Role of miRNAs in Normal Endometrium and in Endometrial Disorders: Comprehensive Review
Abstract
:1. Introduction
2. Methodology
3. miRNA Biogenesis and Function
4. miRNA Detection Methods
5. miRNAs and the Endometrial Cycle
5.1. The Endometrial Cycle
5.2. Endometrial miRNA Regulation by Estrogen and Progesterone
5.3. Endometrial Estrogen and Progesterone Action Regulation by miRNA
6. miRNA and Embryo Implantation
7. miRNA in Endometrial Disorders
7.1. Recurrent Embryo Implantation Failures (RIF)
7.2. Endometriosis
miRNA | Sex Steroid Hormone Regulation in Endometrium | Function | Endometriosis |
---|---|---|---|
Let-7 family | Maintenance of pluripotency of stem cells, their differentiation and self-renewal [60] | ||
Let-7b | Regulation of Mucin-1 expression in mouse | Down-regulated in mesenchymal stem cells from eutopic endometrium [59] | |
Let-7c-5p | Up-regulated in endometriosis-associated infertility [29] | ||
miR-1 | Up-regulated in ectopic endometrium [62] | ||
miR-9 | Regulation of Bcl-2 expression (apoptosis) [56] | Down-regulated in secretory phase of eutopic endometrium [55] | |
miR-20a | Down-regulated in ectopic endometrium [62] | ||
miR-22-5p | Down-regulated in endometriosis-associated infertility [29] | ||
miR-26b | Up-regulated in implantation window compared with pre-receptive endometrium [43] | (miR-26b-3p) Down-regulated in endometriosis-associated infertility [29] | |
miR-29c | Up-regulated in secretory phase [24] | Regulation of FKBP4 and decidualization response to progesterone [70] | Up-regulated in ectopic endometrium [62,70] |
miR-30c | Regulation of PAI-1 [57] | Down-regulated in eutopic and ectopic endometrium [57] | |
miR-33b | Regulation of VEGF, MMP-9 and Caspase-3 and endometrium proliferation [67] | Down-regulated in ectopic endometrial tissue [67] | |
miR-34 | Down-regulated in secretory phase of eutopic endometrium [55] | ||
miR-34a-5p | Regulation of VEGFA expression and cell proliferation [51] | Down-regulated in ectopic endometrium [51] | |
miR-34c | Down-regulated in ectopic endometrium [62] | ||
miR-92a | Regulation of PTEN (repression of cellular division and promotion of apoptosis) [61] | Up-regulated in eutopic endometrium in progesterone resistant endometriosis [30] | |
miR-99a | Up-regulated in ectopic endometrium [62] | ||
miR-99b | Up-regulated in ectopic endometrium [62] | ||
miR-100 | Up-regulated in ectopic endometrium [62] | ||
miR-125a | Up-regulated in ectopic endometrium [62] | ||
miR-125b | Up-regulated by progesterone in vitro [22,23]; Down-regulated by progesterone if high progesterone blood level [7] | Inhibition of cell movement and blocking embryo implantation via regulation of MMP26 in vitro | Up-regulated in ectopic endometrium [62] |
miR-126 | up-regulated in implantation sites in mouse [38] | Regulation of integrin-α11 expression | Up-regulated in ectopic endometrium [62] |
miR-139-5p | Regulation of HOXA10 expression [52] | Up-regulated in ectopic stromal cells [52] | |
miR-141 | Down-regulated in ectopic endometrium [62] | ||
miR-141-3p | Regulation of apoptotic factors [41] | Down-regulated in ectopic endometrium [41] | |
miR-142-3p | Down-regulated in ectopic endometrium [62] | ||
miR-143 | Up-regulated in ectopic endometrium [62] | ||
miR-145 | Regulation of IGF1R expression in mouse Down-regulation of N-cadherin and netrin-4 (adhesion molecules) in RIF | Up-regulated in ectopic endometrium [62] Down-regulated in mesenchymal stem cells from eutopic endometrium [59] | |
miR-150 | Up-regulated in ectopic endometrium [62] | ||
miR-194 | Up-regulated in ectopic endometrium [62] | ||
miR-194-3p | Regulation of PR-A/PR-B ratio in eutopic endometrium in endometriosis [28] | Regulation of STAT1/mTOR signaling pathway [69] | Up-regulated in mid-secretory phase of eutopic endometrium [28] |
miR-196a | MEK/ERK signaling pathway [29] | Up-regulated in eutopic endometrium [29] | |
miR-196b | Down-regulated in ectopic endometrium [62] | ||
miR-199a | Regulation of Mucin-1 expression in mouse | Up-regulated in eutopic endometrium | |
miR-200a | Down-regulated in ectopic endometrium [62] | ||
