Application of NGS Technology in Understanding the Pathology of Autoimmune Diseases
Abstract
:1. Introduction
2. Panels, Whole-Genome and -Exome Sequencing in Diagnostic
3. Human Leukocyte Antigens (HLA) as a Diagnostic Tool
4. RNA-Seq
5. MicroRNA
6. Microbiome
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Behjati, S.; Tarpey, P.S. What is next generation sequencing? Arch. Dis. Child. Educ. Pract. Ed. 2013. [Google Scholar] [CrossRef] [PubMed]
- Niedringhaus, T.P.; Milanova, D.; Kerby, M.B.; Snyder, M.P.; Barron, A.E. Landscape of next-generation sequencing technologies. Anal. Chem. 2011, 83, 4327–4341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagayama, K. Method of Determining Base Sequence of DNA or RNA Using Heavy Element Labeling and Imaging by Transmission Electron Microscopy. Available online: https://www.freepatentsonline.com/7332284.html (accessed on 4 January 2021).
- Tanaka, H.; Kawai, T. Partial sequencing of a single DNA molecule with a scanning tunnelling microscope. Nat. Nanotechnol. 2009, 4, 518–522. [Google Scholar] [CrossRef] [PubMed]
- Frederick Sanger—Biographical. Available online: https://www.nobelprize.org/prizes/chemistry/1980/sanger/biographical/ (accessed on 4 January 2021).
- Lander, E.S.; Linton, L.M.; Birren, B.; Nusbaum, C.; Zody, M.C.; Baldwin, J.; Devon, K.; Dewar, K.; Doyle, M.; Fitzhugh, W.; et al. Initial sequencing and analysis of the human genome. Nature 2001. [Google Scholar] [CrossRef] [Green Version]
- Craig Venter, J.; Adams, M.D.; Myers, E.W.; Li, P.W.; Mural, R.J.; Sutton, G.G.; Smith, H.O.; Yandell, M.; Evans, C.A.; Holt, R.A.; et al. The sequence of the human genome. Science 2001. [Google Scholar] [CrossRef] [Green Version]
- Margulies, M.; Egholm, M.; Altman, W.E.; Attiya, S.; Bader, J.S.; Bemben, L.A.; Berka, J.; Braverman, M.S.; Chen, Y.J.; Chen, Z.; et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 2005. [Google Scholar] [CrossRef]
- Wheeler, D.A.; Srinivasan, M.; Egholm, M.; Shen, Y.; Chen, L.; McGuire, A.; He, W.; Chen, Y.J.; Makhijani, V.; Roth, G.T.; et al. The complete genome of an individual by massively parallel DNA sequencing. Nature 2008. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.S.; Mortazavi, A.; Myers, R.M.; Wold, B. Genome-wide mapping of in vivo protein-DNA interactions. Science 2007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Gerstein, M.; Snyder, M. RNA-Seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet. 2009, 10, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Sanford, J.R.; Wang, X.; Mort, M.; Vanduyn, N.; Cooper, D.N.; Mooney, S.D.; Edenberg, H.J.; Liu, Y. Splicing factor SFRS1 recognizes a functionally diverse landscape of RNA transcripts. Genome Res. 2009, 19, 381–394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simon, M.D.; Wang, C.I.; Kharchenko, P.V.; West, J.A.; Chapman, B.A.; Alekseyenko, A.A.; Borowsky, M.L.; Kuroda, M.I.; Kingston, R.E. The genomic binding sites of a noncoding RNA. Proc. Natl. Acad. Sci. USA 2011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chu, C.; Qu, K.; Zhong, F.L.; Artandi, S.E.; Chang, H.Y. Genomic Maps of Long Noncoding RNA Occupancy Reveal Principles of RNA-Chromatin Interactions. Mol. Cell 2011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, E.J.; Luo, J.; Wilson, J.M.; Shi, H. Analyzing the cancer methylome through targeted bisulfite sequencing. Cancer Lett. 2013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Dijk, E.L.; Auger, H.; Jaszczyszyn, Y.; Thermes, C. Ten years of next-generation sequencing technology. Trends Genet. 2014, 30, 418–426. [Google Scholar] [CrossRef] [PubMed]
- Macaulay, I.C.; Voet, T. Single Cell Genomics: Advances and Future Perspectives. PLoS Genet. 2014, 10, e1004126. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Baran, J.; Cros, A.; Guberman, J.M.; Haider, S.; Hsu, J.; Liang, Y.; Rivkin, E.; Wang, J.; Whitty, B.; et al. International cancer genome consortium data portal-a one-stop shop for cancer genomics data. Database 2011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rose, N.R. Prediction and prevention of autoimmune disease in the 21st Century: A review and preview. Am. J. Epidemiol. 2016, 183, 403–406. [Google Scholar] [CrossRef]
- Rose, N.R.; Mackay, I.R. (Eds.) The Autoimmune Diseases; Elsevier: San Diego, CA, USA, 2019; ISBN 9780128121023. [Google Scholar]
- Rose, N.R.; Bona, C. Defining criteria for autoimmune diseases (Witebsky’s postulates revisited). Immunol. Today 1993, 14, 426–430. [Google Scholar] [CrossRef]
- Ohl, K.; Tenbrock, K. Inflammatory cytokines in systemic lupus erythematosus. J. Biomed. Biotechnol. 2011, 2011, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Boissier, M.-C.; Assier, E.; Falgarone, G.; Bessis, N. Shifting the imbalance from Th1/Th2 to Th17/treg: The changing rheumatoid arthritis paradigm. Jt. Bone Spine 2008, 75, 373–375. [Google Scholar] [CrossRef]
- Tanaka, T.; Narazaki, M.; Kishimoto, T. Therapeutic targeting of the interleukin-6 receptor. Annu. Rev. Pharmacol. Toxicol. 2012. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.P.; Singh, U.P.; Singh, B.; Price, R.L.; Nagarkatti, M.; Nagarkatti, P.S. Activation of Aryl hydrocarbon receptor (AhR) leads to reciprocal epigenetic regulation of Foxp3 and IL-17 expression and amelioration of experimental colitis. PLoS ONE 2011, 6, e23522. [Google Scholar] [CrossRef] [Green Version]
- Davidson, A.; Diamond, B. Autoimmune diseases. N. Engl. J. Med. 2001, 345, 340–350. [Google Scholar] [CrossRef] [PubMed]
