Decreased Thrombospondin-1 and Bone Morphogenetic Protein-4 Serum Levels as Potential Indices of Advanced Stage Lung Cancer
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Groups
2.2. ELISA Testing
2.3. DNA Extraction and Genes Polymorphism Study
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bade, B.C.; Dela Cruz, C.S. Lung cancer 2020: Epidemiology, etiology, and prevention. Clin. Chest Med. 2020, 41, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Didkowska, J.; Wojciechowska, U.; Manczuk, M.; Łobaszewski, J. Lung cancer epidemiology: Contemporary and future challenges worldwide. Ann. Transl. Med. 2016, 4, 150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allemani, C.; Matsuda, T.; Di Carlo, V.; Harewood, R.; Matz, M.; Nikšić, M.; Bonaventure, A.; Valkov, M.; Johnson, C.J.; Estève, J.; et al. CONCORD Working Group. Global surveillance of trends in cancer survival 2000–14 (CONCORD-3): Analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet 2018, 391, 1023–1075. [Google Scholar] [CrossRef] [Green Version]
- Barbareschi, M.; Barberis, M.; Buttitta, F.; Doglioni, C.; Fiorentino, M.; Fontanini, G.; Franco, R.; Marchetti, A.; Rossi, G.; Troncone, G. Predictive markers in lung cancer: A few hints for the practicing pathologist. Pathologica 2018, 110, 29–38. [Google Scholar]
- Shea, M.; Costa, D.; Rangachari, D. Management of advanced non-small cell lung cancers with known mutations or rearrangements: Latest evidence and treatment approaches. Ther. Adv. Respir. Dis. 2015, 10, 113–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korpanty, G.J.; Graham, D.M.; Vincent, M.D.; Leighl, N.B. Biomarkers that currently affect clinical practice in lung cancer: EGFR, ALK, MET, ROS-1, and KRAS. Front. Oncol. 2014, 4, 204. [Google Scholar] [CrossRef]
- Adams, J.C.; Lawler, J. The thrombospondins. Cold Spring Harb. Perspect. Biol. 2011, 3, a009712. [Google Scholar] [CrossRef]
- Natale, G.; Bocci, G. Does metronomic chemotherapy induce tumor angiogenic dormancy? A review of available preclinical and clinical data. Cancer Lett. 2018, 432, 28–37. [Google Scholar] [CrossRef]
- Bentley, A.A.; Adams, J.C. The evolution of thrombospondins and their ligand-binding activities. Mol. Biol. Evol. 2010, 27, 2187–2197. [Google Scholar] [CrossRef] [Green Version]
- Murphy-Ullrich, J.E.; Iozzo, R.V. Thrombospondins in physiology and disease: New tricks for old dogs. Matrix Biol. 2012, 31, 152–154. [Google Scholar] [CrossRef] [Green Version]
- Ramchandani, D.; Mittal, V. Thrombospondin. In Tumor Microenvironment; Springer: Cham, Switzerland, 2020; pp. 133–147. [Google Scholar] [CrossRef]
- Sick, E.; Jeanne, A.; Schneider, C.; Dedieu, S.; Takeda, K.; Martiny, L. CD47 update: A multifaceted actor in the tumour microenvironment of potential therapeutic interest. Br. J. Pharmacol. 2012, 167, 1415–1430. [Google Scholar] [CrossRef] [Green Version]
- Kaur, S.; Bronson, S.; Pal-Nath, D.; Miller, T.; Soto-Pantoja, D.; Roberts, D. Functions of thrombospondin-1 in the tumor microenvironment. Int. J. Mol. Sci. 2021, 22, 4570. [Google Scholar] [CrossRef]
- Gao, A.-G.; Lindberg, F.P.; Finn, M.B.; Blystone, S.D.; Brown, E.J.; Frazier, W.A. Integrin-associated protein is a receptor for the C-terminal domain of thrombospondin. J. Biol. Chem. 1996, 271, 21–24. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.-T.; Chong, I.-W.; Chen, H.-L.; Li, C.-Y.; Hsieh, C.-C.; Kuo, H.-F.; Chang, C.-Y.; Chen, Y.-H.; Liu, Y.-P.; Lu, C.-Y.; et al. Pigment epithelium-derived factor inhibits lung cancer migration and invasion by upregulating exosomal thrombospondin 1. Cancer Lett. 2018, 442, 287–298. [Google Scholar] [CrossRef] [PubMed]
