Laser Therapy for the Treatment of Morphea: A Systematic Review of Literature
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Types of Lasers Used for LoS Treatment
3.1.1. Pulsed Dye Laser (PDL)
3.1.2. Excimer Laser
3.1.3. Carbon Dioxide (CO2) or Erbium-Doped Yttrium Aluminum Garnet (Er:YAG) Fractional Lasers
3.1.4. Alexandrite Laser
3.1.5. Neodymium-Doped Yttrium Aluminum Garnet (Nd:YAG) 1064 nm Laser
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kreuter, A.; Krieg, T.; Worm, M.; Wenzel, J.; Moinzadeh, P.; Kuhn, A.; Aberer, E.; Scharffetter-Kochanek, K.; Horneff, G.; Reil, E.; et al. German guidelines for the diagnosis and therapy of localized scleroderma. J. Dtsch. Dermatol. Ges. 2016, 14, 199–216. [Google Scholar] [CrossRef] [PubMed]
- Kunzler, E.; Florez-Pollack, S.; Teske, N.; O’Brien, J.; Prasad, S.; Jacobe, H. Linear morphea: Clinical characteristics, disease course, and treatment of the Morphea in Adults and Children cohort. J. Am. Acad. Dermatol. 2019, 80, 1664–1670.e1. [Google Scholar] [CrossRef]
- Knobler, R.; Moinzadeh, P.; Hunzelmann, N.; Kreuter, A.; Cozzio, A.; Mouthon, L.; Cutolo, M.; Rongioletti, F.; Denton, C.P.; Rudnicka, L.; et al. European Dermatology Forum S1-guideline on the diagnosis and treatment of sclerosing diseases of the skin, Part 1: Localized scleroderma, systemic sclerosis and overlap syndromes. J. Eur. Acad. Dermatol. Venereol. 2017, 31, 1401–1424. [Google Scholar] [CrossRef]
- Wolska-Gawron, K.; Bartosińska, J.; Krasowska, D. MicroRNA in localized scleroderma: A review of literature. Arch. Dermatol. Res. 2020, 312, 317–324. [Google Scholar] [CrossRef]
- Mertens, J.S.; Seyger, M.M.B.; Thurlings, R.M.; Radstake, T.R.D.J.; de Jong, E.M.G.J. Morphea and Eosinophilic Fasciitis: An Update. Am. J. Clin. Dermatol. 2017, 18, 491–512. [Google Scholar] [CrossRef]
- Krasowska, D.; Rudnicka, L.; Dańczak-Pazdrowska, A.; Chodorowska, G.; Woźniacka, A.; Lis-Święty, A.; Czuwara, J.; Maj, J.; Majewski, S.; Sysa-Jędrzejowska, A.; et al. Localized scleroderma (morphea). Diagnostic and therapeutic recommendations of the Polish Dermatological Society. Dermatol. Rev. Przegląd Dermatol. 2019, 106, 333–353. [Google Scholar] [CrossRef]
- Arkachaisri, T.; Vilaiyuk, S.; Torok, K.S.; Medsger, T.A. Development and initial validation of the Localized Scleroderma Skin Damage Index and Physician Global Assessment of disease Damage: A proof-of-concept study. Rheumatology 2010, 49, 373–381. [Google Scholar] [CrossRef] [PubMed]
- Skrzypek-Salamon, A.; Lis-Świȩty, A.; Ranosz-Janicka, I.; Brzezińska-Wcisło, L. Localized Scleroderma Cutaneous Assessment Tool (LoSCAT) adapted for use in adult patients: Report from an initial validation study. Health Qual. Life Outcomes 2018, 16, 1–7. [Google Scholar] [CrossRef]
- Szczȩch, J.; Samotij, D.; Jaworecka, K.; Tobiasz, A.; Reich, A. Quality of Life in Patients with Morphea: A Cross-Sectional Study and a Review of the Current Literature. Biomed. Res. Int. 2020, 2020, 9186274. [Google Scholar] [CrossRef]
