Height and Risk of Vitiligo: A Nationwide Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Ethics
2.3. Study Subjects
2.4. Data Collection and Definitions of Comorbidities and Other Variables
2.5. Statistical Analysis
3. Results
3.1. Characteristics of the Study Cohort
3.2. Vitiligo Risk Stratified by Height
3.2.1. Subgroup Analysis by Gender
3.2.2. Subgroup Analysis by Age
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bergqvist, C.; Ezzedine, K. Vitiligo: A focus on pathogenesis and its therapeutic implications. J. Dermatol. 2021, 48, 252–270. [Google Scholar] [CrossRef] [PubMed]
- Bergqvist, C.; Ezzedine, K. Vitiligo: A review. Dermatology 2020, 236, 571–592. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, M.; Ezzedine, K.; Hamzavi, I.; Pandya, A.G.; Harris, J.E. New discoveries in the pathogenesis and classification of vitiligo. J. Am. Acad. Dermatol. 2017, 77, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Cai, Y.; Shi, M.; Jiang, S.; Cui, S.; Wu, Y.; Gao, X.H.; Chen, H.D. The prevalence of vitiligo: A meta-analysis. PLoS ONE 2016, 11, e0163806. [Google Scholar] [CrossRef]
- Alikhan, A.; Felsten, L.M.; Daly, M.; Petronic-Rosic, V. Vitiligo: A comprehensive overview Part I. Introduction, epidemiology, quality of life, diagnosis, differential diagnosis, associations, histopathology, etiology, and work-up. J. Am. Acad. Dermatol. 2011, 65, 473–491. [Google Scholar] [CrossRef]
- Krüger, C.; Schallreuter, K.U. A review of the worldwide prevalence of vitiligo in children/adolescents and adults. Int. J. Dermatol. 2012, 51, 1206–1212. [Google Scholar] [CrossRef]
- Grimes, P.E.; Miller, M.M. Vitiligo: Patient stories, self-esteem, and the psychological burden of disease. Int. J. Women’s Dermatol. 2018, 4, 32–37. [Google Scholar] [CrossRef]
- Parsad, D.; Dogra, S.; Kanwar, A.J. Quality of life in patients with vitiligo. Health Qual. Life Outcomes 2003, 1, 58. [Google Scholar] [CrossRef] [Green Version]
- Ezzedine, K.; Sheth, V.; Rodrigues, M.; Eleftheriadou, V.; Harris, J.E.; Hamzavi, I.H.; Pandya, A.G. Vitiligo is not a cosmetic disease. J. Am. Acad. Dermatol. 2015, 73, 883–885. [Google Scholar] [CrossRef]
- Plaza-Rojas, L.; Guevara-Patiño, J.A. The role of the NKG2D in vitiligo. Front. Immunol. 2021, 12, 624131. [Google Scholar] [CrossRef]
- Roberts, G.H.L.; Santorico, S.A.; Spritz, R.A. The genetic architecture of vitiligo. Pigment. Cell Melanoma Res. 2020, 33, 8–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberts, G.H.L.; Santorico, S.A.; Spritz, R.A. Deep genotype imputation captures virtually all heritability of autoimmune vitiligo. Hum. Mol. Genet. 2020, 29, 859–863. [Google Scholar] [CrossRef] [PubMed]
- Nath, S.K.; Majumder, P.P.; Nordlund, J.J. Genetic epidemiology of vitiligo: Multilocus recessivity cross-validated. Am. J. Hum. Genet. 1994, 55, 981–990. [Google Scholar]
- Kim, H.J.; Ahn, H.S.; Kazmi, S.Z.; Kang, T.; Kim, H.S.; Kang, M.J.; Kim, K.B.; Kim, D.S.; Hann, H.J. Familial risk of vitiligo among first-degree relatives and spouses: A population-based cohort study in Korea. J. Investig. Dermatol. 2021, 141, 921–924. [Google Scholar] [CrossRef] [PubMed]
- van Geel, N.; Speeckaert, R.; Taieb, A.; Picardo, M.; Böhm, M.; Gawkrodger, D.J.; Schallreuter, K.; Bennett, D.C.; van der Veen, W.; Whitton, M.; et al. Koebner’s phenomenon in vitiligo: European position paper. Pigment. Cell Melanoma Res. 2011, 24, 564–573. [Google Scholar] [CrossRef] [PubMed]