- Kattah, N.H.; Kattah, M.G.; Utz, P.J. The U1-snRNP complex: Structural properties relating to autoimmune pathogenesis in rheumatic diseases. Immunol. Rev. 2009, 233, 126–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Green, N.M.; Marshak-Rothstein, A. Toll-like receptor driven B cell activation in the induction of systemic autoimmunity. Semin. Immunol. 2011, 23, 106–112. [Google Scholar] [CrossRef] [Green Version]
- Ungprasert, P.; Crowson, C.S.; Chowdhary, V.R.; Ernste, F.C.; Moder, K.G.; Matteson, E.L. Epidemiology of Mixed Connective Tissue Disease, 1985–2014: A Population-Based Study. Arthritis Care Res. 2016, 68, 1843–1848. [Google Scholar] [CrossRef] [Green Version]
- Bodolay, E.; Csiki, Z.; Szekanecz, Z.; Ben, T.; Kiss, E.; Zeher, M.; Szucs, G.; Danko, K.; Szegedi, G. Five-year follow-up of 665 Hungarian patients with undifferentiated connective tissue disease (UCTD). Clin. Exp. Rheumatol. 2003, 21, 313–320. [Google Scholar]
- Williams, H.J.; Alarcon, G.S.; Joks, R.; Steen, V.D.; Bulpitt, K.; O Clegg, D.; Ziminski, C.M.; E Luggen, M.; Clair, E.W.S.; Willkens, R.F.; et al. Early undifferentiated connective tissue disease (CTD). VI. An inception cohort after 10 years: Disease remissions and changes in diagnoses in well established and undifferentiated CTD. J. Rheumatol. 1999, 26, 816–825. [Google Scholar]
- Anaya, J.-M.; Corena, R.; Castiblanco, J.; Rojas-Villarraga, A.; Shoenfeld, Y. The kaleidoscope of autoimmunity: Multiple autoimmune syndromes and familial autoimmunity. Expert Rev. Clin. Immunol. 2007, 3, 623–635. [Google Scholar] [CrossRef]
- Dupond, J.L.; Humbert, P.; Mantion, G.; Gillet, M.; Billerey, C.; Mallet, H. Mixed connective tissue disease with severe esophageal sclerodermic involvement without systemic scleroderma. An unusual form of the overlap syndrome. Rev. Rhum. Mal. Osteo-Articul. 1988, 55, 1015–1017. [Google Scholar]
- Rojas-Villarraga, A.; Amaya-Amaya, J.; Rodriguez-Rodriguez, A.; Mantilla, R.D.; Anaya, J.M. Introducing polyautoimmunity: Secondary autoimmune diseases no longer exist. Autoimmune Dis. 2012, 2012, 254319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Y.; Shi, N.; Li, M.; Chen, F.; Niu, H. Applications of Next-generation Sequencing in Systemic Autoimmune Diseases. Genom. Proteom. Bioinform. 2015, 13, 242–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thapa, D.R.; Tonikian, R.; Sun, C.; Liu, M.; Dearth, A.; Petri, M.; Pepin, F.; Emerson, R.O.; Ranger, A. Longitudinal analysis of peripheral blood T cell receptor diversity in patients with systemic lupus erythematosus by next-generation sequencing. Arthritis Res. Ther. 2015, 17, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Guo, G.; Wang, H.; Ye, L.; Shi, X.; Yan, K.; Lin, K.; Huang, Q.; Li, B.; Lin, Q.; Zhu, L.; et al. Hsa_circ_0000479 as a novel diagnostic biomarker of systemic lupus erythematosus. Front. Immunol. 2019, 10, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Su, Y.J.; Lin, I.C.; Wang, L.; Lu, C.H.; Huang, Y.L.; Kuo, H.C. Next generation sequencing identifies miRNA-based biomarker panel for lupus nephritis. Oncotarget 2018, 9, 27911–27919. [Google Scholar] [CrossRef]
- Huang, Y.H.; Khor, S.S.; Zheng, X.; Chen, H.Y.; Chang, Y.H.; Chu, H.W.; Wu, P.E.; Lin, Y.J.; Liao, S.F.; Shen, C.Y.; et al. A high-resolution HLA imputation system for the Taiwanese population: A study of the Taiwan Biobank. Pharm. J. 2020, 20, 695–704. [Google Scholar] [CrossRef]
- Jaiswal, K.S.; Khanna, S.; Ghosh, A.; Padhan, P.; Raghav, S.K.; Gupta, B. Differential mitochondrial genome in patients with Rheumatoid Arthritis. Autoimmunity 2020, 54, 1–12. [Google Scholar] [CrossRef]
- Dunaeva, M.; Blom, J.; Thurlings, R.; Pruijn, G.J.M. Circulating serum miR-223-3p and miR-16-5p as possible biomarkers of early rheumatoid arthritis. Clin. Exp. Immunol. 2018, 193, 376–385. [Google Scholar] [CrossRef] [Green Version]
- Sakurai, K.; Ishigaki, K.; Shoda, H.; Nagafuchi, Y.; Tsuchida, Y.; Sumitomo, S.; Kanda, H.; Suzuki, A.; Kochi, Y.; Yamamoto, K.; et al. HLA-DRB1 shared epitope alleles and disease activity are correlated with reduced T Cell receptor repertoire diversity in CD4+ T cells in rheumatoid arthritis. J. Rheumatol. 2018, 45, 905–914. [Google Scholar] [CrossRef] [PubMed]
- Ciechomska, M.; Wojtas, B.; Swacha, M.; Olesinska, M.; Benes, V.; Maslinski, W. Global miRNA and mRNA expression profiles identify miRNA-26a-2-3p-dependent repression of IFN signature in systemic sclerosis human monocytes. Eur. J. Immunol. 2020. [Google Scholar] [CrossRef]
- Løvendorf, M.B.; Mitsui, H.; Zibert, J.R.; Røpke, M.A.; Hafner, M.; Dyring-Andersen, B.; Bonefeld, C.M.; Krueger, J.G.; Skov, L. Laser capture microdissection followed by next-generation sequencing identifies disease-related microRNAs in psoriatic skin that reflect systemic microRNA changes in psoriasis. Exp. Dermatol. 2015, 24, 187–193. [Google Scholar] [CrossRef]
- González-Lara, L.; Batalla, A.; Coto, E.; Gómez, J.; Eiris, N.; Santos-Juanes, J.; Queiro, R.; Coto-Segura, P. The TNFRSF1B rs1061622 polymorphism (p.M196R) is associated with biological drug outcome in Psoriasis patients. Arch. Dermatol. Res. 2015. [Google Scholar] [CrossRef]
- Hirata, J.; Hosomichi, K.; Sakaue, S.; Kanai, M.; Nakaoka, H.; Ishigaki, K.; Suzuki, K.; Akiyama, M.; Kishikawa, T.; Ogawa, K.; et al. Genetic and phenotypic landscape of the major histocompatibilty complex region in the Japanese population. Nat. Genet. 2019. [Google Scholar] [CrossRef]
- Lin, S.H.; Ho, J.C.; Li, S.C.; Cheng, Y.W.; Yang, Y.C.; Chen, J.F.; Hsu, C.Y.; Nakano, T.; Wang, F.S.; Yang, M.Y.; et al. Upregulation of mir-941 in circulating cd14+ monocytes enhances osteoclast activation via wnt16 inhibition in patients with psoriatic arthritis. Int. J. Mol. Sci. 2020, 4301. [Google Scholar] [CrossRef] [PubMed]
