Long COVID: Distinction between Organ Damage and Deconditioning
Abstract
:1. Introduction
2. Materials and Methods
Statistics
3. Results
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rattka, M.; Baumhardt, M.; Dreyhaupt, J.; Rothenbacher, D.; Thiessen, K.; Markovic, S.; Rottbauer, W.; Imhof, A. 31 days of COVID-19—Cardiac events during restriction of public life—A comparative study. Clin. Res. Cardiol. 2020, 109, 1476–1482. [Google Scholar] [CrossRef]
- Rao, G.; Singh, A.; Gandhotra, P.; Meraj, P.; Jauhar, S.; Kuvin, J.; Epstein, L.; Naidu, S.; Arora, R.; Kaplan, B.; et al. Paradigm Shifts in Cardiac Care: Lessons Learned From COVID-19 at a Large New York Health System. Curr. Probl. Cardiol. 2021, 46, 100675. [Google Scholar] [CrossRef]
- Varga, Z.; Flammer, A.J.; Steiger, P.; Haberecker, M.; Andermatt, R.; Zinkernagel, A.S.; Mehra, M.R.; Schuepbach, R.A.; Ruschitzka, F.; Moch, H. Endothelial cell infection and endotheliitis in COVID-19. Lancet 2020, 395, 1417–1418. [Google Scholar] [CrossRef]
- Sepehrinezhad, A.; Shahbazi, A.; Negah, S.S. COVID-19 virus may have neuroinvasive potential and cause neurological complications: A perspective review. J. Neurovirol. 2020, 26, 324–329. [Google Scholar] [CrossRef] [PubMed]
- Puelles, V.G.; Lütgehetmann, M.; Lindenmeyer, M.T.; Sperhake, J.P.; Wong, M.N.; Allweiss, L.; Chilla, S.; Heinemann, A.; Wanner, N.; Liu, S.; et al. Multiorgan and Renal Tropism of SARS-CoV-2. N. Engl. J. Med. 2020, 383, 590–592. [Google Scholar] [CrossRef] [PubMed]
- Escher, F.; Pietsch, H.; Aleshcheva, G.; Bock, T.; Baumeier, C.; Elsaesser, A.; Wenzel, P.; Hamm, C.; Westenfeld, R.; Schultheiss, M.; et al. Detection of viral SARS-CoV-2 genomes and histopathological changes in endomyocardial biopsies. ESC Heart Fail. 2020, 7, 2440–2447. [Google Scholar] [CrossRef] [PubMed]
- Augustin, M.; Schommers, P.; Stecher, M.; Dewald, F.; Gieselmann, L.; Gruell, H.; Horn, C.; Vanshylla, K.; Di Cristanziano, V.; Osebold, L.; et al. Post-COVID syndrome in non-hospitalised patients with COVID-19: A longitudinal prospective cohort study. Lancet Reg. Health Eur. 2021, 6, 100122. [Google Scholar] [CrossRef] [PubMed]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 233–270. [Google Scholar] [CrossRef]
- Agostoni, P.; Dumitrescu, D. How to perform and report a cardiopulmonary exercise test in patients with chronic heart failure. Int. J. Cardiol. 2019, 288, 107–113. [Google Scholar] [CrossRef]
- Sietsema, K.E.; Sue, D.Y.; Stringer, W.W. Wasserman & Whipp’s Principles of Exercise Testing and Interpretation, 6th ed.; Wolters Kluwer: Philadelphia, PA, USA, 2021; ISBN 1975136438. [Google Scholar]
- Kramer, C.M.; Barkhausen, J.; Bucciarelli-Ducci, C.; Flamm, S.D.; Kim, R.J.; Nagel, E. Standardized cardiovascular magnetic resonance imaging (CMR) protocols: 2020 update. J. Cardiovasc. Magn. Reson. 2020, 22, 17. [Google Scholar] [CrossRef]
- Chevinsky, J.R.; Tao, G.; Lavery, A.M.; Kukielka, E.A.; Click, E.S.; Malec, D.; Kompaniyets, L.; Bruce, B.B.; Yusuf, H.; Goodman, A.B.; et al. Late conditions diagnosed 1–4 months following an initial COVID-19 encounter: A matched cohort study using inpatient and outpatient administrative data—United States, 1 March–30 June, 2020. Clin. Infect. Dis. 2021, 73, S5–S16. [Google Scholar] [CrossRef]