- Jeon, I.K.; Park, C.J.; Lee, M.H.; Lee, D.Y.; Kang, H.Y.; Hann, S.K.; Choi, G.S.; Lee, H.J.; Kim, T.H.; Lee, A.Y.; et al. A multicenter collaborative study by the Korean society of vitiligo about patients’ occupations and the provoking factors of vitiligo. Ann. Dermatol. 2014, 26, 349–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lettre, G. Recent progress in the study of the genetics of height. Hum. Genet. 2011, 129, 465–472. [Google Scholar] [CrossRef] [PubMed]
- Silventoinen, K.; Sammalisto, S.; Perola, M.; Boomsma, D.I.; Cornes, B.K.; Davis, C.; Dunkel, L.; De Lange, M.; Harris, J.R.; Hjelmborg, J.V.; et al. Heritability of adult body height: A comparative study of twin cohorts in eight countries. Twin Res. Hum. Genet. 2003, 6, 399–408. [Google Scholar] [CrossRef] [PubMed]
- Hwang, I.C.; Bae, J.H.; Kim, J.M.; Lee, J.M.; Nguyen, Q.D. Adult body height and age-related macular degeneration in healthy individuals: A nationwide population-based survey from Korea. PLoS ONE 2020, 15, e0232593. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, M.A.; Patton, K.K.; Sotoodehnia, N.; Karas, M.G.; Kizer, J.R.; Zimetbaum, P.J.; Chang, J.D.; Siscovick, D.; Gottdiener, J.S.; Kronmal, R.A.; et al. The impact of height on the risk of atrial fibrillation: The Cardiovascular Health Study. Eur. Heart J. 2012, 33, 2709–2717. [Google Scholar] [CrossRef]
- Schmidt, M.; Bøtker, H.E.; Pedersen, L.; Sørensen, H.T. Adult height and risk of ischemic heart disease, atrial fibrillation, stroke, venous thromboembolism, and premature death: A population based 36-year follow-up study. Eur. J. Epidemiol. 2014, 29, 111–118. [Google Scholar] [CrossRef]
- Lai, F.Y.; Nath, M.; Hamby, S.E.; Thompson, J.R.; Nelson, C.P.; Samani, N.J. Adult height and risk of 50 diseases: A combined epidemiological and genetic analysis. BMC Med. 2018, 16, 187. [Google Scholar] [CrossRef] [PubMed]
- Berliner, M.B.-Z.; Katz, L.H.; Derazne, E.; Levine, H.; Keinan-Boker, L.; Benouaich-Amiel, A.; Gal, O.; Kanner, A.A.; Laviv, Y.; Honig, A.; et al. Height as a risk factor in meningioma: A study of 2 million Israeli adolescents. BMC Cancer 2020, 20, 786. [Google Scholar] [CrossRef]
- Lee, Y.B.; Lee, J.H.; Kang, M.J.; Kim, J.W.; Yu, D.S.; Han, K.D.; Park, Y.G. Association between height and actinic keratosis: A nationwide population-based study in South Korea. Sci. Rep. 2018, 8, 10897. [Google Scholar] [CrossRef]
- Ribero, S.; Glass, D.; Aviv, A.; Spector, T.D.; Bataille, V. Height and bone mineral density are associated with naevus count supporting the importance of growth in melanoma susceptibility. PLoS ONE 2015, 10, e0116863. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Liang, L.; Feng, Y.-C.A.; De Vivo, I.; Giovannucci, E.; Tang, J.Y.; Han, J. Height, height-related SNPs, and risk of non-melanoma skin cancer. Br. J. Cancer 2017, 116, 134–140. [Google Scholar] [CrossRef] [Green Version]
- Di Giovannantonio, M.; Harris, B.H.; Zhang, P.; Kitchen-Smith, I.; Xiong, L.; Sahgal, N.; Stracquadanio, G.; Wallace, M.; Blagden, S.; Lord, S.; et al. Heritable genetic variants in key cancer genes link cancer risk with anthropometric traits. J. Med. Genet. 2021, 58, 392–399. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Lee, M.H.; Lee, D.Y.; Kang, H.Y.; Kim, K.H.; Choi, G.S.; Shin, J.; Lee, H.J.; Kim, D.H.; Kim, T.H.; et al. Prevalence of vitiligo and associated comorbidities in Korea. Yonsei Med. J. 2015, 56, 719–725. [Google Scholar] [CrossRef] [Green Version]
