Catalase Predicts In-Hospital Mortality after Out-of-Hospital Cardiac Arrest
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Baseline Characteristics
3.2. Catalase and 30-Day Mortality of OHCA Survivors
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Atwood, C.; Eisenberg, M.S.; Herlitz, J.; Rea, T.D. Incidence of EMS-treated out-of-hospital cardiac arrest in Europe. Resuscitation 2005, 67, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Grasner, J.T.; Lefering, R.; Koster, R.W.; Masterson, S.; Böttiger, B.W.; Herlitz, J.; Wnent, J.; Tjelmeland, I.B.M.; Ortiz, F.R.; Maurer, H.; et al. EuReCa ONE-27 Nations, ONE Europe, ONE Registry: A prospective one month analysis of out-of-hospital cardiac arrest outcomes in 27 countries in Europe. Resuscitation 2016, 105, 188–195. [Google Scholar] [PubMed] [Green Version]
- Früh, A.; Goliasch, G.; Wurm, R.; Arfsten, H.; Seidel, S.; Galli, L.; Kriechbaumer, L.; Hubner, P.; Heinz, G.; Sterz, F.; et al. Gastric regurgitation predicts neurological outcome in out-of-hospital cardiac arrest survivors. Eur. J. Intern. Med. 2021, 83, 54–57. [Google Scholar] [CrossRef] [PubMed]
- Ondracek, A.; Hofbauer, T.; Wurm, R.; Arfsten, H.; Seidl, V.; Früh, A.; Seidel, S.; Hubner, P.; Mangold, A.; Goliasch, G.; et al. Imbalance between plasma double-stranded DNA and deoxyribonuclease activity predicts mortality after out-of-hospital cardiac arrest. Resuscitation 2020, 151, 26–32. [Google Scholar] [CrossRef]
- Nolan, J.P.; Soar, J.; Cariou, A.; Cronberg, T.; Moulaert, V.R.M.; Deakin, C.D.; Bottiger, B.W.; Friberg, H.; Sunde, K.; Sandroni, C. European resuscitation council and European society of intensive care medicine 2015 guidelines for post-resuscitation care. Intensiv. Care Med. 2015, 41, 2039–2056. [Google Scholar] [CrossRef]
- Nolan, J.P.; Neumar, R.W.; Adrie, C.; Aibiki, M.; Berg, R.A.; Bbttiger, B.W.; Callaway, C.; Clark, R.S.B.; Geocadin, R.G.; Jauch, E.C.; et al. Post-cardiac arrest syndrome: Epidemiology, pathophysiology, treatment, and prognostication: A scientific statement from the international liaison committee on resuscitation; the American heart association emergency cardiovascular care committee; the council on cardiovascular surgery and anesthesia; the council on cardiopulmonary, perioperative, and critical care; the council on clinical cardiology; the council on stroke. Resuscitation 2008, 79, 350–379. [Google Scholar]
- Nishikawa, M.; Hashida, M.; Takakura, Y. Catalase delivery for inhibiting ROS-mediated tissue injury and tumor metastasis. Adv. Drug Deliv. Rev. 2009, 61, 319–326. [Google Scholar] [CrossRef]
- Deisseroth, A.; Dounce, A.L. Catalase: Physical and chemical properties, mechanism of catalysis, and physiological role. Physiol. Rev. 1970, 50, 319–375. [Google Scholar] [CrossRef]
- Liu, T.H.; Beckman, J.S.; A Freeman, B.; Hogan, E.L.; Hsu, C.Y. Polyethylene glycol-conjugated superoxide dismutase and catalase reduce ischemic brain injury. Am. J. Physiol. Content 1989, 256, H589–H593. [Google Scholar] [CrossRef]