- Hosp, J.A.; Dressing, A.; Blazhenets, G.; Bormann, T.; Rau, A.; Schwabenland, M.; Thurow, J.; Wagner, D.; Waller, C.; Niesen, W.D.; et al. Cognitive impairment and altered cerebral glucose metabolism in the subacute stage of COVID-19. Brain 2021, 144, 1263–1276. [Google Scholar] [CrossRef]
- Kotecha, T.; Knight, D.S.; Razvi, Y.; Kumar, K.; Vimalesvaran, K.; Thornton, G.; Patel, R.; Chacko, L.; Brown, J.T.; Coyle, C.; et al. Patterns of myocardial injury in recovered troponin-positive COVID-19 patients assessed by cardiovascular magnetic resonance. Eur. Heart J. 2021, 42, 1866–1878. [Google Scholar] [CrossRef]
- Makaronidis, J.; Firman, C.; Magee, C.G.; Mok, J.; Balogun, N.; Lechner, M.; Carnemolla, A.; Batterham, R.L. Distorted chemosensory perception and female sex associate with persistent smell and/or taste loss in people with SARS-CoV-2 antibodies: A community based cohort study investigating clinical course and resolution of acute smell and/or taste loss in people with and without SARS-CoV-2 antibodies in London, UK. BMC Infect. Dis. 2021, 21, 221. [Google Scholar] [CrossRef]
- Puntmann, V.O.; Carerj, M.L.; Wieters, I.; Fahim, M.; Arendt, C.; Hoffmann, J.; Shchendrygina, A.; Escher, F.; Vasa-Nicotera, M.; Zeiher, A.M.; et al. Outcomes of Cardiovascular Magnetic Resonance Imaging in Patients Recently Recovered From Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020, 5, 1265–1273. [Google Scholar] [CrossRef] [PubMed]
- Sykes, D.L.; Holdsworth, L.; Jawad, N.; Gunasekera, P.; Morice, A.H.; Crooks, M.G. Post-COVID-19 Symptom Burden: What is Long-COVID and How Should We Manage It? Lung 2021, 199, 113–119. [Google Scholar] [CrossRef]
- Stöbe, S.; Richter, S.; Seige, M.; Stehr, S.; Laufs, U.; Hagendorff, A. Echocardiographic characteristics of patients with SARS-CoV-2 infection. Clin. Res. Cardiol. 2020, 109, 1549–1566. [Google Scholar] [CrossRef] [PubMed]
- Carfì, A.; Bernabei, R.; Landi, F. Persistent Symptoms in Patients After Acute COVID-19. JAMA 2020, 324, 603–605. [Google Scholar] [CrossRef] [PubMed]
- Pavli, A.; Theodoridou, M.; Maltezou, H.C. Post-COVID syndrome: Incidence, clinical spectrum, and challenges for primary healthcare professionals. Arch. Med. Res. 2021, 52, 575–581. [Google Scholar] [CrossRef] [PubMed]
- Puricelli, F.; Reffo, E.; Cavaliere, A.; Di Salvo, G. Detection of residual subclinical myocardial damage by speckle-tracking echocardiography in previous autoimmune myocarditis. Eur. Heart J. Cardiovasc. Imaging 2021, 22, e87. [Google Scholar] [CrossRef] [PubMed]
- Chinali, M.; Franceschini, A.; Ciancarella, P.; Lisignoli, V.; Curione, D.; Ciliberti, P.; Esposito, C.; Del Pasqua, A.; Rinelli, G.; Secinaro, A. Echocardiographic two-dimensional speckle tracking identifies acute regional myocardial edema and sub-acute fibrosis in pediatric focal myocarditis with normal ejection fraction: Comparison with cardiac magnetic resonance. Sci. Rep. 2020, 10, 11321. [Google Scholar] [CrossRef]
- Wu, X.; Liu, X.; Zhou, Y.; Yu, H.; Li, R.; Zhan, Q.; Ni, F.; Fang, S.; Lu, Y.; Ding, X.; et al. 3-month, 6-month, 9-month, and 12-month respiratory outcomes in patients following COVID-19-related hospitalisation: A prospective study. Lancet Respir. Med. 2021, 9, 747–754. [Google Scholar] [CrossRef]