- Choi, C.W.; Eun, S.H.; Choi, K.H.; Bae, J.M. Increased risk of comorbid rheumatic disorders in vitiligo patients: A nationwide population-based study. J. Dermatol. 2017, 44, 909–913. [Google Scholar] [CrossRef]
- Gill, L.; Zarbo, A.; Isedeh, P.; Jacobsen, G.; Lim, H.W.; Hamzavi, I. Comorbid autoimmune diseases in patients with vitiligo: A cross-sectional study. J. Am. Acad. Dermatol. 2016, 74, 295–302. [Google Scholar] [CrossRef]
- Chen, Y.T.; Chen, Y.J.; Hwang, C.Y.; Lin, M.W.; Chen, T.J.; Chen, C.C.; Chu, S.Y.; Lee, D.D.; Chang, Y.T.; Liu, H.N. Comorbidity profiles in association with vitiligo: A nationwide population-based study in Taiwan. J. Eur. Acad. Dermatol. Venereol. 2015, 29, 1362–1369. [Google Scholar] [CrossRef]
- Teulings, H.E.; Ceylan, E.; Overkamp, M.; Vrijman, C.; Bos, J.D.; Nijsten, T.E.; Wolkerstorfer, A.; Luiten, R.M.; van der Veen, J.P. Nonsegmental vitiligo disease duration and female sex are associated with comorbidity and disease extent: A retrospective analysis in 1307 patients aged ≥ 50 years. Br. J. Dermatol. 2016, 175, 821–824. [Google Scholar] [CrossRef] [PubMed]
- Narita, T.; Oiso, N.; Fukai, K.; Kabashima, K.; Kawada, A.; Suzuki, T. Generalized vitiligo and associated autoimmune diseases in Japanese patients and their families. Allergol. Int. 2011, 60, 505–508. [Google Scholar] [CrossRef] [Green Version]
- Lamb, M.M.; Yin, X.; Zerbe, G.O.; Klingensmith, G.J.; Dabelea, D.; Fingerlin, T.E.; Rewers, M.; Norris, J.M. Height growth velocity, islet autoimmunity and type 1 diabetes development: The diabetes autoimmunity study in the young. Diabetologia 2009, 52, 2064–2071. [Google Scholar] [CrossRef] [Green Version]
- Gollnick, H.P.; Bettoli, V.; Lambert, J.; Araviiskaia, E.; Binic, I.; Dessinioti, C.; Galadari, I.; Ganceviciene, R.; Ilter, N.; Kaegi, M.; et al. A consensus-based practical and daily guide for the treatment of acne patients. J. Eur. Acad. Dermatol. Venereol. 2016, 30, 1480–1490. [Google Scholar] [CrossRef] [PubMed]
- Ohlsson, C.; Mohan, S.; Sjögren, K.; Tivesten, A.; Isgaard, J.; Isaksson, O.; Jansson, J.O.; Svensson, J. The role of liver-derived insulin-like growth factor-I. Endocr. Rev. 2009, 30, 494–535. [Google Scholar] [CrossRef] [Green Version]
- Bach, L.A. What happened to the IGF binding proteins? Endocrinology 2018, 159, 570–578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seneschal, J.; Boniface, K.; D’Arino, A.; Picardo, M. An update on vitiligo pathogenesis. Pigment. Cell Melanoma Res. 2021, 34, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Bach, L.A. 40 years of IGF1: IGF-binding proteins. J. Mol. Endocrinol. 2018, 61, T11–T28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuzik, N.; Myette-Côté, É.; Carson, V.; Slater, L.; Boulé, N.G. Evaluating the effects of metformin use on height in children and adolescents: A meta-analysis of randomized clinical trials. JAMA Pediatr. 2015, 169, 1032–1039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lv, Z.; Guo, Y. Metformin and its benefits for various diseases. Front. Endocrinol. 2020, 11, 191. [Google Scholar] [CrossRef]
- Podhorecka, M.; Ibanez, B.; Dmoszyńska, A. Metformin–its potential anti-cancer and anti-aging effects. Postep. Hig Med. Dosw. 2017, 71, 170–175. [Google Scholar] [CrossRef]
- Lee, S.; Kim, M.; Han, J.H.; Ju, H.J.; Bae, J.M. P099: An identification of potential therapeutics for vitiligo by mass screening for 1732 medicines in Korean national health insurance database. 프로그램북(구 초록집) 2020, 72, 422. Available online: https://papersearch.net/thesis/article.asp?key=3845201 (accessed on 31 July 2021). (In Korean).