- Cowan, G.J.M.; Miles, K.; Capitani, L.; Giguere, S.S.B.; Johnsson, H.; Goodyear, C.; McInnes, I.B.; Breusch, S.; Gray, D.; Gray, M. In Human Autoimmunity, a Substantial Component of the B Cell Repertoire Consists of Polyclonal, Barely Mutated IgG+ve B Cells. Front. Immunol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Burillo-Sanz, S.; Montes-Cano, M.A.; García-Lozano, J.R.; Ortiz-Fernández, L.; Ortego-Centeno, N.; García-Hernández, F.J.; Espinosa, G.; Graña-Gil, G.; Sánchez-Bursón, J.; Rosa Juliá, M.; et al. Mutational profile of rare variants in inflammasome-related genes in Behçet disease: A Next Generation Sequencing approach. Sci. Rep. 2017. [Google Scholar] [CrossRef]
- Rusmini, M.; Federici, S.; Caroli, F.; Grossi, A.; Baldi, M.; Obici, L.; Insalaco, A.; Tommasini, A.; Caorsi, R.; Gallo, E.; et al. Next-generation sequencing and its initial applications for molecular diagnosis of systemic auto-inflammatory diseases. Ann. Rheum. Dis. 2015, 75, 1550–1557. [Google Scholar] [CrossRef]
- Mauro, A.; Omoyinmi, E.; Sebire, N.J.; Barnicoat, A.; Brogan, P. De Novo PTEN Mutation in a Young Boy with Cutaneous Vasculitis. Case Rep. Pediatr. 2017. [Google Scholar] [CrossRef] [PubMed]
- Briggs, T.; Rice, G.; Daly, S.; Urquhart, J.; Gornall, H.; Bader-Meunier, B.; Baskar, K.; Baskar, S.; Baudouin, V.; Beresford, M.W.; et al. Tartrate-resistant acid phosphatase deficiency causes a bone dysplasia with autoimmunity and a type I interferon expression signature. Nat. Genet. 2011, 43, 127–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cinque, L.; Angeletti, C.; Orrico, A.; Castellana, S.; Ferrito, L.; Ciuoli, C.; Mazza, T.; Castori, M.; Guarnieri, V. Novel pathogenic variants of the AIRE gene in two autoimmune polyendocrine syndrome type i cases with atypical presentation: Role of the NGS in diagnostic pathway and review of the literature. Biomedicines 2020, 631. [Google Scholar] [CrossRef] [PubMed]
- Omoyinmi, E.; Standing, A.; Keylock, A.; Price-Kuehne, F.; Melo Gomes, S.; Rowczenio, D.; Nanthapisal, S.; Cullup, T.; Nyanhete, R.; Ashton, E.; et al. Clinical impact of a targeted next-generation sequencing gene panel for autoinflammation and vasculitis. PLoS ONE 2017, e0181874. [Google Scholar] [CrossRef] [Green Version]
- Mensa-Vilaro, A.; Tarng Cham, W.; Ping Tang, S.; Chin Lim, S.; González-Roca, E.; Ruiz-Ortiz, E.; Ariffin, R.; Yagüe, J.; Aróstegui, J.I. First Identification of Intrafamilial Recurrence of Blau Syndrome due to Gonosomal NOD2 Mosaicism. Arthritis Rheumatol. 2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellyard, J.I.; Jerjen, R.; Martin, J.L.; Lee, A.Y.S.; Field, M.A.; Jiang, S.H.; Cappello, J.; Naumann, S.K.; Andrews, T.D.; Scott, H.S.; et al. Brief report: Identification of a pathogenic variant in trex1 in early-onset cerebral systemic lupus erythematosus by whole-exome sequencing. Arthritis Rheumatol. 2014. [Google Scholar] [CrossRef] [Green Version]
- Mitsunaga, S.; Hosomichi, K.; Okudaira, Y.; Nakaoka, H.; Kunii, N.; Suzuki, Y.; Kuwana, M.; Sato, S.; Kaneko, Y.; Homma, Y.; et al. Exome sequencing identifies novel rheumatoid arthritis-susceptible variants in the BTNL2. J. Hum. Genet. 2013, 58, 210–215. [Google Scholar] [CrossRef]
- Delgado-Vega, A.M.; Martínez-Bueno, M.; Oparina, N.Y.; López Herráez, D.; Kristjansdottir, H.; Steinsson, K.; Kozyrev, S.V.; Alarcón-Riquelme, M.E. Whole Exome Sequencing of Patients from Multicase Families with Systemic Lupus Erythematosus Identifies Multiple Rare Variants. Sci. Rep. 2018. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Li, Z.; Li, R.; Li, Y. Whole-genome sequencing of a monozygotic twin discordant for systemic lupus erythematosus. Mol. Med. Rep. 2018, 17, 8391–8396. [Google Scholar] [CrossRef] [Green Version]
- Almlöf, J.C.; Nystedt, S.; Leonard, D.; Eloranta, M.L.; Grosso, G.; Sjöwall, C.; Bengtsson, A.A.; Jönsen, A.; Gunnarsson, I.; Svenungsson, E.; et al. Whole-genome sequencing identifies complex contributions to genetic risk by variants in genes causing monogenic systemic lupus erythematosus. Hum. Genet. 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batu, E.D.; Koşukcu, C.; Taşkıran, E.; Sahin, S.; Akman, S.; Sözeri, B.; Ünsal, E.; Bilginer, Y.; Kasapcopur, O.; Alikaşifoğlu, M.; et al. Whole exome sequencing in early-onset systemic lupus erythematosus. J. Rheumatol. 2018. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Li, Y.; Liu, H.; Shi, Y.; Guan, W.; Zhang, T.; Yao, W.; Wu, B.; Xu, H.; Sun, L. Genetic heterogeneity of pediatric systemic lupus erythematosus with lymphoproliferation. Medicine 2020. [Google Scholar] [CrossRef]
- Yatskiu, H.A.; Zlotnikova, M.V.; Sukalo, A.V.; Goncharova, R.I. Characteristic spectra of class I and II HLA-alleles in patients with different clinical forms of juvenile idiopathic arthritis in the Republic of Belarus. Dokl. Natl. Acad. Sci. Belarus 2020. [Google Scholar] [CrossRef]
- Van Steenbergen, H.W.; Raychaudhuri, S.; Rodríguez-Rodríguez, L.; Rantapää-Dahlqvist, S.; Berglin, E.; Toes, R.E.M.; Huizinga, T.W.J.; Fernández-Gutiérrez, B.; Gregersen, P.K.; Van Der Helm-Van Mil, A.H.M. Association of valine and leucine at HLA-DRB1 position 11 with radiographic progression in rheumatoid arthritis, independent of the shared epitope alleles but not independent of anti-citrullinated protein antibodies. Arthritis Rheumatol. 2015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brewerton, D.A.; Hart, F.D.; Nicholls, A.; Caffrey, M.; James, D.C.O.; Sturrock, R.D. ANKYLOSING SPONDYLITIS and HL-A 27. Lancet 1973. [Google Scholar] [CrossRef]
