The Risk of Developing Osteoporosis in Hemolytic Anemia—What Aggravates the Bone Loss?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Study Population
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bougioukli, S.; Kollia, P.; Koromila, T.; Varitimidis, S.; Hantes, M.; Karachalios, T.; Dailiana, Z.H. Failure in diagnosis and under-treatment of osteoporosis in elderly patients with fragility fractures. J. Bone Miner. Metab. 2018, 37, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Rojas, L.G.P.; Hernández, S.Q.; Ávila, J.M.J.; Cervantes, R.E.L.; Enghelmayer, R.A.; Pesciallo, C.; Garabano, G.; Mackechnie, M.C.; Quintero, J.E.; Kojima, K.E. Hip fracture care-Latin America. OTA Int. 2020, 3, e064. [Google Scholar] [CrossRef]
- Mu, P.; Hu, Y.; Ma, X.; Shi, J.; Zhong, Z.; Huang, L. Total flavonoids of Rhizoma Drynariae combined with calcium attenuate osteoporosis by reducing reactive oxygen species generation. Exp. Ther. Med. 2021, 21, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Anastasilakis, A.D.; A Polyzos, S.; Makras, P. THERAPY OF ENDOCRINE DISEASE: Denosumab vs bisphosphonates for the treatment of postmenopausal osteoporosis. Eur. J. Endocrinol. 2018, 179, R31–R45. [Google Scholar] [CrossRef] [PubMed]
- Patel, J. Economic implications of osteoporotic fractures in postmenopausal women. Am. J. Manag. Care 2020, 26, S311–S318. [Google Scholar] [CrossRef] [PubMed]
- Hamamyh, T.; Yassin, M.A. Autoimmune Hemolytic Anemia in Chronic Myeloid Leukemia. Pharmacology 2020, 105, 630–638. [Google Scholar] [CrossRef]
- Tranekær, S.; Hansen, D.; Frederiksen, H. Epidemiology of Secondary Warm Autoimmune Haemolytic Anaemia—A Systematic Review and Meta-Analysis. J. Clin. Med. 2021, 10, 1244. [Google Scholar] [CrossRef] [PubMed]
- Brodsky, R.A. Warm Autoimmune Hemolytic Anemia. N. Engl. J. Med. 2019, 381, 647–654. [Google Scholar] [CrossRef]
- Rokavec, N.; Šemrov, M.Z. Psychological and Physiological Stress in Hens with Bone Damage. Front. Vet. Sci. 2020, 7. [Google Scholar] [CrossRef]
- Dubert, M.; Elion, J.; Tolo, A.; Diallo, D.A.; Diop, S.; Diagne, I.; Sanogo, I.; Belinga, S.; Guifo, O.; Wamba, G.; et al. Degree of anemia, indirect markers of hemolysis, and vascular complications of sickle cell disease in Africa. Blood 2017, 130, 2215–2223. [Google Scholar] [CrossRef]
- Martí-Carvajal, A.J.; Solà, I.; Agreda-Pérez, L.H. Treatment for avascular necrosis of bone in people with sickle cell disease. Cochrane Database Syst. Rev. 2019, 12, Cd004344. [Google Scholar] [CrossRef]
- Tsai, S.-Y.; Chen, H.-J.; Chen, C.; Lio, C.-F.; Kuo, C.-F.; Leong, K.-H.; Wang, Y.-T.T.; Yang, T.-Y.; You, C.; Wang, W.-S. Increased risk of chronic fatigue syndrome following psoriasis: A nationwide population-based cohort study. J. Transl. Med. 2019, 17, 154. [Google Scholar] [CrossRef]