miR-200b | Regulation of EMT via ZEB1 and ZEB2 [63] | Down-regulated in ectopic endometrium [62,63] Up-regulated in mesenchymal stem cells from eutopic endometrium [59] | |
miR-200c | Up-regulated in secretory phase [24] | Regulation of EMT via ZEB1, ZEB2 and MALAT1 [64] | Down-regulated in ectopic endometrium [64] |
miR-205-5p | Regulation of migration, invasion and apoptosis via ANGPT2 [65] | Down-regulated in ectopic endometrium [65] | |
miR-210-3p | Up-regulated in secretory phase [24] | Regulation of cell proliferation and DNA damage response to oxidative stress [66] | up-regulated in eutopic and ectopic endometrium [66] |
miR-223 | Up-regulated in ectopic endometrium [62] | ||
miR-365 | Up-regulated in ectopic endometrium [62] | ||
miR-424 | Down-regulated by progesterone if high progesterone blood level [7] | Down-regulated in ectopic endometrium [62] | |
miR-451 | Regulation of proliferation and apoptosis [58] | Down-regulated in eutopic endometrium [58] | |
miR-543 | Down-regulated in eutopic endometrium during implantation window [68] |
7.3. Endometrial Cancer
8. Perspectives
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Buffet, N.C.; Djakoure, C.; Maitre, S.C.; Bouchard, P. Regulation of the human menstrual cycle. Front Neuroendocrinol. 1998, 19, 151–186. [Google Scholar] [CrossRef]
- D’hauterive, S.P.; Charlet-Renard, C.; Goffin, F.; Foidart, M.; Geenen, V. The implantation window. J Gynecol. Obstet. Biol. Reprod. 2002, 31, 440–455. [Google Scholar]
- Gellersen, B.; Brosens, I.A.; Brosens, J. Decidualization of the Human Endometrium: Mechanisms, Functions, and Clinical Perspectives. Semin. Reprod. Med. 2007, 25, 445–453. [Google Scholar] [CrossRef] [PubMed]
- Zondervan, K.T.; Becker, C.M.; Missmer, S.A. Endometriosis. Longo DL, éditeur. N. Engl. J. Med. 2020, 382, 1244–1256. [Google Scholar] [CrossRef]
- Yong, P.J.; Talhouk, A.; Anglesio, M.S. Somatic Genomic Events in Endometriosis: Review of the Literature and Approach to Phenotyping. Reprod. Sci. 2021, 1–15. [Google Scholar] [CrossRef]
- Craciunas, L.; Gallos, I.; Chu, J.; Bourne, T.; Quenby, S.; Brosens, J.J.; Coomarasamy, A. Conventional and modern markers of endometrial receptivity: A systematic review and meta-analysis. Hum. Reprod. Updat. 2019, 25, 202–223. [Google Scholar] [CrossRef]
- Huang, J.; Qin, H.; Yang, Y.; Chen, X.; Zhang, J.; Laird, S.; Wang, R.; Chan, T.; Li, T.C. A comparison of transcriptomic profiles in endometrium during window of implantation between women with unexplained recurrent implantation failure and recurrent miscarriage. Reprod. Camb. Engl. 2017, 153, 749–758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Njoku, K.; Chiasserini, D.; Whetton, A.D.; Crosbie, E.J. Proteomic Biomarkers for the Detection of Endometrial Cancer. Cancers 2019, 11, 1572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferlita, A.L.; Battaglia, R.; Andronico, F.; Caruso, S.; Cianci, A.; Purrello, M. Non-Coding RNAs in Endometrial Physiopathology. Int. J. Mol. Sci. 2018, 19, 2120. [Google Scholar] [CrossRef] [Green Version]
- Catalanotto, C.; Cogoni, C.; Zardo, G. MicroRNA in Control of Gene Expression: An Overview of Nuclear Functions. Int. J. Mol. Sci. 2016, 17, 1712. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Niu, Z.; Li, Q.; Pang, R.T.; Chiu, C.N.; Yeung, W.S.-B. MicroRNA and Embryo Implantation. Am. J. Reprod. Immunol. 2015, 75, 263–271. [Google Scholar] [CrossRef]
- Li, R.; Qiao, J.; Wang, L.; Li, L.; Zhen, X.; Liu, P. MicroRNA array and microarray evaluation of endometrial receptivity in patients with high serum progesterone levels on the day of hCG administration. Reprod. Biol. Endocrinol. 2011, 9, 29. [Google Scholar] [CrossRef] [Green Version]
- Raja, M.H.R.; Farooqui, N.; Zuberi, N.; Ashraf, M.; Azhar, A.; Baig, R. Endometriosis, infertility and MicroRNA’s: A review. J. Gynecol. Obstet. Hum. Reprod. 2021, 50, 102157. [Google Scholar] [CrossRef]
- Donkers, H.; Bekkers, R.; Galaal, K. Diagnostic value of microRNA panel in endometrial cancer: A systematic review. Oncotarget 2020, 11, 2010–2023. [Google Scholar] [CrossRef] [PubMed]