- Boutou, A.K.; Georgopoulou, A.; Pitsiou, G.; Stanopoulos, I.; Kontakiotis, T.; Kioumis, I. Changes in the respiratory function of COVID-19 survivors during follow-up: A novel respiratory disorder on the rise? Int. J. Clin. Pract. 2021, 2021, e14301. [Google Scholar] [CrossRef]
- Ingle, L.; Shelton, R.J.; Rigby, A.S.; Nabb, S.; Clark, A.L.; Cleland, J.G.F. The reproducibility and sensitivity of the 6-min walk test in elderly patients with chronic heart failure. Eur. Heart J. 2005, 26, 1742–1751. [Google Scholar] [CrossRef]
- Oki, Y.; Kaneko, M.; Fujimoto, Y.; Sakai, H.; Misu, S.; Mitani, Y.; Yamaguchi, T.; Yasuda, H.; Ishikawa, A. Usefulness of the 6-minute walk test as a screening test for pulmonary arterial enlargement in COPD. Int. J. Chron. Obstruct. Pulmon. Dis. 2016, 11, 2869–2875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinclair, R.C.F.; Batterham, A.M.; Davies, S.; Cawthorn, L.; Danjoux, G.R. Validity of the 6 min walk test in prediction of the anaerobic threshold before major non-cardiac surgery. Br. J. Anaesth. 2012, 108, 30–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kersten, J.; Heck, T.; Tuchek, L.; Rottbauer, W.; Buckert, D. The Role of Native T1 Mapping in the Diagnosis of Myocarditis in a Real-World Setting. J. Clin. Med. 2020, 9, 3810. [Google Scholar] [CrossRef] [PubMed]
- Kersten, J.; Güleroglu, A.M.; Rosenbohm, A.; Buckert, D.; Ludolph, A.C.; Hackenbroch, C.; Beer, M.; Bernhardt, P. Myocardial involvement and deformation abnormalities in idiopathic inflammatory myopathy assessed by CMR feature tracking. Int. J. Cardiovasc. Imaging 2021, 37, 597–603. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, V.M.; Schulz-Menger, J.; Holmvang, G.; Kramer, C.M.; Carbone, I.; Sechtem, U.; Kindermann, I.; Gutberlet, M.; Cooper, L.T.; Liu, P.; et al. Cardiovascular Magnetic Resonance in Nonischemic Myocardial Inflammation: Expert Recommendations. J. Am. Coll. Cardiol. 2018, 72, 3158–3176. [Google Scholar] [CrossRef]
- Bueno-Notivol, J.; Gracia-García, P.; Olaya, B.; Lasheras, I.; López-Antón, R.; Santabárbara, J. Prevalence of depression during the COVID-19 outbreak: A meta-analysis of community-based studies. Int. J. Clin. Health Psychol. 2021, 21, 100196. [Google Scholar] [CrossRef] [PubMed]
- Connolly, B.; Salisbury, L.; O’Neill, B.; Geneen, L.; Douiri, A.; Grocott, M.P.W.; Hart, N.; Walsh, T.S.; Blackwood, B. Exercise rehabilitation following intensive care unit discharge for recovery from critical illness. Cochrane Database Syst. Rev. 2015, 14, CD008632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsieh, M.-J.; Lee, W.-C.; Cho, H.-Y.; Wu, M.-F.; Hu, H.-C.; Kao, K.-C.; Chen, N.-H.; Tsai, Y.-H.; Huang, C.-C. Recovery of pulmonary functions, exercise capacity, and quality of life after pulmonary rehabilitation in survivors of ARDS due to severe influenza A (H1N1) pneumonitis. Influenza Other Respir. Viruses 2018, 12, 643–648. [Google Scholar] [CrossRef] [PubMed]
- Luyt, C.-E.; Combes, A.; Becquemin, M.-H.; Beigelman-Aubry, C.; Hatem, S.; Brun, A.-L.; Zraik, N.; Carrat, F.; Grenier, P.A.; Richard, J.-C.M.; et al. Long-term outcomes of pandemic 2009 influenza A(H1N1)-associated severe ARDS. Chest 2012, 142, 583–592. [Google Scholar] [CrossRef]