- Tsai, S.-Y.; Chen, H.-J.; Lio, C.-F.; Kuo, C.-F.; Kao, A.-C.; Wang, W.-S.; Yao, W.-C.; Chen, C.; Yang, T.-Y. Increased risk of chronic fatigue syndrome in patients with inflammatory bowel disease: A population-based retrospective cohort study. J. Transl. Med. 2019, 17, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsai, S.-Y.; Lin, C.-L.; Shih, S.-C.; Hsu, C.-W.; Leong, K.-H.; Kuo, C.-F.; Lio, C.-F.; Chen, Y.-T.; Hung, Y.-J.; Shi, L. Increased risk of chronic fatigue syndrome following burn injuries. J. Transl. Med. 2018, 16, 342. [Google Scholar] [CrossRef] [PubMed]
- Nocerino, A.; Nguyen, A.; Agrawal, M.; Mone, A.; Lakhani, K.; Swaminath, A. Fatigue in Inflammatory Bowel Diseases: Etiologies and Management. Adv. Ther. 2019, 37, 97–112. [Google Scholar] [CrossRef] [Green Version]
- Kinoshita, Y.; Ishimura, N.; Ishihara, S. Advantages and Disadvantages of Long-term Proton Pump Inhibitor Use. J. Neurogastroenterol. Motil. 2018, 24, 182–196. [Google Scholar] [CrossRef]
- Oh, C.-K.; Moon, Y. Dietary and Sentinel Factors Leading to Hemochromatosis. Nutrients 2019, 11, 1047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, G.; Li, X.; Zhu, Z.; Wang, H.; Bai, X. Iron Overload Induces Apoptosis and Cytoprotective Autophagy Regulated by ROS Generation in Mc3t3-E1 Cells. Biol. Trace Element Res. 2021, 1–12. [Google Scholar] [CrossRef]
- Miyamoto, T. Mechanism Underlying Post-menopausal Osteoporosis: HIF1α is Required for Osteoclast Activation by Estrogen Deficiency. Keio J. Med. 2015, 64, 44–47. [Google Scholar] [CrossRef] [Green Version]
- Sozen, T.; Ozisik, L.; Basaran, N.C. An overview and management of osteoporosis. Eur. J. Rheumatol. 2017, 4, 46–56. [Google Scholar] [CrossRef]
- Eastell, R. Prevention and management of osteoporosis. Medicine 2017, 45, 565–569. [Google Scholar] [CrossRef]
- Ye, S.; Ren, X.; Meng, X.; Chen, H. Comparison of different calcium supplementation methods in patients with osteoporosis. Exp. Ther. Med. 2019, 19, 1432–1438. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.-H.; Tung, Y.-C.; Chai, C.-Y.; Lu, Y.-Y.; Su, Y.-F.; Tsai, T.-H.; Kuo, K.-L.; Lin, C.-L. Increased risk of osteoporosis in patients with peptic ulcer disease: A nationwide population-based study. Medicine 2016, 95, e3309. [Google Scholar] [CrossRef] [PubMed]
- Yoon, P.H.; An, S.J.; Jeong, S.-H.; Yang, Y.-J.; Hong, Y.-P. Association between Peptic Ulcer Disease and Osteoporosis: The Population-Based Longitudinal Cohort Study in Korea. Int. J. Environ. Res. Public Heal. 2019, 16, 2777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalyanaraman, H.; Schall, N.; Pilz, R.B. Nitric oxide and cyclic GMP functions in bone. Nitric Oxide 2018, 76, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-S.; Park, H.-M.; Lee, H.S.; Lee, Y.-J. Hemoglobin levels and low bone mineral density in non-anemic older adults: Secondary analysis of the Korean National Health and Nutrition Examination Survey. Exp. Gerontol. 2019, 126, 110706. [Google Scholar] [CrossRef] [PubMed]