- Aksu Arica, D. Cosmetical treatments of connective tissue disorders. Dermatol. Ther. 2019, 32, 10–12. [Google Scholar] [CrossRef]
- Creadore, A.; Watchmaker, J.; Maymone, M.B.C.; Pappas, L.; Lam, C.; Vashi, N.A. Cosmetic treatment in patients with autoimmune connective tissue diseases: Best practices for patients with morphea/systemic sclerosis. J. Am. Acad. Dermatol. 2020, 83, 315–341. [Google Scholar] [CrossRef]
- Forbat, E.; Al-Niaimi, F. Nonvascular uses of pulsed dye laser in clinical dermatology. J. Cosmet. Dermatol. 2019, 18, 1186–1201. [Google Scholar] [CrossRef]
- Erceg, A.; de Jong, E.M.J.G.; van de Kerkhof, P.C.M.; Seyger, M.M.B. The efficacy of pulsed dye laser treatment for inflammatory skin diseases: A systematic review. J. Am. Acad. Dermatol. 2013, 69, 609–615.e8. [Google Scholar] [CrossRef]
- Brewin, M.P.; Lister, T.S. Prevention or treatment of hypertrophic burn scarring: A review of when and how to treat with the pulsed dye laser. Burns 2014, 40, 797–804. [Google Scholar] [CrossRef] [PubMed]
- Oosterhoff, T.C.H.; Beekman, V.K.; van der List, J.P.; Niessen, F.B. Laser treatment of specific scar characteristics in hypertrophic scars and keloid: A systematic review. J. Plast. Reconstr. Aesthetic Surg. 2021, 74, 48–64. [Google Scholar] [CrossRef]
- Deng, H.; Tan, T.; Luo, G.; Tan, J.; Li-Tsang, C.W.P. Vascularity and Thickness Changes in Immature Hypertrophic Scars Treated with a Pulsed Dye Laser. Lasers Surg. Med. 2020, 1. [Google Scholar] [CrossRef]
- Alster, T.S.; Williams, C.M. Treatment of keloid sternotomy scars with 585 nm flashlamp-pumped pulsed-dye laser. Lancet 1995, 345, 1198–1200. [Google Scholar] [CrossRef]
- Alster, T.S.; McMeekin, T.O. Improvement of facial acne scars by the 585 nm flashlamp-pumped pulsed dye laser. J. Am. Acad. Dermatol. 1996, 35, 79–87. [Google Scholar] [CrossRef]
- Anderson, R.R.; Parrish, J.A. Selective photothermolysis: Precise microsurgery by selective absorption of pulsed radiation. Science 1983, 220, 524–527. [Google Scholar] [CrossRef] [PubMed]
- Eisen, D.; Alster, T.S. Use of a 585 nm pulsed dye laser for the treatment of morphea. Dermatol. Surg. 2002, 28, 615–616. [Google Scholar] [CrossRef]
- Tawfik, A.A.; Shokir, H.; Soliman, M.; Salah, L.; Fathy, S. Pulsed dye laser in the treatment of localized scleroderma and its effects on CD34+ and factor XIIIa+ Cells: An immunohistochemical study. Am. J. Clin. Dermatol. 2013, 14, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Kakimoto, C.V.; Victor Ross, E.; Uebelhoer, N.S. En coup de sabre presenting as a port-wine stain previously treated with pulsed dye laser. Dermatol. Surg. 2009, 35, 165–167. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Lee, J.Y.; Kim, H.O.; Park, Y.M. En coup de sabre presenting as a port-wine stain initially treated with a pulsed dye laser. J. Dermatol. 2011, 38, 209–210. [Google Scholar] [CrossRef]
- Pickert, A.J.; Carpentieri, D.; Price, H.; Hansen, R.C. Early morphea mimicking acquired port-wine stain. Pediatr. Dermatol. 2014, 31, 591–594. [Google Scholar] [CrossRef] [PubMed]