- Canlorbe, G.; Wang, Z.; Laas, E.; Bendifallah, S.; Castela, M.; Lefèvre, M.; Chabbert-Buffet, N.; Daraï, E.; Aractingi, S.; Méhats, C.; et al. Identification of microRNA expression profile related to lymph node status in women with early-stage grade 1–2 endometrial cancer. Mod. Pathol. 2016, 29, 391–401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ambros, V. The functions of animal microRNAs. Nature 2004, 431, 350–355. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Kim, M.; Han, J.; Yeom, K.-H.; Lee, S.; Baek, S.H.; Kim, V.N. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 2004, 23, 4051–4060. [Google Scholar] [CrossRef]
- Borchert, G.; Lanier, W.; Davidson, B.L. RNA polymerase III transcribes human microRNAs. Nat. Struct. Mol. Biol. 2006, 13, 1097–1101. [Google Scholar] [CrossRef]
- Klinge, C.M. miRNAs and estrogen action. Trends Endocrinol. Metab. 2012, 23, 223–233. [Google Scholar] [CrossRef] [Green Version]
- De Sousa, M.C.; Gjorgjieva, M.; Dolicka, D.; Sobolewski, C.; Foti, M. Deciphering miRNAs’ Action through miRNA Editing. Int. J. Mol. Sci. 2019, 20, 11. [Google Scholar]
- Selbach, M.; Schwanhäusser, B.; Thierfelder, N.; Fang, Z.; Khanin, R.; Rajewsky, N. Widespread changes in protein synthesis induced by microRNAs. Nature 2008, 455, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Kappel, A.; Keller, A. miRNA assays in the clinical laboratory: Workflow, detection technologies and automation aspects. Clin. Chem. Lab. Med. 2017, 55, 636–647. [Google Scholar] [CrossRef]
- Munro, S.K.; Farquhar, C.M.; Mitchell, M.D.; Ponnampalam, A.P. Epigenetic regulation of endometrium during the menstrual cycle. Mol. Hum. Reprod. 2010, 16, 297–310. [Google Scholar] [CrossRef] [Green Version]
- Gibson, D.; Greaves, E.; Critchley, H.; Saunders, P. Estrogen-dependent regulation of human uterine natural killer cells promotes vascular remodelling via secretion of CCL2. Hum. Reprod. 2015, 30, 1290–1301. [Google Scholar] [CrossRef] [PubMed]
- Lessey, B.A. Fine tuning of endometrial function by estrogen and progesterone through microRNAs. Biol. Reprod. 2010, 82, 653–655. [Google Scholar] [CrossRef] [Green Version]
- Evans, R.M. The steroid and thyroid hormone receptor superfamily. Science 1988, 240, 889–895. [Google Scholar] [CrossRef] [PubMed]
- Patel, B.; Elguero, S.; Thakore, S.; Dahoud, W.; Bedaiwy, M.; Mesiano, S. Role of nuclear progesterone receptor isoforms in uterine pathophysiology. Hum. Reprod. Updat. 2015, 21, 155–173. [Google Scholar] [CrossRef] [Green Version]
- Cohen, A.; Shmoish, M.; Levi, L.; Cheruti, U.; Levavi-Sivan, B.; Lubzens, E. Alterations in Micro-Ribonucleic Acid Expression Profiles Reveal a Novel Pathway for Estrogen Regulation. Endocrinology 2008, 149, 1687–1696. [Google Scholar] [CrossRef]
- Reed, B.G.; Babayev, S.N.; Chen, L.X.; Carr, B.R.; Word, R.A.; Jimenez, P.T. Estrogen-regulated miRNA-27b is altered by bisphenol A in human endometrial stromal cells. Reproduction 2018, 156, 559–567. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Zhao, Y.; Yu, Y.; Li, R.; Qiao, J. MiR-125b regulates endometrial receptivity by targeting MMP26 in women undergoing IVF-ET with elevated progesterone on HCG priming day. Sci. Rep. 2016, 6, 25302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, J.-L.; Yuan, D.-Z.; Zhao, Y.-B.; Nie, L.; Lei, Y.; Liu, M.; Long, Y.; Zhang, J.-H.; Blok, L.J.; Burger, C.W.; et al. Progesterone-induced miR-133a inhibits the proliferation of endometrial epithelial cells. Acta Physiol. 2016, 219, 685–694. [Google Scholar] [CrossRef]
- Kuokkanen, S.; Chen, B.; Ojalvo, L.; Benard, L.; Santoro, N.; Pollard, J.W. Genomic Profiling of MicroRNAs and Messenger RNAs Reveals Hormonal Regulation in MicroRNA Expression in Human Endometrium1. Biol. Reprod. 2010, 82, 791–801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cochrane, D.R.; Cittelly, D.M.; Richer, J.K. Steroid receptors and microRNAs: Relationships revealed. Steroids 2011, 76, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Bao, W.; Zhang, Y.; Li, S.; Fan, Q.; Qiu, M.; Wang, Y. miR-107-5p promotes tumor proliferation and invasion by targeting estrogen receptor-α in endometrial carcinoma. Oncol. Rep. 2019, 41, 1575–1585. [Google Scholar] [CrossRef]
