137, 1077–1085. [Google Scholar] [CrossRef]
- Shukla, S.; Johnston, P.; Ahmad, M.A.; Wynn-Jones, H.; Patel, A.D.; Walton, N.P. Outcome of traumatic subtrochanteric femoral fractures fixed using cephalo-medullary nails. Injury 2007, 38, 1286–1293. [Google Scholar] [CrossRef]
- Mingo-Robinet, J.; Torres-Torres, M.; Moreno-Barrero, M.; Alonso, J.A.; Garcia-Gonzalez, S. Minimally invasive clamp-assisted reduction and cephalomedullary nailing without cerclage cables for subtrochanteric femur fractures in the elderly: Surgical technique and results. Injury 2015, 46, 1036–1041. [Google Scholar] [CrossRef]
- Beingessner, D.M.; Scolaro, J.A.; Orec, R.J.; Nork, S.E.; Barei, D.P. Open reduction and intramedullary stabilisation of subtrochanteric femur fractures: A retrospective study of 56 cases. Injury 2013, 44, 1910–1915. [Google Scholar] [CrossRef]
- Mardani-Kivi, M.; Karimi Mobarakeh, M.; Keyhani, S.; Azari, Z. Double-plate fixation together with bridging bone grafting in nonunion of femoral supracondylar, subtrochanteric, and shaft fractures is an effective technique. Musculoskelet. Surg. 2020, 104, 215–226. [Google Scholar] [CrossRef]
- Pollmann, C.T.; Dahl, F.A.; Rotterud, J.H.M.; Gjertsen, J.E.; Aroen, A. Surgical site infection after hip fracture-mortality and risk factors: An observational cohort study of 1709 patients. Acta Orthop. 2020, 91, 347–352. [Google Scholar] [CrossRef] [Green Version]
- Chihara, S.; Segreti, J. Osteomyelitis. Dis. Mon. 2010, 56, 5–31. [Google Scholar] [CrossRef] [PubMed]
- Tong, S.Y.; Davis, J.S.; Eichenberger, E.; Holland, T.L.; Fowler, V.G., Jr. Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 2015, 28, 603–661. [Google Scholar] [CrossRef] [Green Version]
- Conterno, L.O.; Turchi, M.D. Antibiotics for treating chronic osteomyelitis in adults. Cochrane Database Syst. Rev. 2013, 9, CD004439. [Google Scholar] [CrossRef]
- Peng, J.; Ren, Y.; He, W.; Li, Z.; Yang, J.; Liu, Y.; Zheng, Z.; Kates, S.L.; Schwarz, E.M.; Xie, C.; et al. Epidemiological, Clinical and Microbiological Characteristics of Patients with Post-Traumatic Osteomyelitis of Limb Fractures in Southwest China: A Hospital-Based Study. J. Bone Joint Infect. 2017, 2, 149–153. [Google Scholar] [CrossRef] [Green Version]
- Burns, T.C.; Stinner, D.J.; Mack, A.W.; Potter, B.K.; Beer, R.; Eckel, T.T.; Possley, D.R.; Beltran, M.J.; Hayda, R.A.; Andersen, R.C.; et al. Microbiology and injury characteristics in severe open tibia fractures from combat. J. Trauma Acute Care Surg. 2012, 72, 1062–1067. [Google Scholar] [CrossRef]
- Jiang, N.; Ma, Y.F.; Jiang, Y.; Zhao, X.Q.; Xie, G.P.; Hu, Y.J.; Qin, C.H.; Yu, B. Clinical Characteristics and Treatment of Extremity Chronic Osteomyelitis in Southern China: A Retrospective Analysis of 394 Consecutive Patients. Medicine 2015, 94, e1874. [Google Scholar] [CrossRef]
- Birt, M.C.; Anderson, D.W.; Bruce Toby, E.; Wang, J. Osteomyelitis: Recent advances in pathophysiology and therapeutic strategies. J. Orthop. 2017, 14, 45–52. [Google Scholar] [CrossRef]
- Panteli, M.; Giannoudis, P.V. Osteomyelitis and other orthopaedic infections. In Rockwood and Green’s Fractures in Adults, 9th ed.; Tornetta, P., III, Ricci, W.M., Ostrum, R.F., McQueen, M.M., McKee, M.D., Court-Brown, C.M., Eds.; Wolters Kluwer: Philadelphia, PA, USA, 2019; Volume 1, pp. 798–834. [Google Scholar]