- Nijhawan, R.I.; Bard, S.; Blyumin, M.; Smidt, A.C.; Chamlin, S.L.; Connelly, E.A. Early localized morphea mimicking an acquired port-wine stain. J. Am. Acad. Dermatol. 2011, 64, 779–782. [Google Scholar] [CrossRef]
- Ng, S.S.Y.; Tay, Y.K. Inflammatory morphea mimicking an acquired port-wine stain initially treated with pulsed-dye laser. J. Cosmet. Laser Ther. 2015, 17, 277–280. [Google Scholar] [CrossRef]
- Miura, T.; Yamamoto, T. Pediatric linear scleroderma initially developed with angioma serpiginosum-like appearances. J. Dermatol. 2015, 42, 750–751. [Google Scholar] [CrossRef]
- Ly, K.; Smith, M.P.; Thibodeaux, Q.G.; Beck, K.M.; Liao, W.; Bhutani, T. Beyond the Booth: Excimer Laser for Cutaneous Conditions. Dermatol. Clin. 2020, 38, 157–163. [Google Scholar] [CrossRef]
- Beggs, S.; Short, J.; Rengifo-Pardo, M.; Ehrlich, A. Applications of the Excimer Laser: A Review. Dermatol. Surg. 2015, 41, 1201–1211. [Google Scholar] [CrossRef]
- Mehraban, S.; Feily, A. 308nm excimer laser in dermatology. J. Lasers Med. Sci. 2014, 5, 8–12. [Google Scholar] [CrossRef]
- Nisticò, S.P.; Saraceno, R.; Schipani, C.; Costanzo, A.; Chimenti, S. Different applications of monochromatic excimer light in skin diseases. Photomed. Laser Surg. 2009, 27, 647–654. [Google Scholar] [CrossRef]
- Hanson, A.H.; Fivenson, D.P.; Schapiro, B. Linear scleroderma in an adolescent woman treated with methotrexate and excimer laser. Dermatol. Ther. 2014, 27, 203–205. [Google Scholar] [CrossRef]
- Use of Excimer Laser for Morphea. Available online: https://hsrc.himmelfarb.gwu.edu/researchdays_2014/11/ (accessed on 17 February 2021).
- Tatu, A.; Radaschin, D.; Constantin, V.; Stana, P.; Ardeleanu, V. Laser therapy in superficial morphea lesions—Indications, limitations and therapeutic alternatives. J. Mind Med. Sci. 2020, 7, 46–51. [Google Scholar] [CrossRef]
- Prignano, F.; Campolmi, P.; Bonan, P.; Ricceri, F.; Cannarozzo, G.; Troiano, M.; Lotti, T. Fractional CO2 laser: A novel therapeutic device upon photobiomodulation of tissue remodeling and cytokine pathway of tissue repair. Dermatol. Ther. 2009, 22, 8–15. [Google Scholar] [CrossRef]
- Nistico, S.P.; Silvestri, M.; Zingoni, T.; Tamburi, F.; Bennardo, L.; Cannarozzo, G. Combination of Fractional CO2 Laser and Rhodamine-Intense Pulsed Light in Facial Rejuvenation: A Randomized Controlled Trial. Photobiomodul. Photomed. Laser Surg. 2021, 39, 113–117. [Google Scholar] [CrossRef]
- Brauer, J.A.; Gordon Spratt, E.A.; Geronemus, R.G. Laser Therapy in the Treatment of Connective Tissue Diseases: A Review. Dermatol. Surg. 2014, 40, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Lodi, G.; Sannino, M.; Caterino, P.; Cannarozzo, G.; Bennardo, L.; Nisticò, S.P. Fractional CO2 laser-assisted topical rifamycin drug delivery in the treatment of pediatric cutaneous leishmaniasis. Pediatr. Dermatol. 2021, 38, 717–720. [Google Scholar] [CrossRef] [PubMed]