- Xiao, L.; Pei, T.; Huang, W.; Zhou, M.; Fu, J.; Tan, J. MicroRNA22-5p targets ten-eleven translocation and regulates estrogen receptor 2 expression in infertile women with minimal/mild endometriosis during implantation window. PLoS ONE 2020, 15, e0234086. [Google Scholar] [CrossRef]
- Pei, T.; Liu, C.; Liu, T.; Xiao, L.; Luo, B.; Tan, J.; Li, X.; Zhou, G.; Duan, C.; Huang, W. miR-194-3p Represses the Progesterone Receptor and Decidualization in Eutopic Endometrium from Women with Endometriosis. Endocrinology 2018, 159, 2554–2562. [Google Scholar] [CrossRef]
- Zhou, M.; Fu, J.; Xiao, L.; Yang, S.; Song, Y.; Zhang, X.; Feng, X.; Sun, H.; Xu, W.; Huang, W. miR-196a overexpression activates the MEK/ERK signal and represses the progesterone receptor and decidualization in eutopic endometrium from women with endometriosis. Hum. Reprod. 2016, 31, 2598–2608. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Peng, J.; Shi, Y.; Sun, P. miR-92a promotes progesterone resistance in endometriosis through PTEN/AKT pathway. Life Sci. 2020, 242, 117190. [Google Scholar] [CrossRef]
- Liang, J.; Wang, S.; Wang, Z. Role of microRNAs in embryo implantation. Reprod. Biol. Endocrinol. 2017, 15, 1–11. [Google Scholar] [CrossRef]
- Dong, X.; Sui, C.; Huang, K.; Wang, L.; Hu, D.; Xiong, T. MicroRNA-223-3p suppresses leukemia inhibitory factor expression and pinopodes formation during embryo implantation in mice. Am. J. Transl. Res. 2016, 8, 1155–1163. [Google Scholar] [PubMed]
- Chu, B.; Zhong, L.; Dou, S.; Wang, J.; Li, J.; Wang, M. miRNA-181 regulates embryo implantation in mice through targeting leukemia inhibitory factor. J. Mol. Cell Biol. 2015, 7, 12–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inyawilert, W.; Fu, T.-Y.; Lin, C.-T.; Tang, P.-C. Let-7-mediated suppression of mucin 1 expression in the mouse uterus during embryo implantation. J. Reprod. Dev. 2015, 61, 138–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inyawilert, W.; Fu, T.-Y.; Lin, C.-T.; Tang, P.-C. MicroRNA-199a mediates mucin 1 expression in mouse uterus during implantation. Reprod. Fertil. Dev. 2014, 26, 653–664. [Google Scholar] [CrossRef]
- Kang, Y.-J.; Lees, M.; Matthews, L.C.; Kimber, S.; Forbes, K.; Aplin, J.D. miR-145 suppresses embryo-epithelial juxtacrine communication at implantation by modulating maternal IGF1R. J. Cell Sci. 2015, 128, 804–814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Gou, J.; Jia, J.; Zhao, X. MicroRNA-429 functions as a regulator of epithelial–mesenchymal transition by targeting Pcdh8 during murine embryo implantation. Hum. Reprod. 2015, 30, 507–518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Jia, J.; Gou, J.; Tong, A.; Liu, X.; Zhao, X. Mmu-miR-126a-3p plays a role in murine embryo implantation by regulating Itga11. Reprod. Biomed. Online 2015, 31, 384–393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Xie, Y.; Wu, M.; Geng, Y.; Li, R.; Xu, L. Expression of mmu-miR-96 in the endometrium during early pregnancy and its regulatory effects on stromal cell apoptosis via Bcl2. Mol. Med. Rep. 2017, 15, 1547–1554. [Google Scholar] [CrossRef] [Green Version]
- Nie, L.; Zhao, Y.-B.; Zhao, D.; Long, Y.; Lei, Y.; Liu, M. Progesterone-induced miR-152 interferes with embryonic im-plantation by downregulating GLUT3 in endometrial epithelium. Am. J. Physiol. Endocrinol. Metab. 2019, 316, E557–E567. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yan, J.; Pan, X. miR-141-3p affects apoptosis and migration of endometrial stromal cells by targeting KLF-12. Pflügers Arch. Eur. J. Physiol. 2019, 471, 1055–1063. [Google Scholar] [CrossRef]
- Qian, K.; Hu, L.; Chen, H.; Li, H.; Liu, N.; Li, Y. Hsa-miR-222 is involved in differentiation of endometrial stromal cells in vitro. Endocrinology 2009, 150, 4734–4743. [Google Scholar] [CrossRef] [Green Version]