- Panteli, M.; Giannoudis, P.V. Chronic osteomyelitis: What the surgeon needs to know. EFORT Open Rev. 2016, 1, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Giannoudis, P.V.; Ahmad, M.A.; Mineo, G.V.; Tosounidis, T.I.; Calori, G.M.; Kanakaris, N.K. Subtrochanteric fracture non-unions with implant failure managed with the “Diamond” concept. Injury 2013, 44 (Suppl. 1), S76–S81. [Google Scholar] [CrossRef]
- Park, S.H.; Kong, G.M.; Ha, B.H.; Park, J.H.; Kim, K.H. Nonunion of subtrochanteric fractures: Comminution or Malreduction. Pak. J. Med Sci. 2016, 32, 591–594. [Google Scholar] [CrossRef]
- Persiani, P.; Ranaldi, F.M.; Gurzi, M.; Formica, A.; Graci, J.; De Cristo, C.; Grasso, R.; Villani, C. Choice of three different intramedullary nails in the treatment of trochanteric fractures: Outcome, analysis and consideration in midterm. Injury 2019, 50, S6–S10. [Google Scholar] [CrossRef] [PubMed]
- Joglekar, S.B.; Lindvall, E.M.; Martirosian, A. Contemporary management of subtrochanteric fractures. Orthop. Clin. N. Am. 2015, 46, 21–35. [Google Scholar] [CrossRef]
- Krappinger, D.; Wolf, B.; Dammerer, D.; Thaler, M.; Schwendinger, P.; Lindtner, R.A. Risk factors for nonunion after intramedullary nailing of subtrochanteric femoral fractures. Arch. Orthop. Trauma Surg. 2019, 139, 769–777. [Google Scholar] [CrossRef] [Green Version]
- Russell, T.A. Subtrochanteric Fractures of the Femur; WB Saunders: Philadelphia, PA, USA, 1992; pp. 1485–1524. [Google Scholar]
- Matre, K.; Havelin, L.I.; Gjertsen, J.E.; Vinje, T.; Espehaug, B.; Fevang, J.M. Sliding hip screw versus IM nail in reverse oblique trochanteric and subtrochanteric fractures. A study of 2716 patients in the Norwegian Hip Fracture Register. Injury 2013, 44, 735–742. [Google Scholar] [CrossRef]
- Imerci, A.; Aydogan, N.H.; Tosun, K. Evaluation of inter- and intra-observer reliability of current classification systems for subtrochanteric femoral fractures. Eur. J. Orthop. Surg. Traumatol. Orthop. Traumatol. 2018, 28, 499–502. [Google Scholar] [CrossRef]
- Müller, M.E.; Nazarian, S.; Koch, P.; Schatzker, J. The Comprehensive Classification of Fractures of Long Bones; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Ban, K.A.; Minei, J.P.; Laronga, C.; Harbrecht, B.G.; Jensen, E.H.; Fry, D.E.; Itani, K.M.; Dellinger, E.P.; Ko, C.Y.; Duane, T.M. American College of Surgeons and Surgical Infection Society: Surgical Site Infection Guidelines, 2016 Update. J. Am. Coll. Surg. 2017, 224, 59–74. [Google Scholar] [CrossRef] [PubMed]
- Raff, A.B.; Kroshinsky, D. Cellulitis: A Review. JAMA 2016, 316, 325–337. [Google Scholar] [CrossRef]
- Atkins, B.L.; Athanasou, N.; Deeks, J.J.; Crook, D.W.; Simpson, H.; Peto, T.E.; McLardy-Smith, P.; Berendt, A.R. Prospective evaluation of criteria for microbiological diagnosis of prosthetic-joint infection at revision arthroplasty. The OSIRIS Collaborative Study Group. J. Clin. Microbiol. 1998, 36, 2932–2939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- R Foundation for Statistical Computing. Austria R: A Language and Environment for Statistical Computing. Available online: https://www.R-project.org/ (accessed on 1 June 2021).