- Mercuri, S.R.; Brianti, P.; Dattola, A.; Bennardo, L.; Silvestri, M.; Schipani, G.; Nisticò, S.P. CO2 laser and photodynamic therapy: Study of efficacy in periocular BCC. Dermatol. Ther. 2018, 31, e12616. [Google Scholar] [CrossRef]
- Hantash, B.M.; Bedi, V.P.; Kapadia, B.; Rahman, Z.; Jiang, K.; Tanner, H.; Chan, K.F.; Zachary, C.B. In vivo histological evaluation of a novel ablative fractional resurfacing device. Lasers Surg. Med. 2007, 39, 96–107. [Google Scholar] [CrossRef]
- Reilly, M.J.; Cohen, M.; Hokugo, A.; Keller, G.S. Molecular effects of fractional carbon dioxide laser resurfacing on photodamaged human skin. Arch. Facial Plast. Surg. 2010, 12, 321–325. [Google Scholar] [CrossRef]
- Makboul, M.; Makboul, R.; Abdelhafez, A.H.K.; Hassan, S.S.; Youssif, S.M. Evaluation of the effect of fractional CO2 laser on histopathological picture and TGF-β1 expression in hypertrophic scar. J. Cosmet. Dermatol. 2014, 13, 169–179. [Google Scholar] [CrossRef]
- Grunewald, S.; Bodendorf, M.; Illes, M.; Kendler, M.; Simon, J.C.; Paasch, U. In vivo wound healing and dermal matrix remodelling in response to fractional CO 2 laser intervention: Clinicopathological correlation in non-facial skin. Int. J. Hyperth. 2011, 27, 811–818. [Google Scholar] [CrossRef]
- Laubach, H.J.; Tannous, Z.; Anderson, R.R.; Manstein, D. Skin responses to fractional photothermolysis. Lasers Surg. Med. 2006, 38, 142–149. [Google Scholar] [CrossRef]
- Hantash, B.M.; Mahmood, M.B. Fractional photothermolysis: A novel aesthetic laser surgery modality. Dermatol. Surg. 2007, 33, 525–534. [Google Scholar] [CrossRef]
- Kaushik, S.B.; Alexis, A.F. Nonablative Fractional Laser Resurfacing in Skin of Color: Evidence-based Review. J. Clin. Aesthet. Dermatol. 2017, 10, 51–67. [Google Scholar]
- Labadie, J.G.; Kosche, C.; Kyllo, R.; Johnson, T.; Shumaker, P.R.; Alam, M.; Choi, J.N. Fractional CO2 laser for the treatment of sclerodermatous cGVHD. J. Cosmet. Laser Ther. 2020, 22, 49–51. [Google Scholar] [CrossRef]
- Waibel, J.; Beer, K. Fractional laser resurfacing for thermal burns. J. Drugs Dermatol. 2008, 7, 59–61. [Google Scholar] [PubMed]
- Cho, S.B.; Lee, S.J.; Chung, W.S.; Kang, J.M.; Kim, Y.K. Treatment of burn scar using a carbon dioxide fractional laser. J. Drugs Dermatol. 2010, 9, 173–175. [Google Scholar] [PubMed]
- Bowen, R.E. A novel approach to ablative fractional treatment of mature thermal burn scars. J. Drugs Dermatol. 2010, 9, 389–392. [Google Scholar] [PubMed]
- Kineston, D.; Kwan, J.M.; Uebelhoer, N.S.; Shumaker, P.R. Use of a fractional ablative 10.6-μm carbon dioxide laser in the treatment of a morphea-related contracture. Arch. Dermatol. 2011, 147, 1148–1150. [Google Scholar] [CrossRef]
- Farmer, C.; Griffith, J.L.; Lim, H.W.; Ozog, D.M. Fractionated CO2 laser for treatment of linear morphea: A case series. J. Am. Acad. Dermatol. 2018, 79, AB143. [Google Scholar] [CrossRef]
- Yeager, D.; Ozog, D.M. Persistent improvement at three year follow-up in a patient with localized deep morphea treated with both injected and laser-assisted topical poly-l-lactic acid. Lasers Surg. Med. 2019, 51, S11–S12. [Google Scholar]