- Choi, Y.J.; Lee, D.H.; Han, K.D.; Yoon, H.; Shin, C.M.; Park, Y.S.; Kim, N. Adult height in relation to risk of cancer in a cohort of 22,809,722 Korean adults. Br. J. Cancer 2019, 120, 668–674. [Google Scholar] [CrossRef]
- Hwang, Y.S.; Oh, S.W.; Park, S.H.; Lee, J.; Yoo, J.A.; Kwon, K.; Park, S.J.; Kim, J.; Yu, E.; Cho, J.Y.; et al. Melanogenic effects of maclurin are mediated through the activation of cAMP/PKA/CREB and p38 MAPK/CREB signaling pathways. Oxid. Med. Cell Longev. 2019, 2019, 9827519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.E.; Park, S.H.; Oh, S.W.; Yoo, J.A.; Kwon, K.; Park, S.J.; Kim, J.; Lee, H.S.; Cho, J.Y.; Lee, J. Beauvericin inhibits melanogenesis by regulating cAMP/PKA/CREB and LXR-α/p38 MAPK-mediated pathways. Sci. Rep. 2018, 8, 14958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, X.; Wang, T.; Huang, B.; Ruan, G.; Xu, A. RIPK1 regulates the survival of human melanocytes upon endoplasmic reticulum stress. Exp. Ther. Med. 2020, 19, 3239–3246. [Google Scholar] [CrossRef]
- Lin, X.; Meng, X.; Song, Z.; Lin, J. Nuclear factor erythroid 2-related factor 2 (Nrf2) as a potential therapeutic target for vitiligo. Arch. Biochem. Biophys. 2020, 696, 108670. [Google Scholar] [CrossRef]
- Zhu, S.; Long, L.; Hu, Y.; Tuo, Y.; Li, Y.; Yu, Z. GnRHa/Stanozolol combined therapy maintains normal bone growth in central precocious puberty. Front. Endocrinol. 2021, 12, 678797. [Google Scholar] [CrossRef]
- Kim, J.H.; Hong, A.R.; Kim, Y.H.; Yoo, H.; Kang, S.W.; Chang, S.E.; Song, Y. JNK suppresses melanogenesis by interfering with CREB-regulated transcription coactivator 3-dependent MITF expression. Theranostics 2020, 10, 4017–4029. [Google Scholar] [CrossRef]
- Fruman, D.A.; Chiu, H.; Hopkins, B.D.; Bagrodia, S.; Cantley, L.C.; Abraham, R.T. The PI3K pathway in human disease. Cell 2017, 170, 605–635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, L.; Lin, X.; Zhi, L.; Fang, Y.; Lin, K.; Li, K.; Wu, L. Mesenchymal stem cells promote human melanocytes proliferation and resistance to apoptosis through PTEN pathway in vitiligo. Stem Cell Res. Ther. 2020, 11, 26. [Google Scholar] [CrossRef] [Green Version]
- Igaz, P.; Tóth, S.; Falus, A. Biological and clinical significance of the JAK-STAT pathway; lessons from knockout mice. Inflamm. Res. 2001, 50, 435–441. [Google Scholar] [CrossRef] [PubMed]
- Phan, K.; Phan, S.; Shumack, S.; Gupta, M. Repigmentation in vitiligo using janus kinase (JAK) inhibitors with phototherapy: Systematic review and Meta-analysis. J. Dermatolog. Treat. 2020, 1–5. [Google Scholar] [CrossRef]
- Tajan, M.; Pernin-Grandjean, J.; Beton, N.; Gennero, I.; Capilla, F.; Neel, B.G.; Araki, T.; Valet, P.; Tauber, M.; Salles, J.P.; et al. Noonan syndrome-causing SHP2 mutants impair ERK-dependent chondrocyte differentiation during endochondral bone growth. Hum. Mol. Genet. 2018, 27, 2276–2289. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Chen, C.; Liu, J.; Cai, L.; Shao, J.; Chen, Z.; Lin, L.; Zheng, T.; Ding, X.; Li, Z. The melanogenic effects and underlying mechanism of paeoniflorin in human melanocytes and vitiligo mice. Fitoterapia 2020, 140, 104416. [Google Scholar] [CrossRef]