- Needham, D.M.; Davidson, J.; Cohen, H.; Hopkins, R.O.; Weinert, C.; Wunsch, H.; Zawistowski, C.; Bemis-Dougherty, A.; Berney, S.C.; Bienvenu, O.J.; et al. Improving long-term outcomes after discharge from intensive care unit: Report from a stakeholders’ conference. Crit. Care Med. 2012, 40, 502–509. [Google Scholar] [CrossRef]
- Parry, S.M.; Nalamalapu, S.R.; Nunna, K.; Rabiee, A.; Friedman, L.A.; Colantuoni, E.; Needham, D.M.; Dinglas, V.D. Six-Minute Walk Distance After Critical Illness: A Systematic Review and Meta-Analysis. J. Intensive Care Med. 2021, 36, 343–351. [Google Scholar] [CrossRef] [PubMed]
- Masclans, J.R.; Roca, O.; Muñoz, X.; Pallisa, E.; Torres, F.; Rello, J.; Morell, F. Quality of life, pulmonary function, and tomographic scan abnormalities after ARDS. Chest 2011, 139, 1340–1346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristic | Value |
---|---|
Age, mean (SD), year | 47.8 (14.9) |
Women, n (%) | 132 (57.1) |
Body mass index, mean (SD), kg/m2 | 25.6 (4.6) |
COVID-19 history | |
Oligosymptomatic/asymptomatic course, n (%) | 34 (14.7) |
Hospitalization, n (%) | 18 (7.8) |
Invasive ventilation, n (%) | 6 (2.6) |
Therapy with corticosteroids, n (%) | 13 (5.5) |
Therapy with antibiotics, n (%) | 13 (5.5) |
Intervening vaccination, n (%) | 19 (8.2) |
Other histories | |
Cardiac diseases, n (%) | 12 (5.2) |
Pulmonary diseases, n (%) | 29 (12.6) [asthma bronchiale, 23 (10.0)] |
Malignant diseases, n (%) | 9 (3.9) |
Cardiovascular risk profile | |
Arterial hypertension, n (%) | 48 (20.8) |
Diabetes mellitus type I, n (%) | 12 (5.2) |
Diabetes mellitus type II, n (%) | 2 (0.9) |
Dyslipidemia, n (%) | 127 (55.0) |
Current/past smoking, n (%) | 46 (19.9) |
Long COVID symptoms | |
Thoracic pain/pressure, n (%) | 56 (24.2) |
Dyspnea, n (%) | 114 (49.4) |
Fever, n (%) | 5 (2.2) |
Anosmia/ageusia, n (%) | 29 (12.6) |
Headaches, n (%) | 19 (8.2) |
Sleep disorders, n (%) | 26 (11.3) |
Exhaustion/fatigue, n (%) | 122 (52.8) |
Memory and concentration disorders, n (%) | 64 (27.7) |
Blood test | |
Hemoglobin, mean (SD), g/dL [normal, 12.3–15.3] | 14.4 (1.1) |
Glomerular filtration rate, mean (SD), mL/min | 90.8 (16.6) |
C-reactive protein, mean (SD), mg/L [normal, < 5.0] | 2.8 (8.0) |
Thyroid-stimulating hormone, mean (SD), mU/L [normal, 0.400–3.770] | 1.76 (1.51) |
D-dimers, mean (SD), mg/L FEU [normal, < 0.50] | 0.27 (0.20) |
Troponin T, mean (SD), ng/L [normal, < 15.0] | 4.8 (3.4) |
NT-proBNP, mean (SD), pg/mL [normal, < 130.0] | 74.0 (67.6) |
Antibody against SARS-CoV-2 surface protein (228 patients *), positive n (%)/negative n (%) | 207 (90.8)/21 (9.2) |
Parameter | Entire Cohort | Asymptomatic/Oligosymptomatic (n = 34) | Symptomatic, Not Hospitalized | Hospitalized |
---|---|---|---|---|
(n = 231) | (n = 179) | (n = 18) | ||
Transthoracic echocardiography | ||||
LVEF < 55% or LV GLS > −15% | 22 (9.5) | 3 (8.8) | 16 (8.9) | 3 (16.7) |
Body plethysmography | ||||
DLCO < 80% of target | 51 (22.1) | 5 (14.7) | 42 (23.5) | 7 (38.9) |
FVC < 80% of target | 23 (10.0) | 0 (0.0) | 23 (12.8) | 0 (0.0) |
FEV1 < 80% of target | 24 (10.4) | 1 (2.9) | 22 (12.3) | 1 (5.6) |