- Shalaby, S.M.; Bosseila, M.; Fawzy, M.M.; Abdel Halim, D.M.; Sayed, S.S.; Allam, R.S.H.M. Fractional carbon dioxide laser versus low-dose UVA-1 phototherapy for treatment of localized scleroderma: A clinical and immunohistochemical randomized controlled study. Lasers Med. Sci. 2016, 31, 1707–1715. [Google Scholar] [CrossRef]
- Qu, L.; Liu, A.; Zhou, L.; He, C.; Grossman, P.H.; Moy, R.L.; Mi, Q.S.; Ozog, D. Clinical and molecular effects on mature burn scars after treatment with a fractional CO2 laser. Lasers Surg. Med. 2012, 44, 517–524. [Google Scholar] [CrossRef]
- Cicchi, R.; Kapsokalyvas, D.; Troiano, M.; Campolmi, P.; Morini, C.; Massi, D.; Cannarozzo, G.; Lotti, T.; Pavone, F.S. In vivo non-invasive monitoring of collagen remodelling by two-photon microscopy after micro-ablative fractional laser resurfacing. J. Biophotonics 2014, 7, 914–925. [Google Scholar] [CrossRef] [PubMed]
- Helbig, D.; Paasch, U. Molecular changes during skin aging and wound healing after fractional ablative photothermolysis. Skin Res. Technol. 2011, 17, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Hantash, B.M.; Bedi, V.P.; Chan, K.F.; Zachary, C.B. Ex vivo histological characterization of a novel ablative fractional resurfacing device. Lasers Surg. Med. 2007, 39, 87–95. [Google Scholar] [CrossRef]
- Kozarev, J. Fractional Er:YAG Laser Therapy for Localized Scleroderma (Summary). J. Laser Health Acad. 2012, 1, S07. [Google Scholar]
- Ghorbel, H.H.; Lacour, J.P.; Passeron, T. Use of 2940-nm Erbium-Yag fractional laser for treating the skin texture changes in stabilized Parry Romberg syndrome. Eur. J. Dermatol. 2013, 23, 908–909. [Google Scholar] [CrossRef] [PubMed]
- Bukhari, I.A. Current uses of alexandrite laser in dermatology. Expert. Rev. Dermatol. 2007, 2, 655–661. [Google Scholar] [CrossRef]
- Nistico, S.P.; Bennardo, L.; Del Duca, E.; Tamburi, F.; Rajabi-Estarabadi, A.; Nouri, K. Long-pulsed 755-nm alexandrite laser equipped with a sapphire handpiece: Unwanted hair removal in darker phototypes. Lasers Med. Sci. 2021, 36, 237–238. [Google Scholar] [CrossRef]
- Arpey, C.J.; Patel, D.S.; Stone, M.S.; Qiang-Shao, J.; Moore, K.C. Treatment of Atrophoderma of Pasini and Pierini-Associated hyperpigmentation with the Q-switched Alexandrite laser: A clinical, histologic, and ultrastructural appraisal. Lasers Surg. Med. 2000, 27, 206–212. [Google Scholar] [CrossRef]
- Hong, J.S.; Park, Y.; Seo, K.K.; Goo, B.L.; Hwang, E.J.; Park, G.Y.; Eun, H.C. Long pulsed 1064 nm Nd:YAG laser treatment for wrinkle reduction and skin laxity: Evaluation of new parameters. Int. J. Dermatol. 2015, 54, 345–350. [Google Scholar] [CrossRef]
- Truitt, A.; Elkeeb, L.; Ortiz, A.; Saedi, N.; Echague, A.; Kelly, K.M. Evaluation of a long pulsed 1064-nm Nd:YAG laser for improvement in appearance of cellulite. J. Cosmet. Laser Ther. 2012, 1, 139–144. [Google Scholar] [CrossRef][Green Version]