- Li, G.; Chen, Y.; Saari, J.T.; Kang, Y.J. Catalase-overexpressing transgenic mouse heart is resistant to ischemia-reperfusion injury. Am. J. Physiol. Content 1997, 273, H1090–H1095. [Google Scholar] [CrossRef]
- Distelmaier, K.; Muqaku, B.; Wurm, R.; Arfsten, H.; Seidel, S.; Kovacs, G.G.; Mayer, R.; Szekeres, T.; Wallisch, C.; Hubner, P.; et al. Proteomics-enriched prediction model for poor neurologic outcome in cardiac arrest survivors. Crit. Care Med. 2020, 48, 167–175. [Google Scholar] [CrossRef]
- Teasdale, G.; Jennett, B. Assessment of coma and impaired consciousness: A practical scale. Lancet 1974, 304, 81–84. [Google Scholar] [CrossRef]
- Callaway, C.W.; Soar, J.; Aibiki, M.; Böttiger, B.W.; Brooks, S.C.; Deakin, C.D.; Donnino, M.W.; Drajer, S.; Kloeck, W.; Morley, P.T.; et al. Part 4: Advanced life support: 2015 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations. Circulation 2015, 132, S84–S145. [Google Scholar] [CrossRef]
- Jacobs, I.; Nadkarni, V.; ILCOR Task Force on Cardiac Arrest and Cardiopulmonary Resuscitation Outcomes; Conference Participants; Bahr, J.; Berg, R.A.; Billi, J.E.; Bossaert, L.; Cassan, P.; Coovadia, A.; et al. Cardiac arrest and cardiopulmonary resuscitation outcome reports: Update and simplification of the Utstein templates for resuscitation registries: A statement for healthcare professionals from a task force of the International Liaison Committee on Resuscitation (American Heart Association, European Resuscitation Council, Australian Resuscitation Council, New Zealand Resuscitation Council, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Councils of Southern Africa). Circulation 2004, 110, 3385–3397. [Google Scholar]
- Muqaku, B.; Eisinger, M.; Meier, S.M.; Tahir, A.; Pukrop, T.; Haferkamp, S.; Slany, A.; Reichle, A.; Gerner, C. Multi-omics analysis of serum samples demonstrates reprogramming of organ functions via systemic calcium mobilization and platelet activation in metastatic melanoma. Mol. Cell. Proteom. 2017, 16, 86–99. [Google Scholar] [CrossRef] [Green Version]
- Aschauer, S.; Dorffner, G.; Sterz, F.; Erdogmus, A.; Laggner, A. A prediction tool for initial out-of-hospital cardiac arrest survivors. Resuscitation 2014, 85, 1225–1231. [Google Scholar] [CrossRef] [Green Version]
- Schrutka, L.; Goliasch, G.; Meyer, B.; Wurm, R.; Koller, L.; Kriechbaumer, L.; Heinz, G.; Pacher, R.; Lang, I.M.; Distelmaier, K.; et al. Impaired high-density lipoprotein anti-oxidant function predicts poor outcome in critically Ill patients. PLoS ONE 2016, 11, e0151706. [Google Scholar]
- Goodyear-Bruch, C.; Pierce, J.D. Oxidative stress in critically ill patients. Am. J. Crit. Care 2002, 11, 543–551. [Google Scholar] [CrossRef]