FEV1/FVC < 80% of target | 1 (0.4) | 0 (0.0) | 1 (0.6) | 1 (5.6) |
6-Minute walk test | ||||
Reduced distance | 55 (23.8) | 6 (17.6) | 43 (24.0) | 6 (33.3) |
Desaturation during exercise of > 7% or < 90% | 26 (11.3 | 1 (2.9) | 21 (11.7) | 4 (22.2) |
Borg Dyspnea Scale > 6 (at end) | 9 (3.9) | 1 (2.9) | 7 (3.9) | 1 (5.6) |
Borg Exertion Scale > 6 (at end) | 8 (3.5) | 0 (0.0) | 7 (3.9) | 1 (5.6) |
Capillary blood gas test | ||||
pO2 < 65 mm Hg | 10 (4.3) | 1 (2.9) | 8 (4.5) | 1 (5.6) |
pCO2 > 45 mm Hg | 1 (0.4) | 1 (2.9) | 0 (0.0) | 0 (0.0) |
Blood tests | ||||
C-reactive protein > 5.0 mg/L | 23 (10.0) | 1 (2.9) | 19 (10.6) | 3 (16.7) |
Troponin T > 14 ng/L | 5 (2.2) | 1 (2.9) | 3 (1.7) | 1 (5.6) |
NT-proBNP > 300 pg/mL | 3 (1.3) | 1 (2.9) | 2 (1.1) | 0 (0.0) |
Characteristic | Organ Damage Due to COVID-19 (n = 16) | Functional Long COVID (n = 20) | p-Value |
---|---|---|---|
Age, mean (SD), year | 52.4 ± 15.2 | 48.0 ± 14.9 | 0.391 * |
Women, n (%) | 7 (43.8) | 12 (60.0) | 0.503 |
Body mass index, mean (SD), kg/m2 | 29.3 ± 4.3 | 24.5 ± 3.6 | 0.001 * |
COVID-19 history | |||
Oligosymptomatic/asymptomatic course, n (%) | 2 (12.5) | 3 (15.0) | 1 |
Hospitalization, n (%) | 3 (18.8) | 2 (10.0) | 0.637 |
Invasive ventilation, n (%) | 2 (12.5) | 0 (0.0) | 0.19 |
Therapy with corticosteroids, n (%) | 3 (18.8) | 0 (0.0) | 0.078 |
Therapy with antibiotics, n (%) | 2 (12.5) | 3 (15.0) | 1 |
Other histories | |||
Cardiac diseases, n (%) | 1 (6.3) | 1 (5.0) | 1 |
Pulmonary diseases, n (%) | 3 (18.8) | 2 (10.0) | 0.637 |
Malignant diseases, n (%) | 1 (6.3) | 0 (0.0) | 0.444 |
Cardiovascular risk profile | |||
Arterial hypertension, n (%) | 9 (56.3) | 2 (10.0) | 0.004 |
Diabetes mellitus type I, n (%) | 1 (6.3) | 0 (0.0) | 0.444 |
Diabetes mellitus type II, n (%) | 3 (18.8) | 0 (0.0) | 0.078 |
Dyslipidemia, n (%) | 9 (56.3) | 13 (65.0) | 0.734 |
Current/past smoking, n (%) | 4 (25.0) | 5 (25.0) | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kersten, J.; Baumhardt, M.; Hartveg, P.; Hoyo, L.; Hüll, E.; Imhof, A.; Kropf-Sanchen, C.; Nita, N.; Mörike, J.; Rattka, M.; et al. Long COVID: Distinction between Organ Damage and Deconditioning. J. Clin. Med. 2021, 10, 3782. https://doi.org/10.3390/jcm10173782
Kersten J, Baumhardt M, Hartveg P, Hoyo L, Hüll E, Imhof A, Kropf-Sanchen C, Nita N, Mörike J, Rattka M, et al. Long COVID: Distinction between Organ Damage and Deconditioning. Journal of Clinical Medicine. 2021; 10(17):3782. https://doi.org/10.3390/jcm10173782
Chicago/Turabian StyleKersten, Johannes, Michael Baumhardt, Paul Hartveg, Luis Hoyo, Elina Hüll, Armin Imhof, Cornelia Kropf-Sanchen, Nicoleta Nita, Johannes Mörike, Manuel Rattka, and et al. 2021. "Long COVID: Distinction between Organ Damage and Deconditioning" Journal of Clinical Medicine 10, no. 17: 3782. https://doi.org/10.3390/jcm10173782
APA StyleKersten, J., Baumhardt, M., Hartveg, P., Hoyo, L., Hüll, E., Imhof, A., Kropf-Sanchen, C., Nita, N., Mörike, J., Rattka, M., Andreß, S., Scharnbeck, D., Schmidtke-Schrezenmeier, G., Tadic, M., Wolf, A., Rottbauer, W., & Buckert, D. (2021). Long COVID: Distinction between Organ Damage and Deconditioning. Journal of Clinical Medicine, 10(17), 3782. https://doi.org/10.3390/jcm10173782