- Robinson, D.; Van Staa, T.P.; Dennison, E.; Cooper, C.; Dixon, W.G. The limitations of using simple definitions of glucocorticoid exposure to predict fracture risk: A cohort study. Bone 2018, 117, 83–90. [Google Scholar] [CrossRef]
- Hulbert, M.L.; Shenoy, S. Hematopoietic stem cell transplantation for sickle cell disease: Progress and challenges. Pediatr. Blood Cancer 2018, 65, e27263. [Google Scholar] [CrossRef] [PubMed]
- Quinn, C.T. l-Glutamine for sickle cell anemia: More questions than answers. Blood 2018, 132, 689–693. [Google Scholar] [CrossRef]
- Zarjou, A.; Jeney, V.; Arosio, P.; Poli, M.; Zavaczki, E.; Balla, G.; Balla, J. Ferritin ferroxidase activity: A potent inhibitor of osteogenesis. J. Bone Miner. Res. 2010, 25, 164–172. [Google Scholar] [CrossRef]
- Wong, P.; Fuller, P.; Gillespie, M.; Kartsogiannis, V.; Kerr, P.G.; Doery, J.C.G.; Paul, E.; Bowden, D.K.; Strauss, B.J.; Milat, F. Thalassemia Bone Disease: A 19-Year Longitudinal Analysis. J. Bone Miner. Res. 2014, 29, 2468–2473. [Google Scholar] [CrossRef] [PubMed]
- Wong, P.; Fuller, P.J.; Gillespie, M.T.; Kartsogiannis, V.; Strauss, B.J.; Bowden, D.; Milat, F. Thalassemia bone disease: The association between nephrolithiasis, bone mineral density and fractures. Osteoporos. Int. 2013, 24, 1965–1971. [Google Scholar] [CrossRef]
- Chen, Y.-G.; Lu, C.-S.; Lin, T.-Y.; Lin, C.-L.; Tzeng, H.-E.; Tsai, C.-H. Risk of fracture in transfusion-naïve thalassemia population: A nationwide population-based retrospective cohort study. Bone 2018, 106, 121–125. [Google Scholar] [CrossRef] [PubMed]
- Murphree, C.R.; Nguyen, N.N.; Raghunathan, V.; Olson, S.R.; Deloughery, T.; Shatzel, J.J. Diagnosis and management of hereditary haemochromatosis. Vox Sang. 2020, 115, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Balogh, E.; Tolnai, E.; Nagy, B.; Balla, G.; Balla, J.; Jeney, V. Iron overload inhibits osteogenic commitment and differentiation of mesenchymal stem cells via the induction of ferritin. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2016, 1862, 1640–1649. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Jian, J.; Abramson, S.B.; Huang, X. Inhibitory effects of iron on bone morphogenetic protein 2-induced osteoblastogenesis. J. Bone Miner. Res. 2011, 26, 1188–1196. [Google Scholar] [CrossRef] [PubMed]
- Lertsuwan, K.; Nammultriputtar, K.; Nanthawuttiphan, S.; Phoaubon, S.; Lertsuwan, J.; Thongbunchoo, J.; Wongdee, K.; Charoenphandhu, N. Ferrous and ferric differentially deteriorate proliferation and differentiation of osteoblast-like UMR-106 cells. BioMetals 2018, 31, 873–889. [Google Scholar] [CrossRef]