- Altmäe, S.; Martinez-Conejero, J.A.; Esteban, F.J.; Ruiz-Alonso, M.; Stavreus-Evers, A.; Horcajadas, J.A.; Salumets, A. MicroRNAs miR-30b, miR-30d, and miR-494 Regulate Human Endometrial Receptivity. Reprod. Sci. 2012, 20, 308–317. [Google Scholar] [CrossRef] [Green Version]
- Kresowik, J.D.K.; Devor, E.J.; Van Voorhis, B.J.; Leslie, K.K. MicroRNA-31 is significantly elevated in both human endometrium and serum during the window of implantation: A potential biomarker for optimum receptivity. Biol. Reprod. 2014, 91, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thornhill, A.; Dedie-Smulders, C.; Geraedts, J.; Harper, J.; Harton, G.; Lavery, S.; Moutou, C.; Robinson, M.; Schmutzler, A.; Scriven, P.; et al. ESHRE PGD Consortium ‘Best practice guidelines for clinical preimplantation genetic diagnosis (PGD) and preimplantation genetic screening (PGS)’. Hum. Reprod. 2005, 20, 35–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lédée, N.; Petitbarat, M.; Chevrier, L.; Vitoux, D.; Vezmar, K.; Rahmati, M.; Dubanchet, S.; Gahéry, H.; Bensussan, A.; Chaouat, G. The Uterine Immune Profile May Help Women With Repeated Unexplained Embryo Implantation Failure After In Vitro Fertilization. Am. J. Reprod. Immunol. 2016, 75, 388–401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Mariee, N.; Jiang, L.; Liu, Y.; Wang, C.C.; Li, T.C. Measurement of uterine natural killer cell percentage in the priimplantation endometrium from fertile women and women with recurrent reproductive failure: Establishment of a refer-ence range. Am. J. Obstet. Gynecol. 2017, 217, 680-e1. [Google Scholar] [CrossRef]
- Revel, A.; Achache, H.; Stevens, J.; Smith, Y.; Reich, R. MicroRNAs are associated with human embryo implantation defects. Hum. Reprod. 2011, 26, 2830–2840. [Google Scholar] [CrossRef]
- Choi, Y.; Kim, H.-R.; Lim, E.J.; Park, M.; Yoon, J.A.; Kim, Y.S. Integrative Analyses of Uterine Transcriptome and MicroRNAome Reveal Compromised LIF-STAT3 Signaling and Progesterone Response in the Endometrium of Patients with Re-current/Repeated Implantation Failure (RIF). PLoS ONE. 2016, 11, e0157696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.H.; Lu, F.; Yang, W.J.; Yang, P.E.; Chen, W.M.; Kang, S.T. A novel platform for discovery of differentially expressed microRNAs in patients with repeated implantation failure. Fertil. Steril. 2021, 116, 181–188. [Google Scholar] [CrossRef]
- Shi, C.; Shen, H.; Fan, L.-J.; Guan, J.; Zheng, X.-B.; Chen, X.; Liang, R.; Zhang, X.-W.; Cui, Q.-H.; Sun, K.-K.; et al. Endometrial MicroRNA Signature during the Window of Implantation Changed in Patients with Repeated Implantation Failure. Chin. Med. J. 2017, 130, 566–573. [Google Scholar] [CrossRef]
- Ma, Y.; Huang, Y.-X.; Chen, Y.-Y. miRNA-34a-5p downregulation of VEGFA in endometrial stem cells contributes to the pathogenesis of endometriosis. Mol. Med. Rep. 2017, 16, 8259–8264. [Google Scholar] [CrossRef]
- Rekker, K.; Tasa, T.; Saare, M.; Samuel, K.; Kadastik, Ü.; Karro, H. Differentially-Expressed miRNAs in Ectopic Stromal Cells Contribute to Endometriosis Development: The Plausible Role of miR-139-5p and miR-375. Int. J. Mol. Sci. 2018, 19, 3789. [Google Scholar] [CrossRef] [Green Version]
- Zondervan, K.T.; Becker, C.M.; Koga, K.; Missmer, S.A.; Taylor, R.N.; Vigano, P. Endometriosis. Nat. Rev. Dis. Primer. 2018, 4, 10. [Google Scholar] [CrossRef]
- Taghavipour, M.; Sadoughi, F.; Mirzaei, H.; Yousefi, B.; Moazzami, B.; Chaichian, S. Apoptotic functions of mi-croRNAs in pathogenesis, diagnosis, and treatment of endometriosis. Cell Biosci. 2020, 10, 12. [Google Scholar] [CrossRef] [PubMed]
- Burney, R.; Hamilton, A.; Aghajanova, L.; Vo, K.; Nezhat, C.; Lessey, B.; Giudice, L. MicroRNA expression profiling of eutopic secretory endometrium in women with versus without endometriosis. Mol. Hum. Reprod. 2009, 15, 625–631. [Google Scholar] [CrossRef]
- Burney, R.O.; Talbi, S.; Hamilton, A.E.; Vo, K.C.; Nyegaard, M.; Nezhat, C.R.; Lessey, B.A.; Giudice, L.C. Gene Expression Analysis of Endometrium Reveals Progesterone Resistance and Candidate Susceptibility Genes in Women with Endometriosis. Endocrinology 2007, 148, 3814–3826. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Jiang, Y.; Pan, D. miR-30c may serve a role in endometriosis by targeting plasminogen activator inhibitor-1. Exp. Ther. Med. 2017, 14, 4846–4852. [Google Scholar] [CrossRef]