- Hu, X.; Deutsch, A.J.; Lenz, T.L.; Onengut-Gumuscu, S.; Han, B.; Chen, W.M.; Howson, J.M.M.; Todd, J.A.; De Bakker, P.I.W.; Rich, S.S.; et al. Additive and interaction effects at three amino acid positions in HLA-DQ and HLA-DR molecules drive type 1 diabetes risk. Nat. Genet. 2015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wright, H.L.; Thomas, H.B.; Moots, R.J.; Edwards, S.W. Interferon gene expression signature in rheumatoid arthritis neutrophils correlates with a good response to TNFi therapy. Rheumatology 2014. [Google Scholar] [CrossRef] [Green Version]
- Farutin, V.; Prod’homme, T.; McConnell, K.; Washburn, N.; Halvey, P.; Etzel, C.J.; Guess, J.; Duffner, J.; Getchell, K.; Meccariello, R.; et al. Molecular profiling of rheumatoid arthritis patients reveals an association between innate and adaptive cell populations and response to anti-tumor necrosis factor. Arthritis Res. Ther. 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swindell, W.R.; Sarkar, M.K.; Liang, Y.; Xing, X.; Gudjonsson, J.E. Cross-Disease Transcriptomics: Unique IL-17A Signaling in Psoriasis Lesions and an Autoimmune PBMC Signature. J. Investig. Dermatol. 2016. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Patro, P.S.; Aggarwal, A. MicroRNA-132, miR-146a, and miR-155 as potential biomarkers of methotrexate response in patients with rheumatoid arthritis. Clin. Rheumatol. 2019, 38, 877–884. [Google Scholar] [CrossRef]
- Chen, J.-Q.; Papp, G.; Póliska, S.; Szabó, K.; Tarr, T.; Bálint, B.L.; Szodoray, P.; Zeher, M. MicroRNA expression profiles identify disease-specific alterations in systemic lupus erythematosus and primary Sjögren’s syndrome. PLoS ONE 2017, 12, e0174585. [Google Scholar] [CrossRef] [PubMed]
- Boegel, S.; Castle, J.C.; Schwarting, A. Current status of use of high throughput nucleotide sequencing in rheumatology. RMD Open 2021, 7. [Google Scholar] [CrossRef]
- Ku, C.-S.; Wu, M.; Cooper, D.N.; Naidoo, N.; Pawitan, Y.; Pang, B.; Iacopetta, B.; Soong, R. Exome versus transcriptome sequencing in identifying coding region variants. Expert Rev. Mol. Diagn. 2012, 12, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Vaz-Drago, R.; Custódio, N.; Carmo-Fonseca, M. Deep intronic mutations and human disease. Qual. Life Res. 2017, 136, 1093–1111. [Google Scholar] [CrossRef] [PubMed]
- Miyatake, S.; Koshimizu, E.; Fujita, A.; Fukai, R.; Imagawa, E.; Ohba, C.; Kuki, I.; Nukui, M.; Araki, A.; Makita, Y.; et al. Detecting copy-number variations in whole-exome sequencing data using the eXome Hidden Markov Model: An ‘exome-first’ approach. J. Hum. Genet. 2015, 60, 175–182. [Google Scholar] [CrossRef]
- Tan, R.; Wang, Y.; Kleinstein, S.E.; Liu, Y.; Zhu, X.; Guo, H.; Jiang, Q.; Allen, A.; Zhu, M. An Evaluation of Copy Number Variation Detection Tools from Whole-Exome Sequencing Data. Hum. Mutat. 2014, 35, 899–907. [Google Scholar] [CrossRef]
- Petersen, B.-S.; Fredrich, B.; Hoeppner, M.P.; Ellinghaus, D.; Franke, A. Opportunities and challenges of whole-genome and -exome sequencing. BMC Genet. 2017, 18, 14. [Google Scholar] [CrossRef] [Green Version]
- Harel, T.; Lupski, J.R. Genomic disorders 20 years on-mechanisms for clinical manifestations. Clin Genet. 2018, 93, 439–449. [Google Scholar] [CrossRef]
- Kocher, M.; Siegel, M.E.; Edberg, J.C.; Kimberly, R.P. Cross-linking of Fc gamma receptor IIa and Fc gamma receptor IIIb induces different proadhesive phenotypes on human neutrophils. J. Immunol. 1997, 159, 3940–3948. [Google Scholar]
- Hollox, E.J.; Huffmeier, U.; Zeeuwen, P.L.; Palla, R.; Lascorz, J.; Rodijk-Olthuis, D.; Van De Kerkhof, P.C.; Traupe, H.; De Jongh, G.; Den Heijer, M.; et al. Psoriasis is associated with increased beta-defensin genomic copy number. Nat Genet. 2008, 40, 23–25.1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wehkamp, J.; Harder, J.; Weichenthal, M.; Mueller, O.; Herrlinger, K.R.; Fellermann, K.; Stange, E.F. Inducible and constitutive beta-defensins are differentially expressed in Crohn’s disease and ulcerative colitis. Inflamm. Bowel Dis. 2003, 9, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Brodszki, N.; Frazer-Abel, A.; Grumach, A.S.; Kirschfink, M.; Litzman, J.; Perez, E.; Seppänen, M.R.J.; Sullivan, K.E.; Jolles, S. European Society for Immunodeficiencies (ESID) and European Reference Network on Rare Primary Immunodeficiency, Autoinflammatory and Autoimmune Diseases (ERN RITA) Complement Guideline: Deficiencies, Diagnosis, and Management. J. Clin. Immunol. 2020, 40, 576–591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raychaudhuri, S.; Sandor, C.; A Stahl, E.; Freudenberg, J.; Lee, H.-S.; Jia, X.; Alfredsson, L.; Padyukov, L.; Klareskog, L.; Worthington, J.; et al. Five amino acids in three HLA proteins explain most of the association between MHC and seropositive rheumatoid arthritis. Nat. Genet. 2012, 44, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, K.; Hirai, M.; Kurosawa, Y. A gene outside the human MHC related to classical HLA class I genes. Science 1995, 269, 693–695. [Google Scholar] [CrossRef]
- Hake, S.B.; Tobin, H.M.; Steimle, V.; Denzin, L.K. Comparison of the transcriptional regulation of classical and non-classical MHC class II genes. Eur. J. Immunol. 2003, 33, 2361–2371. [Google Scholar] [CrossRef] [PubMed]
- Lawlor, D.A.; Zemmour, J.; Ennis, P.D.; Parham, P. Evolution of class-I MHC genes and proteins: From natural selection to thymic selection. Annu. Rev Immunol. 1990, 8, 23–63. [Google Scholar] [CrossRef]
- Edgerly, C.H.; Weimer, E.T. The past, present, and future of HLA typing in transplantation. In Methods in Molecular Biology; Humana Press: New York, NY, USA, 2018; ISBN 9781493985456. [Google Scholar]
- Huang, Y.; Dinh, A.; Heron, S.; Gasiewski, A.; Kneib, C.; Mehler, H.; Mignogno, M.T.; Morlen, R.; Slavich, L.; Kentzel, E.; et al. Assessing the utilization of high-resolution 2-field HLA typing in solid organ transplantation. Am. J. Transplant. 2019. [Google Scholar] [CrossRef] [PubMed]