- Ortiz, A.E.; Anderson, R.R.; DiGiorgio, C.; Jiang, S.I.B.; Shafiq, F.; Avram, M.M. An expanded study of long-pulsed 1064 nm Nd:YAG laser treatment of basal cell carcinoma. Lasers Surg. Med. 2018, 13, 727–731. [Google Scholar] [CrossRef]
- Piccolo, D.; Kostaki, D.; Del Duca, E.; Cannarozzo, G.; Sannino, M.; Nisticò, S. Long-Pulsed 1064-nm Nd:YAG Laser for the Treatment of Onychomycosis. Photomed. Laser Surg. 2017, 35, 213–216. [Google Scholar] [CrossRef]
- Tanzi, E.L.; Alster, T.S. Long-pulsed 1064-nm Nd:YAG laser-assisted hair removal in all skin types. Dermatol. Surg. 2004, 30, 13–17. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Bimbi, C.; Koumoundourou, D.; Kyriakou, G.; Brzezinski, P. Improvement of linear scleroderma of the limbs after treatment with long-pulsed 1064 nm Nd:YAG laser: A case report. Dermatol. Online J. 2020, 11, 376–378. [Google Scholar] [CrossRef]
- Rinaldi, F. Laser: A review. Clin. Dermatol. 2008, 26, 590–601. [Google Scholar] [CrossRef] [PubMed]
- Husain, Z.; Alster, T.S. The role of lasers and intense pulsed light technology in dermatology. Clin. Cosmet. Investig. Dermatol. 2016, 9, 29–40. [Google Scholar] [CrossRef] [PubMed]
- Nisticò, S.P.; Tolone, M.; Zingoni, T.; Tamburi, F.; Scali, E.; Bennardo, L.; Cannarozzo, G. A New 675 nm Laser Device in the Treatment of Melasma: Results of a Prospective Observational Study. Photobiomodulation Photomed. Laser Surg. 2020, 38, 560–564. [Google Scholar] [CrossRef] [PubMed]
- Tanzi, E.L.; Lupton, J.R.; Alster, T.S. Lasers in dermatology: Four decades of progress. J. Am. Acad. Dermatol. 2003, 49, 1–34. [Google Scholar] [CrossRef] [PubMed]
- Zwischenberger, B.A.; Jacobe, H.T. A systematic review of morphea treatments and therapeutic algorithm. J. Am. Acad. Dermatol. 2011, 65, 925–941. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Salgado, P.; García-Romero, M.T. Morphea: A practical review of its diagnosis, classification and treatment. Gac. Med. Mex. 2019, 155, 483–491. [Google Scholar] [CrossRef] [PubMed]
- Cannarozzo, G.; Negosanti, F.; Sannino, M.; Santoli, M.; Bennardo, L.; Banzola, N.; Negosanti, L.; Nisticò, S.P. Q-switched Nd:YAG laser for cosmetic tattoo removal. Dermatol. Ther. 2019, 32, e13042. [Google Scholar] [CrossRef] [PubMed]
Study | Type of Study | No of the Patients Completing the Study | Patients Age [Years] | Morphea Type | Duration of Disease | Type of Laser Used | Parameters | No of Treatments | Results of Treatment | Adverse Effects | Additional Therapy |
---|---|---|---|---|---|---|---|---|---|---|---|
Eisen et al. [20] | Case report | 1 | 41 | Plaque | - | Pulsed dye laser (PDL) | wavelength 585 nm long-pulsed, fluence 5.0 J/cm2, spot size 10 mm, cryogen duration 30 ms | 4 | Softening and improvement in pigmentation of a lesion | - | - |
Tawfik et al. [21] | Investigational | 26 | 14–37 | Plaque | 1–5 years | Pulsed dye laser (PDL) | wavelength 585 nm, pulse duration 450 us, spot size 5 or 7, fluence 7.5–8.5 J/cm2 | 4–12, every 2 weeks | Improvement in clinical, histological, immunohistological aspects; high patients’ satisfaction scores | - | - |