- Gao, S.; Liu, S.; Gao, Z.-M.; Deng, P.; Wang, D.-B. Reduced microRNA-451 expression in eutopic endometrium contributes to the pathogenesis of endometriosis. World, J. Clin. Cases 2019, 7, 2155–2164. [Google Scholar] [CrossRef]
- Mashayekhi, P.; Noruzinia, M.; Zeinali, S.; Khodaverdi, S. Endometriotic Mesenchymal Stem Cells Epigenetic Pathogenesis: Deregulation of miR-200b, miR-145, and let7b in A Functional Imbalanced Epigenetic Disease. Cell J. 2019, 21, 179–185. [Google Scholar] [PubMed]
- Rehfeld, F.; Rohde, A.M.; Nguyen, D.T.T.; Wulczyn, F.G. Lin28 and let-7: Ancient milestones on the road from pluripotency to neurogenesis. Cell Tissue Res. 2014, 359, 145–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sansal, I.; Sellers, W.R. The Biology and Clinical Relevance of the PTEN Tumor Suppressor Pathway. J. Clin. Oncol. 2004, 22, 2954–2963. [Google Scholar] [CrossRef] [PubMed]
- Teague, O.E.M.C.; Van der Hoek, K.H.; Van der Hoek, M.B.; Perry, N.; Wagaarachchi, P.; Robertson, S.A. MicroRNA-regulated pathways associated with endometriosis. Mol. Endocrinol. Baltim. Md. 2009, 23, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Eggers, J.C.; Martino, V.; Reinbold, R.; Schäfer, S.D.; Kiesel, L.; Starzinski-Powitz, A.; Schüring, A.; Kemper, B.; Greve, B.; Götte, M. microRNA miR-200b affects proliferation, invasiveness and stemness of endometriotic cells by targeting ZEB1, ZEB2 and KLF4. Reprod. Biomed. Online 2016, 32, 434–445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, Z.; Chen, Y.; Zhao, Y.; Xu, C.; Zhang, A.; Zhang, Q.; Wang, D.; He, J.; Hua, W.; Duan, P. miR-200c suppresses endometriosis by targeting MALAT1 in vitro and in vivo. Stem Cell Res. Ther. 2017, 8, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, C.-F.; Liu, M.-J.; Wang, W.; Wu, S.; Huang, Y.-X.; Chen, G.-B. miR-205-5p inhibits human endometriosis progression by targeting ANGPT2 in endometrial stromal cells. Stem Cell Res. Ther. 2019, 10, 287. [Google Scholar] [CrossRef]
- Dai, Y.; Lin, X.; Xu, W.; Lin, X.; Huang, Q.; Shi, L.; Pan, Y.; Zhang, Y.; Zhu, Y.; Li, C.; et al. MiR-210-3p protects endometriotic cells from oxidative stress-induced cell cycle arrest by targeting BARD1. Cell Death Dis. 2019, 10, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.-W.; Hong, L.; Xu, X.-X.; Wang, Q.; Huang, J.-L.; Jiang, L. Regulation of miR-33b on endometriosis and expression of related factors. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 2027–2033. [Google Scholar]
- Yang, P.; Wu, Z.; Ma, C.; Pan, N.; Wang, Y.; Yan, L. Endometrial miR-543 Is Downregulated During the Implantation Window in Women With Endometriosis-Related Infertility. Reprod. Sci. 2018, 26, 900–908. [Google Scholar] [CrossRef]
- Zhao, Q.; Han, B.; Zhang, Y.; Su, K.; Wang, C.; Hai, P. Effect of miR-194-5p regulating STAT1/mTOR signaling pathway on the biological characteristics of ectopic endometrial cells from mice. Am. J. Transl. Res. 2020, 12, 6136–6148. [Google Scholar]
- Joshi, N.R.; Miyadahira, E.H.; Afshar, Y.; Jeong, J.-W.; Young, S.L.; Lessey, B.A.; Serafini, P.C.; Fazleabas, A.T. Progesterone resistance in endometriosis is modulated by the altered expression of microRNA-29c and FKBP4. J. Clin. Endocrinol. Metab. 2016, 102, 141–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hawkins, S.M.; Creighton, C.J.; Han, D.Y.; Zariff, A.; Anderson, M.; Gunaratne, P.H.; Matzuk, M.M. Functional MicroRNA Involved in Endometriosis. Mol. Endocrinol. 2011, 25, 821–832. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Datas from International Agency for Research on Cancer. Available online: http://gco.iarc.fr/today/online-analysis-table?v=2018&mode=cancer&mode_population=continents&population=900&populations=900&key=asr&sex=0&cancer=39&type=0&statistic=5&prevalence=0&population_group=0&ages_group%5B%5D=0&ages_group%5B%5D=17&nb_items=5&group_cancer=1&include_nmsc=1&include_nmsc_other=1 (accessed on 20 December 2019).