- Bowness, P. HLA B27 in health and disease: A double-edged sword? Rheumatology 2002, 41, 857–868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, R.L.; Bowness, P.; McMichael, A.J. The role of HLA-B27 in spondyloarthritis. Immunogenetics 1999, 50, 220–227. [Google Scholar] [CrossRef]
- Faham, M.; Carlton, V.; Moorhead, M.; Zheng, J.; Klinger, M.; Pepin, F.; Asbury, T.; Vignali, M.; Emerson, R.O.; Robins, H.S.; et al. Discovery of T Cell Receptor β Motifs Specific to HLA–B27–Positive Ankylosing Spondylitis by Deep Repertoire Sequence Analysis. Arthritis Rheumatol. 2017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, P.; Bach, M.; Asquith, M.; Lee, A.Y.; Akileswaran, L.; Stauffer, P.; Davin, S.; Pan, Y.; Cambronne, E.D.; Dorris, M.; et al. HLA-B27 and human β2-microglobulin affect the gut microbiota of transgenic rats. PLoS ONE 2014, e105684. [Google Scholar] [CrossRef] [PubMed]
- Mielants, H.; Veys, E.M.; Goemaere, S.; Goethals, K.; Cuvelier, C.; De Vos, M. Gut inflammation in the spondyloarthropathies: Clinical, radiologic, biologic and genetic features in relation to the type of histology. A prospective study. J. Rheumatol. 1991, 18, 1542–1551. [Google Scholar] [PubMed]
- Profaizer, T.; Pole, A.; Monds, C.; Delgado, J.C.; Lázár-Molnár, E. Clinical utility of next generation sequencing based HLA typing for disease association and pharmacogenetic testing. Hum. Immunol. 2020. [Google Scholar] [CrossRef]
- Profaizer, T.; Lázár-Molnár, E.; Close, D.W.; Delgado, J.C.; Kumánovics, A. HLA genotyping in the clinical laboratory: Comparison of next-generation sequencing methods. HLA 2016. [Google Scholar] [CrossRef]
- Lee, T.I.; Young, R.A. Transcriptional regulation and its misregulation in disease. Cell 2013, 152, 1237–1251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heruth, D.P.; Gibson, M.; Grigoryev, D.N.; Zhang, L.Q.; Ye, S.Q. RNA-seq analysis of synovial fibroblasts brings new insights into rheumatoid arthritis. Cell Biosci. 2012, 2, 1. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Xia, S.; Fu, B. RNA-seq analysis of synovial fibroblasts in human rheumatoid arthritis. Mol. Med. Rep. 2014. [Google Scholar] [CrossRef]
- Mittal, A.; Pachter, L.; Nelson, J.L.; Kjærgaard, H.; Smed, M.K.; Gildengorin, V.L.; Zoffmann, V.; Hetland, M.L.; Jewell, N.P. Pregnancy-Induced Changes in Systemic Gene Expression among Healthy Women and Women with Rheumatoid Arthritis. PLoS ONE 2015, e0145204. [Google Scholar] [CrossRef]
- Arazi, A.; Rao, D.A.; Berthier, C.C.; Davidson, A.; Liu, Y.; Hoover, P.J.; Chicoine, A.; Eisenhaure, T.M.; Jonsson, A.H.; Li, S.; et al. The immune cell landscape in kidneys of patients with lupus nephritis. Nat. Immunol. 2019. [Google Scholar] [CrossRef] [PubMed]
- Richardson, B.C.; Patel, D.R. Epigenetics in 2013: DNA methylation and miRNA—key roles in systemic autoimmunity. Nat. Rev. Rheumatol. 2014. [Google Scholar] [CrossRef] [PubMed]
- Alles, J.; Fehlmann, T.; Fischer, U.; Backes, C.; Galata, V.; Minet, M.; Hart, M.; Abu-Halima, M.; Grässer, F.A.; Lenhof, H.P.; et al. An estimate of the total number of true human miRNAs. Nucleic Acids Res. 2019, 47, 3353–3364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Connell, R.M.; Rao, D.S.; Chaudhuri, A.A.; Baltimore, D. Physiological and pathological roles for microRNAs in the immune system. Nat. Rev. Immunol. 2010, 10, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Tiberio, P.; Callari, M.; Angeloni, V.; Daidone, M.G.; Appierto, V. Challenges in using circulating miRNAs as cancer biomarkers. Biomed Res. Int. 2015, 2015, 1–10. [Google Scholar] [CrossRef]
- Madadi, S.; Schwarzenbach, H.; Lorenzen, J.; Soleimani, M. MicroRNA expression studies: Challenge of selecting reliable reference controls for data normalization. Cell. Mol. Life Sci. 2019, 76, 3497–3514. [Google Scholar] [CrossRef]
- Stypinska, B.; Wajda, A.; Walczuk, E.; Olesinska, M.; Lewandowska, A.; Walczyk, M.; Paradowska-Gorycka, A. The Serum Cell-Free microRNA Expression Profile in MCTD, SLE, SSc, and RA Patients. J. Clin. Med. 2020, 9, 161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taha, M.; Shaker, O.G.; Abdelsalam, E.; Taha, N. Serum a proliferation-inducing ligand and MicroRNA-223 are associated with rheumatoid arthritis: Diagnostic and prognostic implications. Mol. Med. 2020. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Ni, S.; Li, C.; Xu, N.; Chen, W.; Wu, M.; van Wijnen, A.J.; Wang, Y. Circulating microRNA-23b as a new biomarker for rheumatoid arthritis. Gene 2019. [Google Scholar] [CrossRef]
- Liu, Y.; Han, Y.; Qu, H.; Fang, J.; Ye, M.; Yin, W. Correlation of microRNA expression profile with clinical response to tumor necrosis factor inhibitor in treating rheumatoid arthritis patients: A prospective cohort study. J. Clin. Lab. Anal. 2019. [Google Scholar] [CrossRef] [Green Version]
- Hruskova, V.; Jandova, R.; Vernerova, L.; Mann, H.; Pecha, O.; Prajzlerova, K.; Pavelka, K.; Vencovsky, J.; Filkova, M.; Senolt, L. MicroRNA-125b: Association with disease activity and the treatment response of patients with early rheumatoid arthritis. Arthritis Res. Ther. 2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castro-Villegas, C.; Pérez-Sánchez, C.; Escudero, A.; Filipescu, I.; Verdu, M.; Ruiz-Limón, P.; Aguirre, M.A.; Jiménez-Gomez, Y.; Font, P.; Rodriguez-Ariza, A.; et al. Circulating miRNAs as potential biomarkers of therapy effectiveness in rheumatoid arthritis patients treated with anti-TNFα. Arthritis Res. Ther. 2015. [Google Scholar] [CrossRef] [Green Version]