Kakimoto et al. [22] | Case report | 1 | 6 | Linear (En coup de sabre) | 3 months | Pulsed dye laser (PDL) | wavelength 595 nm, spot 7 mm, fluence 8 J/cm2, pulse duration 1.5 ms, duration 40 us, delay 30 us | 1 | Alleviation of erythema | Blistering, hypopigmentation | - |
Kim et al. [23] | Case report | 1 | 24 | Linear | 4 months | Pulsed dye laser (PDL) | wavelength 595 nm, spot 7 mm, pulse width 10 msec, duration 30 ms, delay 30 ms | 2 | Minimal improvement; temporary alleviation of erythema | - | - |
Pickert et al. [24] | Case report | 1 | 2,5 | Linear | 6 months | Pulsed dye laser (PDL) | fluence 8.5 J/cm2, (I treatment), 9.0 J/cm2 (II treatment), 9.25 J/cm2 (III treatment), spot size 10 mm, pulse duration 1.5 ms | 3 | Alleviation of erythema | - | - |
Nijhawan et al. [25] | Case report | 1 | 6 | Linear | 7 months | Pulsed dye laser (PDL) | wavelength 595 nm, spot 7 mm, fluence 8.5 J/cm2, pulse duration 1.5 ms total 53 pulses | 1 | Subsequent resolution of the erythema | - | - |
Ng et al. [26] | Case report | 1 | 7 | Linear | 7 months | Pulsed dye laser (PDL) | - | 3 | Temporary alleviation of erythema | - | - |
Miura et al. [27] | Case report | 1 | 11 | Linear | 2 years | Pulsed dye laser (PDL) | wavelength 595 nm, spot 7 mm, fluence 5.5 J/cm2 | 2 | Temporary alleviation of erythema; lesions became white and slightly shiny | - | - |
Nisticò et al. [31] | Investigational | 5 | 46 | Plaque | - | Excimer | mean MED 0.3 J/cm2, mean starting dose 0.25 J/cm2, mean dose per session 1.5 J/cm2, mean total dose 10 J/cm2 | 8–12 (mean 7) | Four months after treatments, partial remission seen in 60% patients, whereas slight improvement in 40% patients | Residual hyperpigmentation | - |
Hanson et al. [32] | Case report | 1 | 17 | Linear | 4 years | Excimer | maximum 2200 mJ/treatment | In total 34; sessions twice weekly | Remission of active disease, a decrease in the size of the lesion and minimalizing of subjective symptoms | - | Methotrexate |
Hajjar et al. [33] | Case report | 1 | 28 | Plaque | - | Excimer | 300 mJ one treatment; then 260 mJ | 16 | Resolution of local inflammation | Erythema after the first treatment (300 mJ); after decreasing the dose to 260 mJ–none | Hydroxychloroquine 400 mg and calcipotriene/bethametasone ointment twice a day |
Tatu et al. [34] | Observational | - | - | Plaque | - | Excimer | - | - | Improvement of inflammatory lesions | - | - |
Kineston et al. [51] | Case report | 1 | 27 | Mixed | 1 year | Fractional carbon dioxide | single pass, single pulse, no overlap, fluence 50-mJ, 5% density | 1 | Improvement in the range of motions, alleviating pain | - | Methotrexate, topical agents, UV-A1, physical therapy |
Farmer et al. [52] | Case report | 2 | (1) 50 (2) 22 | 1) Linear 2) Linear | - - | both patients: fractional carbon dioxide | (1) pulse energy 15 mJ/cm2, density 15% (2) pulse energy 100 mJ/cm2, density 3% | (1) 1 (2) 5 | (1) improvement in hyperpigmentation and asymmetry (2) significant improvement in hyperpigmentation, induration, and range of motions | - | (1) topical poly-l-lactic acid and injection of botulinum toxin (2) none |