- Lawler, P.; Lawler, J. Molecular basis for the regulation of angiogenesis by thrombospondin-1 and -2. Cold Spring Harb. Perspect. Med. 2012, 2, a006627. [Google Scholar] [CrossRef]
- Greenaway, J.; Lawler, J.; Moorehead, R.; Bornstein, P.; LaMarre, J.; Petrik, J. Thrombospondin-1 inhibits VEGF levels in the ovary directly by binding and internalization via the low density lipoprotein receptor-related protein-1 (LRP-1). J. Cell. Physiol. 2006, 210, 807–818. [Google Scholar] [CrossRef] [Green Version]
- Kallioniemi, A. Bone morphogenetic protein 4—A fascinating regulator of cancer cell behavior. Cancer Genet. 2012, 205, 267–277. [Google Scholar] [CrossRef]
- Bowers, R.R.; Lane, M.D. A role for bone morphogenetic protein-4 in adipocyte development. Cell Cycle 2007, 6, 385–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Yi, X.; Goswami, S.; Ahn, Y.-H.; Roybal, J.D.; Yang, Y.; Diao, L.; Peng, D.; Peng, D.; Fradette, J.; et al. Growth and metastasis of lung adenocarcinoma is potentiated by BMP4-mediated immunosuppression. OncoImmunology 2016, 5, e1234570. [Google Scholar] [CrossRef] [PubMed]
- Rothhammer, T.; Braig, S.; Bosserhoff, A. Bone morphogenetic proteins induce expression of metalloproteinases in melanoma cells and fibroblasts. Eur. J. Cancer 2008, 44, 2526–2534. [Google Scholar] [CrossRef] [PubMed]
- Tsuchida, R.; Osawa, T.; Wang, F.; Nishii, R.; Das, B.; Muramatsu, M.; Takahashi, T.; Inoue, T.; Wada, Y.; Minami, T.; et al. BMP4/Thrombospondin-1 loop paracrinically inhibits tumor angiogenesis and suppresses the growth of solid tumors. Oncogene 2013, 33, 3803–3811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.-H.; Bhang, D.H.; Beede, A.; Huang, T.L.; Stripp, B.R.; Bloch, K.D.; Wagers, A.J.; Tseng, Y.-H.; Ryeom, S.; Kim, C.F. Lung stem cell differentiation in mice directed by endothelial cells via a BMP4-NFATc1-thrombospondin-1 axis. Cell 2014, 156, 440–455. [Google Scholar] [CrossRef] [Green Version]
- Dudek, A.Z.; Mahaseth, H. Circulating angiogenic cytokines in patients with advanced non-small cell lung cancer: Correlation with treatment response and survival. Cancer Investig. 2005, 23, 193–200. [Google Scholar] [CrossRef]
- Rouanne, M.; Adam, J.; Goubar, A.; Robin, A.; Ohana, C.; Louvet, E.; Cormier, J.; Mercier, O.; Dorfmüller, P.; Fattal, S.; et al. Osteopontin and thrombospondin-1 play opposite roles in promoting tumor aggressiveness of primary resected non-small cell lung cancer. BMC Cancer 2016, 16, 483. [Google Scholar] [CrossRef]
- Fleitas, T.; Martínez-Sales, V.; Vila, V.; Reganon, E.; Mesado, D.; Martin, M.; Gómez-Codina, J.; Montalar, J.; Reynes, G. VEGF and TSP1 levels correlate with prognosis in advanced non-small cell lung cancer. Clin. Transl. Oncol. 2013, 15, 897–902. [Google Scholar] [CrossRef] [PubMed]
- Xian, S.; Jilu, L.; Zhennan, T.; Yang, Z.; Yang, H.; Jingshu, G.; Songbin, F. BMP-4 genetic variants and protein expression are associated with platinum-based chemotherapy response and prognosis in NSCLC. BioMed Res. Int. 2014, 2014, 801640. [Google Scholar] [CrossRef]
- Bigbee, W.L.; Gopalakrishnan, V.; Weissfeld, J.L.; Wilson, D.O.; Dacic, S.; Lokshin, A.E.; Siegfried, J.M. A multiplexed serum biomarker immunoassay panel discriminates clinical lung cancer patients from high-risk individuals found to be cancer-free by CT screening. J. Thorac. Oncol. 2012, 7, 698–708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Pu, D.; Liu, D.; Wang, Y.; Luo, W.; Tang, H.; Huang, Y.; Li, W. Identification and validation of novel circulating biomarkers for early diagnosis of lung cancer. Lung Cancer 2019, 135, 130–137. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Sugio, K.; Ondo, K.; Yano, T.; Sugimachi, K. Reduced expression of thrombospondin-1 correlates with a poor prognosis in patients with non-small cell lung cancer. Lung Cancer 2002, 36, 143–150. [Google Scholar] [CrossRef]