- Duroux-Richard, I.; Pers, Y.M.; Fabre, S.; Ammari, M.; Baeten, D.; Cartron, G.; Touitou, I.; Jorgensen, C.; Apparailly, F. Circulating miRNA-125b is a potential biomarker predicting response to rituximab in rheumatoid arthritis. Mediat. Inflamm. 2014. [Google Scholar] [CrossRef]
- Kondo, T.; Kawai, T.; Akira, S. Dissecting negative regulation of Toll-like receptor signaling. Trends Immunol. 2012, 33, 449–458. [Google Scholar] [CrossRef] [PubMed]
- Dembic, Z. The Cytokines of the Immune System: The Role of Cytokines in Disease Related to Immune Response; Elsevier Inc., Academic Press: Berkeley, CA, USA, 2015; ISBN 9780124199989. [Google Scholar]
- Gutiérrez-Vázquez, C.; Quintana, F.J. Regulation of the Immune Response by the Aryl Hydrocarbon Receptor. Immunity 2018, 48, 19–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kato, M.; Putta, S.; Wang, M.; Yuan, H.; Lanting, L.; Nair, I.; Gunn, A.; Nakagawa, Y.; Shimano, H.; Todorov, I.; et al. TGF-β activates Akt kinase through a microRNA-dependent amplifying circuit targeting PTEN. Nat. Cell Biol. 2009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandit, K.V.; Corcoran, D.; Yousef, H.; Yarlagadda, M.; Tzouvelekis, A.; Gibson, K.F.; Konishi, K.; Yousem, S.A.; Singh, M.; Handley, D.; et al. Inhibition and role of let-7d in idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 2010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Q.; Zhang, Y.; Yang, G.; Chen, X.; Zhang, Y.; Cao, G.; Wang, J.; Sun, Y.; Zhang, P.; Fan, M.; et al. Transforming growth factor-β-regulated miR-24 promotes skeletal muscle differentiation. Nucleic Acids Res. 2008. [Google Scholar] [CrossRef]
- Qin, W.; Chung, A.C.K.; Huang, X.R.; Meng, X.M.; Hui, D.S.C.; Yu, C.M.; Sung, J.J.Y.; Lan, H.Y. TGF-β/Smad3 signaling promotes renal fibrosis by inhibiting miR-29. J. Am. Soc. Nephrol. 2011, 22, 1462–1474. [Google Scholar] [CrossRef]
- Davis, B.N.; Hilyard, A.C.; Lagna, G.; Hata, A. SMAD proteins control DROSHA-mediated microRNA maturation. Nature 2008. [Google Scholar] [CrossRef] [Green Version]
- de la Rica, L.; Urquiza, J.M.; Gómez-Cabrero, D.; Islam, A.B.M.M.K.; López-Bigas, N.; Tegnér, J.; Toes, R.E.M.; Ballestar, E. Identification of novel markers in rheumatoid arthritis through integrated analysis of DNA methylation and microRNA expression. J. Autoimmun. 2013, 41, 6–16. [Google Scholar] [CrossRef]
- Testa, U.; Pelosi, E.; Castelli, G.; Labbaye, C. miR-146 and miR-155: Two key modulators of immune response and tumor development. Non-Coding RNA 2017, 3, 22. [Google Scholar] [CrossRef]
- Hermann, H.; Runnel, T.; Aab, A.; Baurecht, H.; Rodriguez, E.; Magilnick, N.; Urgard, E.; Šahmatova, L.; Prans, E.; Maslovskaja, J.; et al. miR-146b Probably Assists miRNA-146a in the Suppression of Keratinocyte Proliferation and Inflammatory Responses in Psoriasis. J. Investig. Dermatol. 2017. [Google Scholar] [CrossRef] [Green Version]
- Saferding, V.; Puchner, A.; Goncalves-Alves, E.; Hofmann, M.; Bonelli, M.; Brunner, J.S.; Sahin, E.; Niederreiter, B.; Hayer, S.; Kiener, H.P.; et al. MicroRNA-146a governs fibroblast activation and joint pathology in arthritis. J. Autoimmun. 2017. [Google Scholar] [CrossRef] [PubMed]
- Rousseau, J.C.; Millet, M.; Croset, M.; Sornay-Rendu, E.; Borel, O.; Chapurlat, R. Association of circulating microRNAs with prevalent and incident knee osteoarthritis in women: The OFELY study. Arthritis Res. Ther. 2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wajda, A.; Łapczuk-Romańska, J.; Paradowska-Gorycka, A. Epigenetic regulations of ahr in the aspect of immunomodulation. Int. J. Mol. Sci. 2020, 21, 6404. [Google Scholar] [CrossRef]
- Bailey, C.F. The treatment of chronic rheumatic and rheumatoid arthritis by radiant heat and cataphoresis. Br. Med. J. 1909, 1, 13–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spisani, S.; Dovigo, L.; Corazza, G.; Carletti, R.; Traniello, S. The effect of rifamycin sv on neutrophil functions in patients with rheumatoid arthritis. Scand. J. Rheumatol. 1982. [Google Scholar] [CrossRef] [PubMed]
- Harris, E.D.; Sjoerdsma, A. Effect of penicillamine on human collagen and its possible application to treatment of scleroderma. Lancet 1966. [Google Scholar] [CrossRef]
- Neumann, V.C.; Grindulis, K.A.; Hubball, S.; McConkey, B.; Wright, V. Comparison between penicillamine and sulphasalazine in rheumatoid arthritis: Leeds-Birmingham trial. Br. Med. J. 1983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faria, C.; Zakout, R.; Araújo, M. Helicobacter pylori and autoimmune diseases. Biomed. Pharmacother. 2013, 67, 347–349. [Google Scholar] [CrossRef] [PubMed]
- Hernando-Harder, A.C.; Booken, N.; Goerdt, S.; Singer, M.V.; Harder, H. Helicobacter pylori infection and dermatologic diseases. Eur. J. Dermatol. 2009, 19, 431–444. [Google Scholar] [CrossRef]
- Kale-Pradhan, P.B.; Zhao, J.J.; Palmer, J.R.; Wilhelm, S.M. The role of antimicrobials in Crohn’s disease. Expert Rev. Gastroenterol. Hepatol. 2013, 7, 281–288. [Google Scholar] [CrossRef]
- Scribano, M.L.; Prantera, C. Use of antibiotics in the treatment of Crohn’s disease. World J. Gastroenterol. 2013. [Google Scholar] [CrossRef]
- Shoenfeld, Y.; Blank, M.; Cervera, R.; Font, J.; Raschi, E.; Meroni, P.L. Infectious origin of the antiphospholipid syndrome. Ann. Rheum. Dis. 2006, 65, 2–6. [Google Scholar] [CrossRef] [PubMed]
- Eckburg, P.B.; Bik, E.M.; Bernstein, C.N.; Purdom, E.; Dethlefsen, L.; Sargent, M.; Gill, S.R.; Nelson, K.E.; Relman, D.A. Microbiology: Diversity of the human intestinal microbial flora. Science 2005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- NIH Human Microbiome Project—Home. Available online: https://hmpdacc.org/ (accessed on 5 March 2021).