Yeager et al. [53] | Case report | 1 | 44 | Deep morphea | - | Fractional carbon dioxide | pulse energy 80 mJ, density 5%, pulse energy 50 mJ, density 10% | 4 | Significant cosmetic improvement | - | After the laser therapy, sudden application of topical and injected poly-l-lactic acid |
Shalaby et al. [54] | A parallel intra-individual comparative randomized controlled trial | 17 | 7–47 | Plaque n = 12 Linear n = 3 En coup de sabre n = 2 | 6–96 months | Fractional carbon dioxide | power 25 W, dwelling time 500 msec, spacing 500 um | 3 | Significantly better clinical, histopathological, immunohistochemical results; high patients’ satisfaction scores | Pain during sessions (mild to moderate n = 17, marked n = 10), itch in first 24 h after laser treatment (n = 8), persistent erythema (n = 1), hyperpigmentation (n = 1) | - |
Kozarev [59] | Case report | 2 | - | Plaque | - | Er:YAG fractional laser | scanning device in turbo 3 mode, pulse width 100 ms, fluence 24 J/cm2 | 3 | complete remission | transient hyperpigmentation | - |
Ghorbel et al. [60] | Case report | 1 | 50 | Parry Romberg Syndrome | 5 years | Er:YAG fractional laser | wavelength 2940 nm, fluence 120 J/cm2, 12-mm diameter handpiece, coagulation level at 4 | 4 | excellent cosmetic results- pigmentation normalization of the lesions; tightening, softening of lesions; texture improvement | Local; erythema lasting <1 week and pinpoint bleeding | - |
Arpey et al. [63] | Case report | 1 | 22 | Atrophoderma Pasini-Pierini | 8 years | Q-switched alexandrite laser | wavelength 755 nm, fluence 9.0 J/cm2, spot 3 mm, repetition rate 2 Hz | 3 | decrease the severity of hyperpigmentation by 50% | - | - |
Bimbi et al. [69] | Case report | 1 | 22 | Linear | 2 years | long-pulsed Nd:YAG associated with pulsed light | wavelength 1064 nm, fluence 14 J/cm2, spot 5 mm, pulse duration 0.8 ms. | 5 | treated skin more pliable, plaques softened, mobility restored and hyperpigmentation decreased (due to pulsed light) | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szczepanik-Kułak, P.; Michalska-Jakubus, M.; Krasowska, D. Laser Therapy for the Treatment of Morphea: A Systematic Review of Literature. J. Clin. Med. 2021, 10, 3409. https://doi.org/10.3390/jcm10153409
Szczepanik-Kułak P, Michalska-Jakubus M, Krasowska D. Laser Therapy for the Treatment of Morphea: A Systematic Review of Literature. Journal of Clinical Medicine. 2021; 10(15):3409. https://doi.org/10.3390/jcm10153409
Chicago/Turabian StyleSzczepanik-Kułak, Paulina, Małgorzata Michalska-Jakubus, and Dorota Krasowska. 2021. "Laser Therapy for the Treatment of Morphea: A Systematic Review of Literature" Journal of Clinical Medicine 10, no. 15: 3409. https://doi.org/10.3390/jcm10153409
APA StyleSzczepanik-Kułak, P., Michalska-Jakubus, M., & Krasowska, D. (2021). Laser Therapy for the Treatment of Morphea: A Systematic Review of Literature. Journal of Clinical Medicine, 10(15), 3409. https://doi.org/10.3390/jcm10153409