- Papadaki, C.; Mavroudis, D.; Trypaki, M.; Koutsopoulos, A.; Stathopoulos, E.; Hatzidaki, D.; Tsakalaki, E.; Georgoulias, V.; Souglakos, J. Tumoral expression of TXR1 and TSP1 predicts overall survival of patients with lung adenocarcinoma treated with first-line docetaxel-gemcitabine regimen. Clin. Cancer Res. 2009, 15, 3827–3833. [Google Scholar] [CrossRef] [Green Version]
- Bieniasz, M.; Oszajca, K.; Eusebio, M.; Kordiak, J.; Bartkowiak, J.; Szemraj, J. The positive correlation between gene expression of the two angiogenic factors: VEGF and BMP-2 in lung cancer patients. Lung Cancer 2009, 66, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Kurie, J.M.; Ahn, Y.-H. BMP4 depletion by miR-200 inhibits tumorigenesis and metastasis of lung adenocarcinoma cells. Mol. Cancer 2015, 14, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bach, D.-H.; Luu, T.-T.; Kim, D.; An, Y.J.; Park, S.; Park, H.J.; Lee, S.K. BMP4 Upregulation is associated with acquired drug resistance and fatty acid metabolism in EGFR-mutant non-small-cell lung cancer cells. Mol. Ther. Nucleic Acids 2018, 12, 817–828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bao, L.; Lv, L.; Feng, J.; Chen, Y.; Wang, X.; Han, S.; Zhao, H. MiR-876-5p suppresses epithelial–mesenchymal transition of lung cancer by directly down-regulating bone morphogenetic protein 4. J. Biosci. 2017, 42, 671–681. [Google Scholar] [CrossRef] [PubMed]
- Guo, D.; Huang, J.; Gong, J. Bone morphogenetic protein 4 (BMP4) is required for migration and invasion of breast cancer. Mol. Cell. Biochem. 2011, 363, 179–190. [Google Scholar] [CrossRef]
- Son, J.W.; Kim, M.-K.; Park, Y.-M.; Baek, K.-H.; Yoo, S.J.; Song, K.-H.; Son, H.S.; Yoon, K.-H.; Lee, W.C.; Cha, B.-Y.; et al. Association of serum bone morphogenetic protein 4 levels with obesity and metabolic syndrome in non-diabetic individuals. Endocr. J. 2011, 58, 39–46. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.K.; Jang, E.-H.; Hong, O.-K.; Chun, H.-J.; Yoo, S.-J.; Baek, K.-H.; Kim, W.; Kim, E.K.; Song, K.-H.; Kwon, H.-S. Changes in serum levels of bone morphogenic protein 4 and inflammatory cytokines after bariatric surgery in severely obese korean patients with type 2 diabetes. Int. J. Endocrinol. 2013, 2013, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Manni, A.; Rager, T.; Kimball, S.R.; Jefferson, L.S.; Washington, S.; Hu, X.; Verderame, M.F. Effects of alpha-difluoromethylornithine on thrombospondin-1 production by human breast cancer cells. Int. J. Oncol. 2007, 31, 1187–1191. [Google Scholar] [PubMed]
- Piccirillo, S.G.M.; Reynolds, B.A.; Zanetti, N.; Lamorte, G.; Binda, E.; Broggi, G.; Brem, H.; Olivi, A.; DiMeco, F.; Vescovi, A.L. Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature 2006, 444, 761–765. [Google Scholar] [CrossRef]
- Eckhardt, B.L.; Cao, Y.; Redfern, A.D.; Chi, L.H.; Burrows, A.D.; Roslan, S.; Sloan, E.K.; Parker, B.S.; Loi, S.; Ueno, N.T.; et al. Activation of canonical BMP4-SMAD7 signaling suppresses breast cancer metastasis. Cancer Res. 2020, 80, 1304–1315. [Google Scholar] [CrossRef] [PubMed]