- Ekeløf, S.; Jensen, S.E.; Rosenberg, J.; Gögenur, I. Reduced oxidative stress in STEMI patients treated by primary percutaneous coronary intervention and with antioxidant therapy: A systematic review. Cardiovasc. Drugs Ther. 2014, 28, 173–181. [Google Scholar] [CrossRef]
- Becker, L.B. New concepts in reactive oxygen species and cardiovascular reperfusion physiology. Cardiovasc. Res. 2004, 61, 461–470. [Google Scholar] [CrossRef]
- Porzer, M.; Mrazkova, E.; Homza, M.; Janout, V. Out-of-hospital cardiac arrest. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech. Repub. 2017, 161, 348–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, W.G.; Cimino, J.W.; Ernecoff, N.C.; Ungar, A.; Shotsberger, K.J.; Pollice, L.A.; Buddadhumaruk, P.; Carson, S.S.; Curtis, J.R.; Hough, C.L.; et al. A multicenter study of key stakeholders’ perspectives on communicating with surrogates about prognosis in intensive care units. Ann. Am. Thorac. Soc. 2015, 12, 142–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zilberberg, M.D.; Shorr, A.F. Economics at the end of life: Hospital and ICU perspectives. In Seminars in Respiratory and Critical Care Medicine; Thieme Medical Publishers: New York, NY, USA, 2012; pp. 362–369. [Google Scholar]
- Donnino, M.W.; Andersen, L.W.; Berg, K.M.; Reynolds, J.C.; Nolan, J.P.; Morley, P.T.; Lang, E.; Cocchi, M.N.; Xanthos, T.; Callaway, W.C.; et al. Temperature management after cardiac arrest: An advisory statement by the advanced life support task force of the international liaison committee on resuscitation and the American Heart Association emergency cardiovascular care committee and the council on cardiopulmonary, critical care, Perioperative and Resuscitation. Circulation 2015, 132, 2448–2456. [Google Scholar] [PubMed] [Green Version]
- Hackenhaar, F.S.; Medeiros, T.M.; Heemann, F.M.; Behling, C.S.; Putti, J.S.; Mahl, C.D.; Verona, C.; da Silva, A.C.A.; Guerra, M.C.; Gonçalves, C.A.S.; et al. Therapeutic hypothermia reduces oxidative damage and alters antioxidant defenses after cardiac arrest. Oxid. Med. Cell. Longev. 2017, 2017, 8704352. [Google Scholar] [CrossRef]
- Agyeman, A.A.; Ofori-Asenso, R. Perspective: Does personalized medicine hold the future for medicine? J. Pharm. Bioallied Sci. 2015, 7, 239. [Google Scholar] [CrossRef]
- Sánchez-Conde, P.; Rodríguez-López, J.M.; Nicolás, J.L.; Lozano, F.S.; García-Criado, F.J.; Cascajo, C.; González-Sarmiento, R.; Muriel, C. The comparative abilities of propofol and sevoflurane to modulate inflammation and oxidative stress in the kidney after aortic cross-clamping. Anesthesia Analg. 2008, 106, 371–378. [Google Scholar] [CrossRef]
- Zitta, K.; Peters, S.; Bein, B.; Scholz, J.; Steinfath, M.; Albrecht, M. Molecular and cellular effects of propofol on hypoxia-induced cell damage in intestinal cells grown in-vitro: Involvement of hydrogen peroxide and catalase: 9AP5-7. Eur. J. Anaesthesiol. 2012, 29, 144. [Google Scholar] [CrossRef]
- Góth, L.; Rass, P.; Páy, A. Catalase enzyme mutations and their association with diseases. Mol. Diagn. 2004, 8, 141–149. [Google Scholar] [CrossRef]