- Berrios-Torres, S.I.; Umscheid, C.A.; Bratzler, D.W.; Leas, B.; Stone, E.C.; Kelz, R.R.; Reinke, C.E.; Morgan, S.; Solomkin, J.S.; Mazuski, J.E.; et al. Centers for Disease Control and Prevention Guideline for the Prevention of Surgical Site Infection, 2017. JAMA Surg. 2017, 152, 784–791. [Google Scholar] [CrossRef] [PubMed]
- Allegranzi, B.; Zayed, B.; Bischoff, P.; Kubilay, N.Z.; de Jonge, S.; de Vries, F.; Gomes, S.M.; Gans, S.; Wallert, E.D.; Wu, X.; et al. New WHO recommendations on intraoperative and postoperative measures for surgical site infection prevention: An evidence-based global perspective. Lancet Infect. Dis. 2016, 16, e288–e303. [Google Scholar] [CrossRef]
- Thakore, R.V.; Greenberg, S.E.; Shi, H.; Foxx, A.M.; Francois, E.L.; Prablek, M.A.; Nwosu, S.K.; Archer, K.R.; Ehrenfeld, J.M.; Obremskey, W.T.; et al. Surgical site infection in orthopedic trauma: A case-control study evaluating risk factors and cost. J. Clin. Orthop. Trauma 2015, 6, 220–226. [Google Scholar] [CrossRef] [Green Version]
- Bischoff, P.; Kubilay, N.Z.; Allegranzi, B.; Egger, M.; Gastmeier, P. Effect of laminar airflow ventilation on surgical site infections: A systematic review and meta-analysis. Lancet Infect. Dis. 2017, 17, 553–561. [Google Scholar] [CrossRef]
- Kilinc, B.E.; Oc, Y.; Kara, A.; Erturer, R.E. The effect of the cerclage wire in the treatment of subtrochanteric femur fracture with the long proximal femoral nail: A review of 52 cases. Int. J. Surg. 2018, 56, 250–255. [Google Scholar] [CrossRef]
- Kanakaris, N.; Gudipati, S.; Tosounidis, T.; Harwood, P.; Britten, S.; Giannoudis, P.V. The treatment of intramedullary osteomyelitis of the femur and tibia using the Reamer-Irrigator-Aspirator system and antibiotic cement rods. Bone Joint J. 2014, 96, 783–788. [Google Scholar] [CrossRef] [PubMed]
- Stoodley, P.; Ehrlich, G.D.; Sedghizadeh, P.P.; Hall-Stoodley, L.; Baratz, M.E.; Altman, D.T.; Sotereanos, N.G.; Costerton, J.W.; DeMeo, P. Orthopaedic biofilm infections. Curr. Orthop. Pract. 2011, 22, 558–563. [Google Scholar] [CrossRef] [PubMed]
- Mills, L.; Tsang, J.; Hopper, G.; Keenan, G.; Simpson, A.H. The multifactorial aetiology of fracture nonunion and the importance of searching for latent infection. Bone Joint Res. 2016, 5, 512–519. [Google Scholar] [CrossRef] [PubMed]
- Waltz, P.K.; Zuckerbraun, B.S. Surgical Site Infections and Associated Operative Characteristics. Surg. Infect. 2017, 18, 447–450. [Google Scholar] [CrossRef]
- Sullivan, E.; Gupta, A.; Cook, C.H. Cost and Consequences of Surgical Site Infections: A Call to Arms. Surg. Infect. 2017, 18, 451–454. [Google Scholar] [CrossRef] [PubMed]
- Simpson, A.H.; Tsang, J.S.T. Current treatment of infected non-union after intramedullary nailing. Injury 2017, 48 (Suppl. 1), S82–S90. [Google Scholar] [CrossRef]
- Mills, L.A.; Simpson, A.H. The relative incidence of fracture non-union in the Scottish population (5.17 million): A 5-year epidemiological study. BMJ Open 2013, 3. [Google Scholar] [CrossRef] [Green Version]