- Morris, C.R.; Hamilton-Reeves, J.; Martindale, R.G.; Sarav, M.; Gautier, J.B.O. Acquired Amino Acid Deficiencies: A Focus on Arginine and Glutamine. Nutr. Clin. Pract. 2017, 32, 30S–47S. [Google Scholar] [CrossRef] [PubMed]
- He, Y.-F.; Ma, Y.; Gao, C.; Zhao, G.-Y.; Zhang, L.-L.; Li, G.; Pan, Y.-Z.; Li, K.; Xu, Y.-J. Iron Overload Inhibits Osteoblast Biological Activity Through Oxidative Stress. Biol. Trace Element Res. 2013, 152, 292–296. [Google Scholar] [CrossRef]
- Kohli, S.S.; Kohli, V.S. Role of RANKL-RANK/osteoprotegerin molecular complex in bone remodeling and its immunopathologic implications. Indian J. Endocrinol. Metab. 2011, 15, 175–181. [Google Scholar] [CrossRef]
- Jeney, V. Clinical Impact and Cellular Mechanisms of Iron Overload-Associated Bone Loss. Front. Pharmacol. 2017, 8, 77. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, O.H.; Ainsworth, M.; Coskun, M.; Weiss, G. Management of iron-deficiency anemia in inflammatory bowel disease: A systematic review. Medicine 2015, 94, e963. [Google Scholar] [CrossRef] [PubMed]
HA Group n = 2,242 | Non- HA Group n = 8,968 | p-Value | |||
---|---|---|---|---|---|
Variable | n | % | n | % | |
Sex | >0.99 | ||||
Female | 1,419 | 63.3 | 5,676 | 63.3 | |
Male | 823 | 36.7 | 3,292 | 36.7 | |
Age, years | >0.99 | ||||
20–64 | 2,019 | 90.1 | 8,076 | 90.1 | |
≥65 | 223 | 9.95 | 892 | 9.95 | |
Means (SD) a | 39.3 | (16.3) | 39.3 | (16.3) | 0.99 |
Comorbidity | |||||
Inflammatory bowel disease | 43 | 1.92 | 120 | 1.34 | 0.04 |
Diabetes | 177 | 7.89 | 418 | 4.66 | <0.001 |
Cholelithiasis | 85 | 3.79 | 160 | 1.78 | <0.001 |
Peptic ulcer disease | 702 | 31.3 | 1,928 | 21.5 | <0.001 |
Variable | Event No. | Person-Years | Incidence Density a | HR (95% C.I.) | |||
---|---|---|---|---|---|---|---|
Unadjusted | p-Value | Adjusted b | p-Value | ||||
Hemolytic anemia | |||||||
No | 318 | 84,474 | 3.76 | ref | ref | ||
Yes | 104 | 20,355 | 5.11 | 1.35 (1.08–1.69) | 0.007 | 1.31 (1.04–1.63) | 0.01 |
Sex | |||||||
Female | 315 | 66,488 | 4.74 | 1.70 (1.37–2.12) | <0.001 | 2.57 (2.05–3.22) | <0.001 |
Male | 107 | 38,340 | 2.79 | ref | ref | ||
Age, years | |||||||
20–64 | 238 | 97,295 | 2.45 | ref | |||
≥65 | 184 | 7,534 | 24.4 | 9.54 (7.86–11.6) | <0.001 | 9.25 (7.46–11.5) | <0.001 |
Comorbidity | |||||||
IBD | |||||||
No | 409 | 103,456 | 3.95 | ref | ref | ||
Yes | 13 | 1,372 | 9.47 | 2.34 (1.34–4.06) | 0.002 | 1.47 (0.84–2.57) | 0.17 |
Diabetes | |||||||
No | 363 | 100,505 | 3.61 | ref | ref | ||
Yes | 59 | 4,324 | 13.7 | 3.60 (2.74–4.75) | <0.001 | 1.24 (0.92–1.67) | 0.15 |
Cholelithiasis | |||||||
No | 391 | 103,032 | 3.79 | ref | ref | ||
Yes | 31 | 1,796 | 17.3 | 4.35 (3.01–6.27) | <0.001 | 1.76 (1.20–2.58) | 0.003 |
Peptic ulcer disease | |||||||
No | 226 | 81,736 | 2.77 | ref | ref | ||
Yes | 196 | 23,093 | 8.49 | 3.02 (2.50–3.66) | <0.001 | 1.87 (1.52–2.29) | <0.001 |