UniProt ID | Protein Name | Gene Name | Peptide Sequence | Precursor m/z | Precursor Charge | Product m/z | Product Charge | Fragment Ion | Collision Energy |
---|---|---|---|---|---|---|---|---|---|
P04040 | Catalase | CAT | FNTANDDNVTQVR | 747.35 | 2 | 1131.54 | 1 | y10 | 22.1 |
P04040 | Catalase | CAT | FNTANDDNVTQVR | 747.35 | 2 | 1060.5 | 1 | y9 | 22.1 |
P04040 | Catalase | CAT | FNTANDDNVTQVR | 747.35 | 2 | 831.43 | 1 | y7 | 22.1 |
Total Study Population (n = 96) | Low Catalase (n = 48) | High Catalase (n = 48) | p-Value | |
---|---|---|---|---|
Age, yr, median (IQR) | 58 (48–69) | 56 (46–69) | 59 (50–69) | 0.548 |
Female sex, n (%) | 22 (22.9) | 8 (16.7) | 14 (29.2) | 0.145 |
Cardiac arrest witnessed, n (%) | 79 (82.3) | 40 (83.3) | 39 (81.3) | 0.789 |
Location of collapse | 0.66 | |||
Private, n (%) | 47 (49.0) | 28 (58.3) | 19 (39.6) | |
Public, n (%) | 49 (51.0) | 20 (41.7) | 29 (60.4) | |
Cause of cardiac arrest (%) | 0.629 | |||
Cardiac, n (%) | 83 (86.5) | 43 (89.6) | 40 (83.3) | |
Pulmonary, n (%) | 11 (11.5) | 4 (8.3) | 7 (14.6) | |
Unknown, n (%) | 2 (2.1) | 1 (2.1) | 1 (2.1) | |
First monitored rhythm (%) | 0.234 | |||
Shockable rhythm | ||||
Ventricular fibrillation, n (%) | 69 (71.9) | 38 (79.2) | 31 (64.6) | |
Ventricular tachycardia, n (%) | 1 (1.0) | 1 (2.1) | 0 (0.0) | |
Asystole, n (%) | 9 (9.4) | 2 (4.2) | 7 (14.6) | |
Pulseless electrical activity, n (%) | 13 (13.5) | 6 (12.5) | 7 (14.6) | |
Unknown first rhythm, n (%) | 4 (4.2) | 1 (2.1) | 3 (6.3) | |
Time from cardiac arrest to event—in minutes | ||||
Start of life support, min, median (IQR) | 11 (3–14) | 11 (1–14) | 11 (4–15) | 0.926 |
Return of spontaneous circulation, min, median (IQR) | 28 (15–44) | 27 (15–43) | 32 (15–46) | 0.755 |
Administration of epinephrine, min, median (IQR) | 11 (9–15) | 12 (11–15) | 11 (5–15) | 0.263 |
Dose of epinephrine administered, mg, median (IQR) | 3 (2–5) | 3 (1–5) | 4 (3–5) | 0.225 |
Mode of cooling | 0.509 | |||
Invasive, n (%) | 71 (74.0) | 34 (70.8) | 37 (77.1) | |
Non-invasive, n (%) | 13 (13.5) | 8 (16.7) | 5 (10.4) | |
Combined, n (%) | 8 (8.3) | 5 (10.4) | 3 (6.3) | |
Unknown, n (%) | 4 (4.2) | 1 (2.1) | 3 (6.3) | |
Medical history | ||||
Hypertension, n (%) | 35 (36.5) | 20 (41.7) | 15 (31.3) | 0.289 |
History of smoking, n (%) | 37 (38.5) | 18 (37.5) | 19 (39.6) | 0.834 |
Diabetes, n (%) | 15 (15.6) | 6 (12.5) | 9 (18.8) | 0.374 |
Acute myocardial infarction, n (%) | 16 (16.7) | 10 (20.8) | 6 (12.5) | 0.273 |
COPD, n (%) | 10 (10.4) | 3 (6.3) | 7 (14.6) | 0.181 |
Coronary artery disease, n (%) | 18 (18.8) | 11 (22.9) | 7 (14.6) | 0.296 |
Laboratory values at admission | ||||
Catalase, median (IQR) | 8.25 (7.64–8.81) | |||
pO2 mmHg, median (IQR) | 61.15 (25.68–215.00) | 61.15 (24.80–61.15) | 65.5 (27.50–191.00) | 0.793 |
pCO2 mmHg, median (IQR) | 15.70 (7.48–23.85) | 12.25 (7.33–21.10) | 16.10 (10.25–26.00) | 0.155 |