- Baek, K.-H.; Bhang, D.; Zaslavsky, A.; Wang, L.-C.; Vachani, A.; Kim, C.F.; Albelda, S.M.; Evan, G.I.; Ryeom, S. Thrombospondin-1 mediates oncogenic Ras–induced senescence in premalignant lung tumors. J. Clin. Investig. 2013, 123, 4375–4389. [Google Scholar] [CrossRef] [Green Version]
- Laulan, N.B.; St-Pierre, Y. Bone morphogenetic protein 4 (BMP-4) and epidermal growth factor (EGF) inhibit metalloproteinase-9 (MMP-9) expression in cancer cells. Oncoscience 2014, 2, 309–316. [Google Scholar] [CrossRef] [Green Version]
- Deng, N.; Zhou, H.; Fan, H.; Yuan, Y. Single nucleotide polymorphisms and cancer susceptibility. Oncotarget 2017, 8, 110635–110649. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.-Y.; Chen, Y.-J.; Huang, Y.-L.; Tang, G.-P.; Zhang, L.; Deng, B.; Li, M.; Ma, H.; Luan, R.-S. Association of bone morphogenetic protein 4 gene polymorphisms with nonsyndromic cleft lip with or without cleft palate in Chinese children. DNA Cell Biol. 2008, 27, 601–605. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Wen, J.; Gong, L.; Chen, X.; Wang, J.; Hu, F.; Zhou, Q.; Liang, J.; Wei, L.; Shen, Y.; et al. Thrombospondin-1 promotes cell migration, invasion and lung metastasis of osteosarcoma through FAK dependent pathway. Oncotarget 2017, 26, 75881–75892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weng, T.-Y.; Wang, C.-Y.; Hung, Y.-H.; Chen, W.-C.; Chen, Y.-L.; Lai, M.-D. Differential expression pattern of THBS1 and THBS2 in lung cancer: Clinical outcome and a systematic-analysis of microarray databases. PLoS ONE 2016, 11, e0161007. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Le, H.; Zhang, Y.; Qian, L.; Li, W. Microvessel density and expression of thrombospondin-1 in non-small cell lung cancer and their correlation with clinicopathological features. J. Int. Med Res. 2009, 37, 551–556. [Google Scholar] [CrossRef] [Green Version]
- Lawler, J. Thrombospondin-1 as an endogenous inhibitor of angiogenesis and tumor growth. J. Cell. Mol. Med. 2002, 6, 1–12. [Google Scholar] [CrossRef]
- Ju, F.-J.; Meng, F.-Q.; Hu, H.-L.; Liu, J. Association between BMP4 expression and pathology, CT characteristics and prognosis of non-small cell lung cancer. Eur. Rev. Med. Pharm. Sci. 2019, 23, 5787–5794. [Google Scholar]
Parameters | Stage I (n = 6) | Stage II (n = 6) | Stage III (n = 51) | Stage IV (n = 48) | p |
---|---|---|---|---|---|
Age (years) | 71.33 ± 7.71 | 70.33 ± 10.32 | 66.64 ± 8.71 | 64.33 ± 8.49 | NS |
BMI (kg/m2) | 24.87 ± 4.53 | 23.66 ± 2.21 | 24.75 ± 5.00 | 24.48 ± 4.41 | NS |
TSP-1 (ng/mL) | 19,355.5 ± 7914.07 | 14,510.50 ± 5000.2 | 9850.82 ± 4500.2 | 9035.18 ± 5124.9 | NS |
BMP-4 (pg/mL) | 132.92 ± 32.92 | 128.60 ± 43.06 | 133.87 ± 65.38 | 144.73 ± 60.55 | NS |
Stages I and II (n = 12) | Stages III and IV (n = 99) | ||||
Age (years) | 70.83 ± 8.70 | 65.39 ± 8.42 | NS | ||
BMI (kg/m2) | 24.27 ± 3.45 | 24.62 ± 4.70 | NS | ||
TSP-1 (ng/mL) | 16,933.60 ± 6299.02 | 9282.07 ± 4900.78 | p = 0.03 | ||
BMP-4 (pg/mL) | 140.96 ± 55.54 | 143.29 ± 63.99 | NS |
Parameters | Patients without Metastases in Lymph Nodes (n = 12) | Patients with Metastases in Any Lymph Nodes Group (n = 99) | p |
---|---|---|---|
Age (years) | 67.66 ± 7.59 | 65.53 ± 8.62 | NS |
BMI (body mass index) (kg/m2) | 24.99 ± 4.43 | 24.53 ± 4.61 | NS |
TSP-1 (ng/mL) | 18,497.75 ± 12,548.25 | 10,000.13 ± 9021.41 | p = 0.01 |
BMP-4 (pg/mL) | 98.56 ± 62.59 | 143.82 ± 62.21 | NS |
Parameters | NSCLC (n = 102) | SCLC (n = 9) | p |
---|---|---|---|
TSP-1 (ng/mL) | 10,093.04 ± 10,716.06 | 10,292.44 ± 10,491.16 | NS |
BMP-4 (pg/mL) | 140.67 ± 60.55 | 114.23 ± 82.96 | NS |
Squamous Cell Lung Cancer (n = 36) | Adenocarcinoma (n = 22) | ||
TSP-1 (ng/mL) | 10,683.84 ± 10,534.9 | 12,414.18 ± 11,650.28 | NS |