HA Group | Non-HA Group | HR (95% C.I.) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Variables | Event No. | Person-Year | Incidence Density a | Event No. | Person-Year | Incidence Density a | Crude | p-Value | Adjusted b | p-Value |
Sex | ||||||||||
Female | 87 | 12,905 | 6.74 | 228 | 53,583 | 4.26 | 1.58 (1.23–2.02) | <0.001 | 1.68 (1.31–2.16) | <0.001 |
Male | 17 | 7,449 | 2.28 | 90 | 30,891 | 2.91 | 0.78 (0.47–1.32) | 0.35 | 0.77 (0.46–1.30) | 0.33 |
p for interaction | 0.02 | |||||||||
Age, years | ||||||||||
20–64 | 72 | 19,089 | 3.77 | 166 | 78,206 | 2.12 | 1.77 (1.35–2.34) | <0.001 | 1.53 (1.15–2.02) | 0.003 |
≥65 | 32 | 1,266 | 25.3 | 152 | 6,268 | 24.3 | 1.01 (0.69–1.49) | 0.94 | 0.99 (0.67–1.45) | 0.94 |
p for interaction | 0.04 | |||||||||
Comorbidity status c | ||||||||||
No | 41 | 13,278 | 3.09 | 145 | 64,747 | 2.24 | 1.38 (0.98–1.95) | 0.06 | 1.57 (1.11–2.22) | 0.01 |
Yes | 63 | 7,077 | 8.90 | 173 | 19,727 | 8.77 | 1.02 (0.76–1.36) | 0.91 | 1.27 (0.95–1.69) | 0.11 |
p for interaction | 0.18 |
Variables | n | Event No. | Person-Year | Incidence Density a | HR (95% C.I.) | |||
---|---|---|---|---|---|---|---|---|
Crude | p-Value | Adjusted b | p-Value | |||||
Non-HA group | 8,968 | 318 | 84,474 | 3.76 | ref | ref | ||
HA group | ||||||||
Iron supplements | ||||||||
No | 1,498 | 56 | 13,476 | 4.16 | 1.10 (0.83–1.46) | 0.51 | 1.34 (1.01–1.79) | 0.04 |
Yes | 744 | 48 | 6,878 | 6.98 | 1.85 (1.36–2.50) | <0.001 | 1.51 (1.11–2.05) | 0.008 |
Blood transfusion | ||||||||
No | 2,169 | 102 | 19,764 | 5.16 | 1.37 (1.09–1.71) | 0.006 | 1.49 (1.19–1.86) | <0.001 |
Yes | 73 | 2 | 591 | 3.39 | 0.88 (0.22–3.53) | 0.86 | 0.41 (0.10–1.66) | 0.21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, L.; Lin, C.-L.; Su, C.-H.; Lin, K.-C.; Leong, K.-H.; Wang, Y.-T.T.; Kuo, C.-F.; Tsai, S.-Y. The Risk of Developing Osteoporosis in Hemolytic Anemia—What Aggravates the Bone Loss? J. Clin. Med. 2021, 10, 3364. https://doi.org/10.3390/jcm10153364
Shi L, Lin C-L, Su C-H, Lin K-C, Leong K-H, Wang Y-TT, Kuo C-F, Tsai S-Y. The Risk of Developing Osteoporosis in Hemolytic Anemia—What Aggravates the Bone Loss? Journal of Clinical Medicine. 2021; 10(15):3364. https://doi.org/10.3390/jcm10153364
Chicago/Turabian StyleShi, Leiyu, Cheng-Li Lin, Ching-Huang Su, Keng-Chian Lin, Kam-Hang Leong, Yu-Ting Tina Wang, Chien-Feng Kuo, and Shin-Yi Tsai. 2021. "The Risk of Developing Osteoporosis in Hemolytic Anemia—What Aggravates the Bone Loss?" Journal of Clinical Medicine 10, no. 15: 3364. https://doi.org/10.3390/jcm10153364
APA StyleShi, L., Lin, C.-L., Su, C.-H., Lin, K.-C., Leong, K.-H., Wang, Y.-T. T., Kuo, C.-F., & Tsai, S.-Y. (2021). The Risk of Developing Osteoporosis in Hemolytic Anemia—What Aggravates the Bone Loss? Journal of Clinical Medicine, 10(15), 3364. https://doi.org/10.3390/jcm10153364