pH, median (IQR) | 7.18 (7.08–7.23) | 7.18 (7.11–7.25) | 7.16 (7.07–7.22) | 0.199 |
Sodium mmol/L, median (IQR) | 138 (136–140) | 138 (136–140) | 138 (136–139) | 0.490 |
Potassium mmol/L, median (IQR) | 3.85 (3.48–4.54) | 3.73 (3.46–4.70) | 3.92 (3.60–4.53) | 0.732 |
Bicarbonate mmol/L, median (IQR) | 8.30 (5.88–10.93) | 8.50 (4.70–10.93) | 8.30 (6.33–11.10) | 0.401 |
Base excess mmol/L, median (IQR) | 9.10 (6.00–12.75) | 8.40 (4.88–12.55) | 9.85 (7.23–12.90) | 0.120 |
Lactate mmol/L, median (IQR) | 7.20 (4.90–9.90) | 6.70 (4.60–9.55) | 7.50 (5.55–10.75) | 0.207 |
Creatinine, mg/dL, median (IQR) | 1.27 (1.04–1.54) | 1.33 (1.00–1.57) | 1.26 (1.05–1.50) | 0.573 |
Blood urea nitrate, mg/dL, median (IQR) | 15.10 (12.00–19.90) | 15.50 (10.90–20.05) | 14.95 (12.38–19.68) | 0.994 |
NT-proBNP, pg/mL, median (IQR) | 441 (118–1862) | 333 (87–2070) | 799 (145–1552) | 0.595 |
S100B, µg/L, median (IQR) | 0.10 (0.06–0.21) | 0.09 (0.06–0.15) | 0.12 (0.08–0.30) | 0.025 |
Neuron specific enolase, µg/L, median (IQR) | 30.65 (17.85–74.18) | 27.80 (14.33–49.05) | 35.45 (19.55–87.38) | 0.07 |
Univariate Models | Multivariable Models | |||
---|---|---|---|---|
Parameter | HR (95% CI) | p-value | HR (95% CI) | p-value |
Catalase | 2.26 (1.49–3.42) | <0.001 | 2.13 (1.07–4.23) | 0.032 |
Clinical Confounders | ||||
Age, years * | 1.02 (0.99–1.06) | 0.130 | 1.05 (1.00–1.11) | 0.052 |
Presence of a shockable rhythm | 0.18 (0.07–0.406) | <0.001 | 0.35 (0.11–1.06) | 0.063 |
Time to ROSC, min * | 1.00 (0.98–1.02) | 0.961 | 1.00 (0.98–1.01) | 0.822 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Früh, A.; Bileck, A.; Muqaku, B.; Wurm, R.; Neuditschko, B.; Arfsten, H.; Galli, L.; Kriechbaumer, L.; Hubner, P.; Goliasch, G.; et al. Catalase Predicts In-Hospital Mortality after Out-of-Hospital Cardiac Arrest. J. Clin. Med. 2021, 10, 3906. https://doi.org/10.3390/jcm10173906
Früh A, Bileck A, Muqaku B, Wurm R, Neuditschko B, Arfsten H, Galli L, Kriechbaumer L, Hubner P, Goliasch G, et al. Catalase Predicts In-Hospital Mortality after Out-of-Hospital Cardiac Arrest. Journal of Clinical Medicine. 2021; 10(17):3906. https://doi.org/10.3390/jcm10173906
Chicago/Turabian StyleFrüh, Anton, Andrea Bileck, Besnik Muqaku, Raphael Wurm, Benjamin Neuditschko, Henrike Arfsten, Lukas Galli, Lukas Kriechbaumer, Pia Hubner, Georg Goliasch, and et al. 2021. "Catalase Predicts In-Hospital Mortality after Out-of-Hospital Cardiac Arrest" Journal of Clinical Medicine 10, no. 17: 3906. https://doi.org/10.3390/jcm10173906
APA StyleFrüh, A., Bileck, A., Muqaku, B., Wurm, R., Neuditschko, B., Arfsten, H., Galli, L., Kriechbaumer, L., Hubner, P., Goliasch, G., Heinz, G., Holzer, M., Sterz, F., Adlbrecht, C., Gerner, C., & Distelmaier, K. (2021). Catalase Predicts In-Hospital Mortality after Out-of-Hospital Cardiac Arrest. Journal of Clinical Medicine, 10(17), 3906. https://doi.org/10.3390/jcm10173906