- Pace, N.R. A molecular view of microbial diversity and the biosphere. Science 1997. [Google Scholar] [CrossRef]
- Thomas, T.; Gilbert, J.; Meyer, F. Metagenomics—A guide from sampling to data analysis. Microb. Inform. Exp. 2012. [Google Scholar] [CrossRef] [Green Version]
- Berg, G.; Rybakova, D.; Fischer, D.; Cernava, T.; Vergès, M.C.C.; Charles, T.; Chen, X.; Cocolin, L.; Eversole, K.; Corral, G.H.; et al. Microbiome definition re-visited: Old concepts and new challenges. Microbiome 2020, 8, 1–22. [Google Scholar] [CrossRef]
- Kochhar, S.; Martin, F. Metabonomics and Gut Microbiota in Nutrition and Disease; Springer: London, UK, 2015; ISBN 978-1-4471-6538-5. [Google Scholar]
- Ragab, G.; Atkinson, T.P.; Stoll, M.L. The Microbiome in Rheumatic Diseases and Infection; Springer: Cham, Switzerland, 2018; ISBN 9783319790268. [Google Scholar]
- Belkaid, Y.; Hand, T.W. Role of the microbiota in immunity and inflammation. Cell 2014, 157, 121–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, I.; Ruff, W.E.; Longbrake, E.E. Influence of immunomodulatory drugs on the gut microbiota. Transl. Res. 2021. [Google Scholar] [CrossRef] [PubMed]
- Glaister, J.R. Factors affecting the lymphoid cells in the small intestinal epithelium of the mouse. Int. Arch. Allergy Appl. Immunol. 1973. [Google Scholar] [CrossRef]
- Smith, K.; McCoy, K.D.; Macpherson, A.J. Use of axenic animals in studying the adaptation of mammals to their commensal intestinal microbiota. Semin. Immunol. 2007, 19, 59–69. [Google Scholar] [CrossRef]
- Hamada, H.; Hiroi, T.; Nishiyama, Y.; Takahashi, H.; Masunaga, Y.; Hachimura, S.; Kaminogawa, S.; Takahashi-Iwanaga, H.; Iwanaga, T.; Kiyono, H.; et al. Identification of Multiple Isolated Lymphoid Follicles on the Antimesenteric Wall of the Mouse Small Intestine. J. Immunol. 2002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atarashi, K.; Tanoue, T.; Shima, T.; Imaoka, A.; Kuwahara, T.; Momose, Y.; Cheng, G.; Yamasaki, S.; Saito, T.; Ohba, Y.; et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 2011. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, I.I.; Frutos, R.; De, L.; Manel, N.; Yoshinaga, K.; Rifkin, D.B.; Sartor, R.B.; Finlay, B.B.; Littman, D.R. Specific Microbiota Direct the Differentiation of IL-17-Producing T-Helper Cells in the Mucosa of the Small Intestine. Cell Host Microbe 2008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazmanian, S.K.; Cui, H.L.; Tzianabos, A.O.; Kasper, D.L. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 2005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maynard, C.L.; Weaver, C.T. Diversity in the contribution of interleukin-10 to T-cell-mediated immune regulation. Immunol. Rev. 2008, 226, 219–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biagioli, M.; Carino, A.; Di Giorgio, C.; Marchianò, S.; Bordoni, M.; Roselli, R.; Distrutti, E.; Fiorucci, S. Discovery of a novel multi-strains probiotic formulation with improved efficacy toward intestinal inflammation. Nutrients 2020, 1945. [Google Scholar] [CrossRef]
- Hooper, L.V.; Wong, M.H.; Thelin, A.; Hansson, L.; Falk, P.G.; Gordon, J.I. Molecular analysis of commensal host-microbial relationships in the intestine. Science 2001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bäckhed, F.; Ding, H.; Wang, T.; Hooper, L.V.; Gou, Y.K.; Nagy, A.; Semenkovich, C.F.; Gordon, J.I. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. USA 2004. [Google Scholar] [CrossRef] [Green Version]
- Russler-Germain, E.V.; Rengarajan, S.; Hsieh, C.S. Antigen-specific regulatory T-cell responses to intestinal microbiota. Mucosal Immunol. 2017, 10, 1375–1386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, L. AHR Function in Lymphocytes: Emerging Concepts. Trends Immunol. 2016, 37, 17–31. [Google Scholar] [CrossRef] [Green Version]
- Esser, C.; Rannug, A. The Aryl Hydrocarbon Receptor in Barrier Organ Physiology, Immunology, and Toxicology. Pharmacol. Rev. 2015, 67, 259–279. [Google Scholar] [CrossRef] [Green Version]
- Villa, M.; Gialitakis, M.; Tolaini, M.; Ahlfors, H.; Henderson, C.J.; Wolf, C.R.; Brink, R.; Stockinger, B. Aryl hydrocarbon receptor is required for optimal B-cell proliferation. EMBO J. 2017. [Google Scholar] [CrossRef]
- Trikha, P.; Lee, D.A. The role of AhR in transcriptional regulation of immune cell development and function. Biochim. Biophys. Acta. Rev. Cancer 2020, 1873, 188335. [Google Scholar] [CrossRef]
- Goettel, J.A.; Gandhi, R.; Kenison, J.E.; Yeste, A.; Murugaiyan, G.; Sambanthamoorthy, S.; Griffith, A.E.; Patel, B.; Shouval, D.S.; Weiner, H.L.; et al. AHR Activation Is Protective against Colitis Driven by T Cells in Humanized Mice. Cell Rep. 2016. [Google Scholar] [CrossRef] [Green Version]
- Monteleone, I.; Rizzo, A.; Sarra, M.; Sica, G.; Sileri, P.; Biancone, L.; MacDonald, T.T.; Pallone, F.; Monteleone, G. Aryl hydrocarbon receptor-induced signals up-regulate IL-22 production and inhibit inflammation in the gastrointestinal tract. Gastroenterology 2011. [Google Scholar] [CrossRef]
- Fukumoto, S.; Toshimitsu, T.; Matsuoka, S.; Maruyama, A.; Oh-Oka, K.; Takamura, T.; Nakamura, Y.; Ishimaru, K.; Fujii-Kuriyama, Y.; Ikegami, S.; et al. Identification of a probiotic bacteria-derived activator of the aryl hydrocarbon receptor that inhibits colitis. Immunol. Cell Biol. 2014. [Google Scholar] [CrossRef]
- Yu, J.; Luo, Y.; Zhu, Z.; Zhou, Y.; Sun, L.; Gao, J.; Sun, J.; Wang, G.; Yao, X.; Li, W. A tryptophan metabolite of the skin microbiota attenuates inflammation in patients with atopic dermatitis through the aryl hydrocarbon receptor. J. Allergy Clin. Immunol. 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smits, J.P.H.; Ederveen, T.H.A.; Rikken, G.; van den Brink, N.J.M.; van Vlijmen-Willems, I.M.J.J.; Boekhorst, J.; Kamsteeg, M.; Schalkwijk, J.; van Hijum, S.A.F.T.; Zeeuwen, P.L.J.M.; et al. Targeting the Cutaneous Microbiota in Atopic Dermatitis by Coal Tar via AHR-Dependent Induction of Antimicrobial Peptides. J. Investig. Dermatol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Uberoi, A.; Bartow-McKenney, C.; Zheng, Q.; Flowers, L.; Campbell, A.; Knight, S.A.B.; Chan, N.; Wei, M.; Lovins, V.; Bugayev, J.; et al. Commensal microbiota regulates skin barrier function and repair via signaling through the aryl hydrocarbon receptor. Cell Host Microbe 2021, S1931-3128(21)00239-0. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, X.; Zhang, J.; Luo, Y.; Xu, B.; Ling, S.; Zhang, Y.; Li, W.; Yao, X. Activation of aryl hydrocarbon receptor in Langerhans cells by a microbial metabolite of tryptophan negatively regulates skin inflammation. J. Dermatol. Sci. 2020. [Google Scholar] [CrossRef]
- Woese, C.R.; Fox, G.E. Phylogenetic structure of the prokaryotic domain: The primary kingdoms. Proc. Natl. Acad. Sci. USA 1977. [Google Scholar] [CrossRef] [Green Version]
- Sanschagrin, S.; Yergeau, E. Next-generation sequencing of 16S ribosomal RNA gene amplicons. J. Vis. Exp. 2014, 90, 51709. [Google Scholar] [CrossRef] [Green Version]
- Kong, H.H.; Andersson, B.; Clavel, T.; Common, J.E.; Jackson, S.A.; Olson, N.D.; Segre, J.A.; Traidl-Hoffmann, C. Performing Skin Microbiome Research: A Method to the Madness. J. Investig. Dermatol. 2017, 137, 561–568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
CTD | Description/Notes | Reference |
---|---|---|