- Delangle, R.; De Foucher, T.; Larsen, A.K.; Sabbah, M.; Azaïs, H.; Bendifallah, S. The Use of microRNAs in the Management of Endometrial Cancer: A Meta-Analysis. Cancers 2019, 11, 832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colas, E.; Pedrola, N.; Devis, L.; Ertekin, T.; Campoy, I.; Martínez, E. The EMT signaling pathways in endometrial carcinoma. Clin. Transl. Oncol. 2012, 14, 715–720. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Martín, J.; Díaz-López, A.; Moreno-Bueno, G.; Castilla, M.Á.; Rosa-Rosa, J.M.; Cano, A. A core microRNA signature associated with inducers of the epithelial-to-mesenchymal transition. J. Pathol. 2014, 232, 319–329. [Google Scholar] [CrossRef] [PubMed]
- Romero-Pérez, L.; Castilla, M.Á.; López-García, M.Á.; Diaz-Martin, J.; Biscuola, M.; Ramiro-Fuentes, S.; Oliva, E.; Matias-Guiu, X.; Prat, J.; Cano, A.; et al. Molecular events in endometrial carcinosarcomas and the role of high mobility group AT-hook 2 in endometrial carcinogenesis. Hum. Pathol. 2013, 44, 244–254. [Google Scholar] [CrossRef]
- Kim, T.; Veronese, A.; Pichiorri, F.; Lee, T.J.; Jeon, Y.-J.; Volinia, S.; Pineau, P.; Marchio, A.; Palatini, J.; Suh, S.-S.; et al. p53 regulates epithelial–mesenchymal transition through microRNAs targeting ZEB1 and ZEB2. J. Exp. Med. 2011, 208, 875–883. [Google Scholar] [CrossRef]
- Otake, S.; Itoh, Y.; Omata, C.; Saitoh, M.; Miyazawa, K. ZEB1 and oncogenic Ras constitute a regulatory switch for stimulus-dependent E-cadherin downregulation. Cancer Sci. 2020, 112, 205. [Google Scholar] [CrossRef]
- Park, S.-M.; Gaur, A.B.; Lengyel, E.; Peter, M.E. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 2008, 22, 894–907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montserrat, N.; Mozos, A.; Llobet, D.; Dolcet, X.; Pons, C.; De Herreros, A.G.; Matias-Guiu, X.; Prat, J. Epithelial to mesenchymal transition in early stage endometrioid endometrial carcinoma. Hum. Pathol. 2012, 43, 632–643. [Google Scholar] [CrossRef] [PubMed]
- Hiroki, E.; Akahira, J.-I.; Suzuki, F.; Nagase, S.; Ito, K.; Suzuki, T.; Sasano, H.; Yaegashi, N. Changes in microRNA expression levels correlate with clinicopathological features and prognoses in endometrial serous adenocarcinomas. Cancer Sci. 2009, 101, 241–249. [Google Scholar] [CrossRef]
- Opławski, M.; Nowakowski, R.; Średnicka, A.; Ochnik, D.; Grabarek, B.O.; Boroń, D. Molecular Landscape of the Epithelial-Mesenchymal Transition in Endometrioid Endometrial Cancer. J. Clin. Med. 2021, 10, 1520. [Google Scholar] [CrossRef]
Application | Sensitivity | Specificity | Availability | |
---|---|---|---|---|
Electrochemical or potentiometric | Diagnostic test | High | Excellent | Limited |
Northern blotting | Validation technique | Poor | High | Widely available |
NGS | Discovery, validation, diagnostic | High | High | Limited |
Microarray | Discovery, validation, diagnostic | Low | Low | Rather available |
RT-qPCR | Validation, diagnostic | Excellent | Excellent | Widely available |
NanoString® | Validation, diagnostic | High | High | Limited |
Immunoassay | Diagnostic test | Low | Low | Limited |
miRNA | Sex Steroid Hormone Regulation in Endometrium | Function in the Endometrium | RIF |
---|---|---|---|
miR-20b-5p | Up-regulated [58] | ||
miR-21 miR-21-3p miR-21-5p | Up-regulated in implantation window compared with pre-receptive endometrium [51] | Down-regulated [57] Up-regulated [59] | |
miR-23b | Regulation of H2AFX (involved in cell cycle arrest) and sFRP-4 (Wnt signaling modulator) expression [56] | Up-regulated [56] | |