- Dibble, C.C.; Cantley, L.C. Regulation of mTORC1 by PI3K signaling. Trends Cell Biol. 2015, 25, 545–555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phornphutkul, C.; Lee, M.; Voigt, C.; Wu, K.Y.; Ehrlich, M.G.; Gruppuso, P.A.; Chen, Q. The effect of rapamycin on bone growth in rabbits. J. Orthop. Res. 2009, 27, 1157–1161. [Google Scholar] [CrossRef]
- Cao, C.; Wan, Y. Parameters of protection against ultraviolet radiation-induced skin cell damage. J. Cell Physiol. 2009, 220, 277–284. [Google Scholar] [CrossRef]
- Wan, J.; Lin, F.; Zhang, W.; Xu, A.; DeGiorgis, J.; Lu, H.; Wan, Y. Novel approaches to vitiligo treatment via modulation of mTOR and NF-κB pathways in human skin melanocytes. Int. J. Biol. Sci. 2017, 13, 391–400. [Google Scholar] [CrossRef] [Green Version]
- Yu, R.X.; Hui, Y.; Li, C.R. Köebner phenomenon induced by striae distensae in a vitiligo patient. Ann. Dermatol. 2017, 29, 633–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iftikhar, N.; Rahman, A.; Janjua, S.A. Vitiligo appearing in striae distensae as a Koebner phenomenon. J. Coll. Phys. Surg. Pak. 2009, 19, 796–797. [Google Scholar]
- Feng, J.; Sang, H.; Wu, F.; Liu, F.; Ni, X. Vitiligo coexistent with striae: Association more than coincidence? Ann. Dermatol. 2014, 26, 139–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.; Lee, J.S.; Park, S.H.; Shin, S.A.; Kim, K. Cohort profile: The national health insurance service-national sample cohort (NHIS-NSC), South Korea. Int. J. Epidemiol. 2017, 46, e15. [Google Scholar] [CrossRef]
Height a | |||||
---|---|---|---|---|---|
Q1 (N = 3,093,715) | Q2 (N = 3,179,095) | Q3 (N = 3,442,765) | Q4 (N = 3,007,857) | Q5 (N = 3,179,095) | |
Age (year) b | 46.9 ± 14.9 | 46.5 ± 14.7 | 46.5 ± 14.5 | 46.2 ± 14.3 | 45.8 ± 14.4 |
Male Gender | 1,692,262 (54.7) | 1,745,323 (54.9) | 1,752,367 (50.9) | 1,555,062 (51.7) | 1,656,308 (52.1) |
Weight b | 57.7 ± 9.7 | 61.3 ± 10.2 | 63.2 ± 10.6 | 65.2 ± 11.1 | 69.2 ± 12.2 |
BMI (kg/cm2) b | 23.7 ± 3.2 | 23.6 ± 3.2 | 23.6 ± 3.2 | 23.6 ± 3.2 | 23.5 ± 3.2 |
<18.5 | 113,930 (3.7) | 120,244 (3.8) | 133,139 (3.9) | 127,272 (4.2) | 142,331 (4.4) |
18.5–23 | 1,212,028 (39.2) | 1,248,787 (39.3) | 1,364,068 (39.6) | 1,212,699 (40.3) | 1,315,805 (40.4) |
23–25 | 757,897 (24.5) | 791,295 (24.9) | 840,713 (24.4) | 731,385 (24.3) | 788,929 (24.2) |
25–30 | 905,369 (29.3) | 920,298 (29.0) | 996,235 (28.9) | 840,378 (27.9) | 904,578 (27.8) |
≥30 | 104,491 (3.4) | 98,471 (3.1) | 108,610 (3.2) | 96,124 (3.2) | 105,678 (3.2) |
Hypertension | 837,753 (27.1) | 845,966 (26.6) | 906,313 (26.3) | 773,584 (25.7) | 832,219 (25.6) |
Diabetes | 253,083 (8.2) | 257,386 (8.1) | 275,412 (8.0) | 237,054 (7.9) | 257,498 (7.9) |
Dyslipidemia | 479,476 (15.5) | 482,558 (15.2) | 524,485 (15.2) | 444,108 (14.8) | 461,546 (14.2) |