- Hak, D.J.; Fitzpatrick, D.; Bishop, J.A.; Marsh, J.L.; Tilp, S.; Schnettler, R.; Simpson, H.; Alt, V. Delayed union and nonunions: Epidemiology, clinical issues, and financial aspects. Injury 2014, 45 (Suppl. 2), S3–S7. [Google Scholar] [CrossRef] [PubMed]
- Elniel, A.R.; Giannoudis, P.V. Open fractures of the lower extremity: Current management and clinical outcomes. EFORT Open Rev. 2018, 3, 316–325. [Google Scholar] [CrossRef]
- Costa, M.L.; Achten, J.; Bruce, J.; Tutton, E.; Petrou, S.; Lamb, S.E.; Parsons, N.R.; Collaboration, U.W. Effect of Negative Pressure Wound Therapy vs Standard Wound Management on 12-Month Disability Among Adults With Severe Open Fracture of the Lower Limb: The WOLLF Randomized Clinical Trial. JAMA 2018, 319, 2280–2288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guerado, E.; Medina, A.; Mata, M.I.; Galvan, J.M.; Bertrand, M.L. Protocols for massive blood transfusion: When and why, and potential complications. Eur. J. Trauma Emerg. Surg. 2016, 42, 283–295. [Google Scholar] [CrossRef] [PubMed]
- Hill, G.E.; Frawley, W.H.; Griffith, K.E.; Forestner, J.E.; Minei, J.P. Allogeneic blood transfusion increases the risk of postoperative bacterial infection: A meta-analysis. J. Trauma 2003, 54, 908–914. [Google Scholar] [CrossRef] [PubMed]
Demographics | No Infection | Superficial Infection | Deep Infection |
Total number | 525 | 21 | 15 |
Age (years) | 73.50 (19.07) | 68.13 (20.01) | 65.83 (19.36) |
Gender | |||
Male | 206 (39.2%) | 9 (42.9%) | 5 (33.3%) |
Female | 319 (60.8%) | 12 (57.1%) | 10 (66.7%) |
Injury Characteristics | No Infection | Superficial Infection | Deep Infection |
Mechanism of Injury | |||
Low energy | 411 (78.3%) | 13 (61.9%) | 9 (60.0%) |
High energy | 81 (15.4%) | 5 (23.8%) | 4 (26.7%) |
Pathological | 33 (6.3%) | 3 (14.3%) | 2 (13.3%) |
Isolated | 445 (84.8%) | 20 (95.2%) | 11 (73.3%) |
ISS > 16 | 33 (6.3%) | 0 (0.0%) | 3 (20.0%) |
Open fracture | 5 (1.0%) | 0 (0.0%) | 2 (13.3%) |
Fracture Characteristics | No Infection | Superficial Infection | Deep Infection |
Russell Taylor Classification | |||
1A | 161 (30.8%) | 9 (42.9%) | 4 (26.7%) |
1B | 160 (30.6%) | 4 (19.0%) | 4 (26.7%) |
2A | 26 (5%) | 1 (4.8%) | 0 (0.0%) |
2B | 176 (33.7%) | 7 (33.3%) | 7 (46.7%) |
Number of fragments (comminution) | |||
Simple | 153 (29.3%) | 7 (33.3%) | 3 (20.0%) |
Moderate | 260 (49.7%) | 5 (23.8%) | 8 (53.3%) |
Severe | 220 (21%) | 9 (42.9%) | 4 (26.7%) |
Distal extension | 173 (33.1%) | 3 (14.3%) | 10 (66.7%) |
Medical Comorbidities | No Infection | Superficial Infection | Deep Infection |
ASA | |||
1 | 45 (8.6%) | 3 (14.3%) | 1 (6.7%) |
2 | 132 (25.1%) | 7 (33.3%) | 6 (40.0%) |
3 | 264 (50.3%) | 8 (38.1%) | 6 (40.0%) |
4 | 84 (16%) | 3 (14.3%) | 2 (13.3%) |
Charlson Comorbidity Score | 5.3 (3.1) | 4.9 (3.4) | 4.7 (3.6) |
Diabetes | 71 (13.5%) | 3 (14.3%) | 3 (20.0%) |
Steroids | 26 (5%) | 2 (9.5%) | 1 (6.7%) |
Malignancy | 127 (24.2%) | 6 (28.6%) | 4 (26.7%) |
Dementia | 121 (23%) | 2 (9.5%) | 2 (13.3%) |
Social History | No Infection | Superficial Infection | Deep Infection |