SLE | The repertoire of T-cells in clonal expansion of T cells may be efficiently measured by emerging of Β-loci of the T-cell receptor (TCR): peripheral blood (PB) in SLE patients revealed decreased and more uneven distributed repertoire of diversity in comparison to healthy controls (HC) | [36] |
SLE | Significant upregulation (high diagnostic potential) of hsa_circ_0000479 was observed in PBMCs of SLE patients compared to HC in comprehensive expression analysis of circRNAs; effect of hsa_circ_0000479 affects SLE progression by modulation of the Wnt signaling and metabolic pathways | [37] |
SLE | MicroRNA screening for early detection of lupus nephritis in SLE patients: statistically significant mir-125a-5p, miR-146a-5p and mir-221-3p. 146a-5p significantly correlated with markers of clinical biochemistry and proved to be one of the biomarkers for early detecting of lupus nephritis. | [38] |
RA | Whole-genome SNP array and NGS analysis revealed strong association of HLA loci DRB1*03:01, DRB1*04:05, DQA1*03:03, and DQB1*04:01 in Taiwanese population with RA | [39] |
RA | Changes in mitochondrial genome may be one of the factors leading to the RA progression; mitochondrial variants 12,308 A > G (gene tRNALeu(CUN)) and 15,924 A > G (gene tRNAThr) were found to be pathogenic. | [40] |
RA | Serum level of miR-16-5p and miR-223-3p was significantly reduced in early RA patients compared to patients with established RA and HC; patients with established RA revealed upregulated miR-16-5p level in comparison to/with HC. | [41] |
RA | Shared epitope (SE) alleles were studied as the most significant genetic predisposition locus in RA: SE allele-positive patients with RA showed reduced diversity of the T cell receptor (TCR) repertoire in memory CD4+ T cells compared to HC. RA activity and SE alleles negatively correlated with the diversity of TCR repertoire. Compensation of altered TCR repertoire diversity in RA may serve as a potential therapeutic target. | [42] |
SSc | miRNA-26a-2-3 may be involved in pathogenic IFN signature in SSc monocytes | [43] |
PsA | NGS was used to perform analysis of global microRNA expression in dermal and epidermal compartments: the epidermis and in the dermal inflammatory infiltrates of psoriatic skin deregulated compared with normal psoriatic skin and pool of deregulated miRNA was identified including miR-193b and miR-223 (described also as deregulated in PBMCs in patients with psoriasis). | [44] |
PsA | The variant rs1061622 G (p.M196R) in TNFRSF1B was identified as strongly associated with the risk of psoriasis and the response to anti-TNF or anti-Il-12/Il-23 treatment. HLA-CW6-positive patients were more frequent carriers of rs1061622 G. Variant rs1061622 G was significantly more common in the non-responder group | [45] |
Graves’ disease, RA, T1D | NGS-based typing of high-resolution HLA gene polymorphisms in Japanese population revealed significant nonadditive effects of HLA-DPB1*05:01 and HLA-DPB1*02:02 alleles on the risk of Graves’ disease; HLA-DQβ1 at rs9273367 in LD with HLA-DQβ1 Ile185 (r2 = 0.81) with type 1 diabetes, RA significantly associated with HLA-DRB1, HLA-DQA1 | [46] |
PsA | MiRNA expression pattern in CD14 + monocytes was investigated in PsA patients. MiR-941 was shown to enhance osteoclastogenesis in PsA through repression of WNT16. The miR-941 is considered as a possible biomarker and target for the PsA treatment since its expression level in CD14+ monocytes is correlated with disorder activity. | [47] |
RA, SjS | A repertoire of expressed BCRs was analyzed in RA and Sjögren’s syndrome cohorts, focusing on the main antigen-binding IgG variable heavy (IgGHV) region. Both cohorts expressed significantly more IgG+ve BCR sequences with fewer than five mutations referred as hypomutated (or IgGhypoM). The prevalence of IgGhypoM expressing B cells may play a crucial role in driving chronic inflammation in systemic autoimmunity. | [48] |
BD | NOD2 seems to be the main contributor in the pathogenesis of Behcet’s disease. | [49] |
NGS Applications in Clinical Use | References | |
---|---|---|
Panels, whole-genome and -exome sequencing in diagnostic | ||
1. | Example of genes evaluated as important in AID by Rusmini | [50] |
2. | PTEN mutation and example of genes evaluated as important in vasculitis, inflammation by Mauro | [51] |
3. | ACP5 mutation associated with SLE, Sjogren Syndrome, inflammatory myositits | [52] |
4. | AIRE in Autoimmune Polyendocrine syndrome Type I | [53] |
5. | NLRP3 in Cryopyrin-associated periodic syndrome (CAPS) | [54] |
6. | NOD2 mosaicism in Blau Syndrome | [55] |
7. | homozygous mutation in TREX1 (R97H) in SLE | [56] |
8 | BTNL2 variant associated with RA | [57] |
9. | CLC (rs146776010),FBXL14 (rs117331652), DCLRE1C (rs772438042) or NOTCH1 (rs758642073) may have direct impact on immunology system and possible development of autoimmune disorders. | [58] |
10. | Copy number loses in HIST2H2AA3), HIST2H2AA4, HIST2H3A, HIST2H3C, HIST2H4A and HIST2H4B in SLE | [59] |
11. | mutations in C1S, DNASE1L3, DNASE1, IFIH1, and RNASEH2A, C1QC in SLE | [60] |
12 | DNASE1L3 and HDAC7 in SLE | [61] |
13 | NRAS and PI3CKD gene with TNFAIP3 should be considered as candidates gene for testing in children with SLE with lymphoproliferation, particularly for male patients with renal and hematologic involvement and recurrent fevers | [62] |
Human leukocyte antigens as a diagnostic tool | ||
1. | DQB1*04:02:01 and DR8-haplotype frequencies significantly higher in patients with oligoarthritis but not systemic juvenile idiopathic arthritis; protective effect against systemic and oliarticular JIA of DQA1*05:01:01 and DQB1*02:01:01 | [63] |
2. | Asp at HLA-B position 9 and Phe at HLA-DPB1 position 9- predisposition to RA development; Val and Leu at HLA-DRB1 position 11 association with a risk of a higher rate of radiographic progression and predisposition to RA development | [64] |
3. | HLA-B27 association with ankylosis spondylitis | [65] |
4. | HLA-DQß1 in position 57, 13 and 71—higher risk of Type 1 Diabetis | [66] |
RNA-seq | ||
1. | RNA-seq for the prediction of medical treatment | [67,68,69] |
micro-RNA | ||
1. | miR-223-3p and miR-16-5p biomarkers of RA | [41] |
2. | miR-146a-5p associated with carnitine level in lupus nephritis and may be a potential diagnostic biomarker of lupus nephritis among lupus patients | [38] |
3. | Higher levels of miR-146a-5p, miR-155-5p and miR-132-3p might be useful marker of the methotrexate treatment response. | [70] |
4. | miR-941 is associated with PsA activity | [47] |
5. | Overexpression of miR-146a, miR-16 and miR-21 in primary Sjogren Syndrome and SLE patients | [71] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wajda, A.; Sivitskaya, L.; Paradowska-Gorycka, A. Application of NGS Technology in Understanding the Pathology of Autoimmune Diseases. J. Clin. Med. 2021, 10, 3334. https://doi.org/10.3390/jcm10153334
Wajda A, Sivitskaya L, Paradowska-Gorycka A. Application of NGS Technology in Understanding the Pathology of Autoimmune Diseases. Journal of Clinical Medicine. 2021; 10(15):3334. https://doi.org/10.3390/jcm10153334
Chicago/Turabian StyleWajda, Anna, Larysa Sivitskaya, and Agnieszka Paradowska-Gorycka. 2021. "Application of NGS Technology in Understanding the Pathology of Autoimmune Diseases" Journal of Clinical Medicine 10, no. 15: 3334. https://doi.org/10.3390/jcm10153334