Current Smoking | 764,147 (24.7) | 807,490 (25.4) | 822,821 (23.9) | 736,924 (24.5) | 820,845 (25.2) |
Alcohol Consumption (yes) | 1,407,843 (45.5) | 1,511,332 (47.5) | 1,624,673 (47.2) | 1,433,861 (47.7) | 1,601,178 (49.2) |
Income Status (<20%) | 770,592 (24.9) | 717,217 (22.6) | 736,450 (21.4) | 623,084 (20.7) | 629,505 (19.3) |
Group | Vitiligo Diagnosis | Person-Years | Incidence Rate (Per 1000 Person-Years) | Hazard Ratio (95% CI) | |
---|---|---|---|---|---|
Model 1 | Model 2 | ||||
Total | |||||
Q1 | 4908 | 26,266,111 | 0.19 | 1 (ref.) | 1 (ref.) |
Q2 | 5472 | 27,058,790 | 0.20 | 1.09 (1.05, 1.13) | 1.11 (1.07, 1.16) |
Q3 | 6516 | 29,345,746 | 0.22 | 1.18 (1.14, 1.23) | 1.22 (1.18, 1.27) |
Q4 | 5774 | 25,634,799 | 0.23 | 1.29 (1.16, 1.25) | 1.26 (1.21, 1.31) |
Q5 | 6526 | 27,714,768 | 0.24 | 1.27 (1.22, 1.32) | 1.36 (1.31, 1.42) |
Gender | |||||
Male | |||||
Q1 | 2150 | 14,447,218 | 0.15 | 1 (ref.) | 1 (ref.) |
Q2 | 2455 | 15,001,287 | 0.16 | 1.10 (1.04, 1.17) | 1.12 (1.06, 1.19) |
Q3 | 2730 | 15,390,906 | 0.18 | 1.20 (1.13, 1.27) | 1.24 (1.17, 1.32) |
Q4 | 2311 | 13,240,619 | 0.17 | 1.18 (1.12, 1.25) | 1.24 (1.17, 1.32) |
Q5 | 2750 | 14,879,483 | 0.18 | 1.27 (1.20, 1.34) | 1.36 (1.28, 1.45) |
Female | |||||
Q1 | 2758 | 11,818,893 | 0.23 | 1 (ref.) | 1 (ref.) |
Q2 | 3017 | 12,057,502 | 0.25 | 1.08 (1.03, 1.14) | 1.10 (1.04, 1.16) |
Q3 | 3786 | 13,954,840 | 0.27 | 1.17 (1.11, 1.23) | 1.20 (1.14, 1.26) |
Q4 | 3463 | 12,394,180 | 0.28 | 1.21 (1.15, 1.27) | 1.26 (1.20, 1.33) |
Q5 | 3776 | 12,835,285 | 0.29 | 1.28 (1.21, 1.34) | 1.35 (1.28, 1.42) |
Index Age | |||||
Age < 65 | |||||
Q1 | 3792 | 20,985,874 | 0.18 | 1 (ref.) | 1 (ref.) |
Q2 | 4220 | 21,936,313 | 0.19 | 1.06 (1.02, 1.11) | 1.10 (1.05, 1.15) |
Q3 | 4915 | 23,617,789 | 0.21 | 1.13 (1.09, 1.18) | 1.20 (1.15, 1.26) |
Q4 | 4321 | 20,703,136 | 0.21 | 1.14 (1.09, 1.19) | 1.23 (1.18, 1.29) |
Q5 | 4861 | 22,337,748 | 0.22 | 1.22 (1.17, 1.27) | 1.37 (1.31, 1.44) |
Age ≥ 65 | |||||
Q1 | 1116 | 5,280,236 | 0.21 | 1 (ref.) | 1 (ref.) |
Q2 | 1252 | 5,122,476 | 0.24 | 1.15 (1.06, 1.24) | 1.15 (1.06, 1.25) |
Q3 | 1601 | 5,727,957 | 0.28 | 1.28 (1.19, 1.38) | 1.29 (1.20, 1.40) |
Q4 | 1453 | 4,931,663 | 0.29 | 1.34 (1.24, 1.45) | 1.36 (1.25, 1.47) |
Q5 | 1665 | 5,377,020 | 0.31 | 1.41 (1.31, 1.52) | 1.44 (1.32, 1.56) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.-B.; Kim, H.-S. Height and Risk of Vitiligo: A Nationwide Cohort Study. J. Clin. Med. 2021, 10, 3958. https://doi.org/10.3390/jcm10173958
Lee Y-B, Kim H-S. Height and Risk of Vitiligo: A Nationwide Cohort Study. Journal of Clinical Medicine. 2021; 10(17):3958. https://doi.org/10.3390/jcm10173958
Chicago/Turabian StyleLee, Young-Bok, and Hei-Sung Kim. 2021. "Height and Risk of Vitiligo: A Nationwide Cohort Study" Journal of Clinical Medicine 10, no. 17: 3958. https://doi.org/10.3390/jcm10173958
APA StyleLee, Y. -B., & Kim, H. -S. (2021). Height and Risk of Vitiligo: A Nationwide Cohort Study. Journal of Clinical Medicine, 10(17), 3958. https://doi.org/10.3390/jcm10173958