Smoking | 127 (24.2%) | 6 (28.6%) | 6 (40.0%) |
Alcohol >10 units/week | 97 (18.5%) | 2 (9.5%) | 6 (40.0%) |
Pre-operative Mobility | |||
Independent | 269 (51.2%) | 14 (66.7%) | 10 (66.7%) |
Stick(s)/Crutch(es) | 142 (27%) | 2 (9.5%) | 2 (13.3%) |
Frame | 91 (17.3%) | 2 (9.5%) | 2 (13.3%) |
Wheelchai/Hoisted | 23 (4.4%) | 3 (14.3%) | 1 (6.7%) |
Operation Characteristics | No Infection | Superficial Infection | Deep Infection |
Operation in less than 48 h | 417 (79.4%) | 16 (76.2%) | 11 (73.3%) |
Open reduction | 236 (45%) | 17 (81.0%) | 12 (80.0%) |
Use of cerclage wires | 57 (10.9%) | 2 (9.5%) | 3 (20.0%) |
Post-op Mobilisation FWB | 290 (55.2%) | 10 (47.6%) | 7 (46.7%) |
(first 6 weeks) PWB | 114 (21.7%) | 3 (14.3%) | 5 (33.3%) |
TTWB | 69 (13.1%) | 4 (19%) | 0 (0.0%) |
NWB | 52 (9.9%) | 4 (19%) | 3 (20.0%) |
Surgical time (min) * | 110.52 (44.24) | 120.67 (42.29) | 137.53 (64.43) |
Anaesthetic Time (min) ** | 48.11 (21.3) | 50.19 (24.89) | 58.27 (26.89) |
Level of First Surgeon | |||
Registrar | 308 (59.0%) | 16 (76.2%) | 8 (53.3%) |
Consultant | 214 (41%) | 5 (23.8%) | 7 (46.7%) |
Level of Senior Surgeon Present | |||
Registrar | 283 (54.2%) | 15 (71.4%) | 8 (53.3%) |
Consultant | 239 (45.8%) | 6 (28.6%) | 7 (46.7%) |
Complications | No Infection | Superficial Infection | Deep Infection |
Non-union | 69 (13.1%) | 6 (28.6%) | 9 (60.0%) |
HAP/CAP | 101 (19.2%) | 2 (9.5%) | 3 (20.0%) |
UTI | 73 (13.9%) | 3 (14.3%) | 2 (13.3%) |
CKD Stage post-operatively | |||
Mild | 369 (72.2%) | 16 (80.0%) | 12 (80.0%) |
Moderate/Severe | 142 (27.8%) | 4 (20.0%) | 3 (20.0%) |
Thromboembolic event | |||
DVT | 9 (7.8%) | 3 (33.3%) | 0 (0.0%) |
PE | 10 (8.7%) | 0 (0.0%) | 0 (0.0%) |
Post-operative Transfusion | 327 (62.5%) | 12 (57.1%) | 14 (93.3%) |
Transfusion withing 48 h post-operation | 264 (50.5%) | 11 (52.4%) | 13 (86.7%) |
Massive transfusion | 9 (1.7%) | 0 (0.0%) | 4 (26.7%) |
Hospital Stay/Mortality | No Infection | Superficial Infection | Deep Infection |
HDU/ICU stay | 59 (11.2%) | 3 (14.3%) | 5 (33.3%) |
Total length of hospital stay (days) | 21.72 (17.44) | 22.86 (16.92) | 49.87 (35.38) |
Weekend admission | 171 (32.6%) | 3 (14.3%) | 5 (33.3%) |
Died within a year | 109 (20.8%) | 5 (23.8%) | 1 (6.7%) |
Superficial Wound Infections | Deep Infection | |||
---|---|---|---|---|
13 Patients * | 15 Patients | |||
Organisms ** | Staphylococcus aureus | n = 6 | Coliforms *** | n = 5 |
Enteric flora | n = 5 | Staphylococcus aureus | n = 4 | |
Mixed skin flora | n = 5 | Escherichia coli | n = 4 | |
Enteroccocus species | n = 1 | Proteus | n = 3 | |
Staphylococcus | n = 1 | |||
Gram-ve bacillus | n = 1 | epidermidis | ||
Beta Haemolytic | n = 1 | Coagulase negative | n = 1 | |
Streptococcus Group B | Staphylococcus | |||
Pseudomonas aeruginosa | n = 1 | |||
Gram -ve bacillus | n = 1 | |||
Beta Haemolytic | n = 1 | |||
Dermabacter | ||||
hominis | ||||
No growth | n = 3 | |||
Polymicrobial | n = 5 | Polymicrobial | n = 12 |
Operation * | Number of Operations (n) |