miR-27b | Down-regulated by estrogen in vitro [29] | Up-regulated [56] | |
miR-29b | Up-regulated in secretory phase [32] | Up-regulated [57] | |
miR-32 | Down-regulated [56] | ||
miR-34 miR-34a-5p miR-34b | Regulation of VEGFA expression and cell proliferation [60] | Up-regulated [57] | |
miR-99a | Up-regulated [56] | ||
miR-138-1-3p | Up-regulated [57] | ||
miR-139-5p | Regulation of HOXA10 expression [61] | Up-regulated [56] | |
miR-144-3p | Down-regulated [58] | ||
miR-145 | Down-regulated in the implantation window [52] | Regulation of IGF1R expression in mouse [44]; down-regulation of N-cadherin and netrin-4 expression (adhesion molecules) in RIF [56] | Up-regulated [56] |
miR-146a-5p | Up-regulated [57] | ||
miR-150 | Up-regulated [56] | ||
miR-155-5p | Up-regulated [58] | ||
miR-195 | Up-regulated [56] | ||
miR-330-5p | Up-regulated [58] | ||
miR-342-3p | Up-regulated [56] | ||
miR-363-3p | Up-regulated [57] | ||
miR-374b | Up-regulated [56] | ||
miR-628 | Predicted target of progesterone [37] | Down-regulated [56] | |
miR-652 | Up-regulated [56] | ||
miR-718 | Down-regulated [58] | ||
miR-874 | Down-regulated [56] | ||
miR-940 | Down-regulated [58] |
miRNA | Sex Steroid Hormone Regulation in Endometrium | Function | Endometrial Cancer |
---|---|---|---|
miR-10b | vascular invasion [90] | Down-regulated [90] | |
miR-29b | Up-regulated in secretory phase [32] | vascular invasion [90] | Down-regulated [90] |
miR-30d | Promotion of EMT [91] | Down-regulated [91] | |
miR-34b | Down-regulated [90] | ||
miR-101 | Down-regulated [90] | ||
miR-106 | Promotion of EMT [91] | Up-regulated [91] | |
miR-133 | Up-regulated by progesterone [31] | Promotion of EMT [84]; promotion of endometrial epithelial cell proliferation [31] | Down-regulated [90] |
miR-141 | Promotion of EMT [84]; regulation of ZEB1/ZEB2 expression [86,87,88] | Up-regulated [84,90] | |
miR-144 | Promotion of EMT [91] | Up-regulated [91] | |
miR-152 | Up-regulated by progesterone [48] | regulation of GLUT3 expression [48] | Down-regulated [90] |
miR-200 | Promotion of EMT [84]; regulation of ZEB1/ZEB2 expression [86,87,88] | Up-regulated [84] | |
miR-203 | Up-regulated in secretory phase and in implantation window [32] | Promotion of EMT [84] | Up-regulated [84] |
miR-205 | Promotion of EMT [84] | Up-regulated [84,90] | |
miR-224 | Promotion of EMT [84] | Down-regulated [84] | |
miR-411 | Down-regulated [90] | ||
miR-429 | down-regulated during implantation in mouse [45] | Promotion of EMT [84] | Up-regulated [84] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolanska, K.; Bendifallah, S.; Canlorbe, G.; Mekinian, A.; Touboul, C.; Aractingi, S.; Chabbert-Buffet, N.; Daraï, E. Role of miRNAs in Normal Endometrium and in Endometrial Disorders: Comprehensive Review. J. Clin. Med. 2021, 10, 3457. https://doi.org/10.3390/jcm10163457
Kolanska K, Bendifallah S, Canlorbe G, Mekinian A, Touboul C, Aractingi S, Chabbert-Buffet N, Daraï E. Role of miRNAs in Normal Endometrium and in Endometrial Disorders: Comprehensive Review. Journal of Clinical Medicine. 2021; 10(16):3457. https://doi.org/10.3390/jcm10163457
Chicago/Turabian StyleKolanska, Kamila, Sofiane Bendifallah, Geoffroy Canlorbe, Arsène Mekinian, Cyril Touboul, Selim Aractingi, Nathalie Chabbert-Buffet, and Emile Daraï. 2021. "Role of miRNAs in Normal Endometrium and in Endometrial Disorders: Comprehensive Review" Journal of Clinical Medicine 10, no. 16: 3457. https://doi.org/10.3390/jcm10163457