BMP-4 (pg/mL) | 166.70 ± 62.59 | 103.60 ± 60.55 | NS |
Parameters | rs1957860 | p | ||
---|---|---|---|---|
CT (n = 52) | TT (n = 36) | CC (n = 25) | ||
BMP-4 serum levels (pg/mL) | 137.82 ± 62.21 | 154.14 ± 76.12 | 140.81 ± 57.25 | NS |
TSP-1 serum levels (ng/mL) | 11,982.26 ± 10,091.37 | 10,672.13 ± 9298.92 | 13,412.76 ± 12,421.90 | NS |
Biomarker | Material/Method | Results/Conclusion | Author |
---|---|---|---|
TSP-1 | Plasma of lung cancer patient/ELISA | Down-regulation of expression of TSP-1/potential usefulness in lung cancer diagnosis | Zhang L. et al., 2019 [29] |
TSP-1 | Lung metastatic tumors/gene expression signature | Up-regulation in lung metastes of osteosarcoma/contribution of TSP-1 to lung metastases | Hu C. et al., 2017 [46] |
TSP-1 | Lung cancer patients undergoing surgical treatment/ELISA | TSP-1 is inversely correlated with survival rates/usefulness of TSP-1 as prognostic marker | Rouanne M. et al., 2016 [25] |
TSP-1 | Microarray databases/systematic-analysis | Underexpression in lung cancer/TSP-1 as tumor suppressor in lung adenocarcinoma | Weng T.Y. et al., 2016 [47] |
TSP-1 | Lung cancer specimens/immunochemistry | Lower expression of TSP-1 in late than in early stage of lung cancer/high expression of TSP-1 may inhibit tumor development | Chen Z.J. et al., 2009 [48] |
TSP-1 | Plasma of advanced lung cancer patients/ELISA | Decreased TSP-1 levels than in healthy controls/TSP-1 may increase tumor angiogenesis | Dudek A.Z. and Mahaseth H. 2005 [24] |
TSP-1 | Different tumors/review | TSP-1 suppresses tumor progression and inhibits angiogenesis | Lawler J. 2002 [49] |
TSP-1 | Resected lung cancer specimens/immunochemistry | Reduced expression of TSP-1 is associated with decreased 5-year survival/usefulness of TSP-1 as prognostic marker | Yamaguchi M. et al., 2002 [30] |
BMP-4 | Lung cancer specimens/qPCR and immunochemistry; survival of the patients | Increased BMP-4 levels in advanced stages of lung cancer and in the patients with shortened survival /usefulness of BMP-4 as prognostic factor | Ju F.J. et al., 2019 [50] |
BMP-4 | Lung cancer specimens before chemotherapy/western blot assay | Higher BMP-4 expression increases risk of resistance to chemotherapy/the usefulness of BMP-4 tissue expression as a prognostic factor | Xian S. et al., 2014 [27] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kosacka, M.; Dyła, T.; Chaszczewska-Markowska, M.; Bogunia-Kubik, K.; Brzecka, A. Decreased Thrombospondin-1 and Bone Morphogenetic Protein-4 Serum Levels as Potential Indices of Advanced Stage Lung Cancer. J. Clin. Med. 2021, 10, 3859. https://doi.org/10.3390/jcm10173859
Kosacka M, Dyła T, Chaszczewska-Markowska M, Bogunia-Kubik K, Brzecka A. Decreased Thrombospondin-1 and Bone Morphogenetic Protein-4 Serum Levels as Potential Indices of Advanced Stage Lung Cancer. Journal of Clinical Medicine. 2021; 10(17):3859. https://doi.org/10.3390/jcm10173859
Chicago/Turabian StyleKosacka, Monika, Tomasz Dyła, Monika Chaszczewska-Markowska, Katarzyna Bogunia-Kubik, and Anna Brzecka. 2021. "Decreased Thrombospondin-1 and Bone Morphogenetic Protein-4 Serum Levels as Potential Indices of Advanced Stage Lung Cancer" Journal of Clinical Medicine 10, no. 17: 3859. https://doi.org/10.3390/jcm10173859
APA StyleKosacka, M., Dyła, T., Chaszczewska-Markowska, M., Bogunia-Kubik, K., & Brzecka, A. (2021). Decreased Thrombospondin-1 and Bone Morphogenetic Protein-4 Serum Levels as Potential Indices of Advanced Stage Lung Cancer. Journal of Clinical Medicine, 10(17), 3859. https://doi.org/10.3390/jcm10173859