---|---|
Wound washout, debridement and closure | 26 |
Staged metalwork removal (nail/screws) | 9 |
Exchange nailing | 5 |
RIA debridement of medullary canal | 4 |
Cement nail | 3 |
Local antibiotic therapy (antibiotic beads, antibiotic impregnated cement) | 3 |
Use of Biologic to augment fracture healing (e.g., RIA graft, BMAC, BMP-2) ** | 2 |
Blade plate | 1 |
Total hip replacement | 1 |
Injury/Fracture Characteristics | No Infection | Deep Infection | Unadjusted OR (95% CI) | p-Value |
Open fracture | 5 (0.9%) | 2 (13.3%) | 16.65 (2.95–93.86) | 0.001 |
Distal Extension | 176 (32.4%) | 10 (66.7%) | 4.18 (1.41–12.42) | <0.001 |
Social History | No infection | Deep infection | Unadjusted OR (95% CI) | p-value |
Alcohol >10 units/week | 99 (18.1%) | 6 (40.0%) | 3.01 (1.05–4.08) | 0.041 |
Operation Characteristics | No infection | Deep infection | Unadjusted OR (95% CI) | p-value |
Open reduction | 253 (46.3%) | 12 (80.0%) | 1.53 (0.65–2.35) | 0.019 |
Surgical time (min) | 110.92 (44.17) | 137.53 (64.43) | 1.01 (1.00–1.02) | 0.026 |
Time from induction to recovery (min) | 177.41 (48.26) | 228.73 (77.18) | 1.02 (1.01–1.02) | <0.001 |
Complications | No infection | Deep infection | Unadjusted OR (95% CI) | p-value |
Non-union | 75 (13.7%) | 9 (60.0%) | 9.42 (3.26–27.23) | <0.001 |
Post-operative Transfusion | 339 (62.3%) | 14 (93.3%) | 8.47 (1.11–64.86) | 0.040 |
Massive Transfusion | 9 (1.6%) | 4 (26.7%) | 21.62 (5.77–80.95) | <0.001 |
HDU/ICU stay | 62 (11.4%) | 5 (33.3%) | 3.90 (1.29–11.79) | 0.029 |
Total length of hospital stay (days) | 21.76 (17.41) | 49.87 (35.38) | 1.03 (1.02–1.05) | <0.001 |
OR | 95% CI | p-Value | |
---|---|---|---|
Non-union | 9.29 | 2.56–3.38 | <0.001 |
Open fracture | 4.23 | 3.18–5.61 | 0.005 |
Massive Transfusion * | 1.42 | 2.39–8.39 | 0.003 |
Post-operative Transfusion | 1.40 | 1.10–1.79 | 0.042 |
Total LOS | 1.04 | 1.02–1.06 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panteli, M.; Vun, J.S.H.; West, R.M.; Howard, A.; Pountos, I.; Giannoudis, P.V. Surgical Site Infection Following Intramedullary Nailing of Subtrochanteric Femoral Fractures. J. Clin. Med. 2021, 10, 3331. https://doi.org/10.3390/jcm10153331
Panteli M, Vun JSH, West RM, Howard A, Pountos I, Giannoudis PV. Surgical Site Infection Following Intramedullary Nailing of Subtrochanteric Femoral Fractures. Journal of Clinical Medicine. 2021; 10(15):3331. https://doi.org/10.3390/jcm10153331
Chicago/Turabian StylePanteli, Michalis, James S. H. Vun, Robert M. West, Anthony Howard, Ippokratis Pountos, and Peter V. Giannoudis. 2021. "Surgical Site Infection Following Intramedullary Nailing of Subtrochanteric Femoral Fractures" Journal of Clinical Medicine 10, no. 15: 3331. https://doi.org/10.3390/jcm10153331
APA StylePanteli, M., Vun, J. S. H., West, R. M., Howard, A., Pountos, I., & Giannoudis, P. V. (2021). Surgical Site Infection Following Intramedullary Nailing of Subtrochanteric Femoral Fractures. Journal of Clinical Medicine, 10(15), 3331. https://doi.org/10.3390/jcm10153331