Role of Serum E-Selectin as a Biomarker of Infection Severity in Coronavirus Disease 2019
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Definitions
2.3. Marker of Endothelial Activation: sE-Selectin
2.4. Statistical Analysis
3. Results
3.1. Patients’ Characteristics
3.2. Comparison between ICU and Non-ICU-Admitted Patients
3.3. sE-Selectin for Prediction of ICU Admission
3.4. Multiple Logistic Regression Analysis
3.5. Correlation Analyses
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. New Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef]
- Gandhi, R.T.; Lynch, J.B.; Del Rio, C. Mild or moderate Covid-19. N. Engl. J. Med. 2020, 383, 1757–1766. [Google Scholar] [CrossRef]
- Richardson, S.; Hirsch, J.S.; Narasimhan, M.; Crawford, J.M.; McGinn, T.; Davidson, K.W.; Barnaby, D.P.; Becker, L.B.; Chelico, J.D.; Cohen, S.L.; et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. JAMA 2020, 323, 2052–2059. [Google Scholar] [CrossRef] [PubMed]
- Helms, J.; CRICS TRIGGERSEP Group (Clinical Research in Intensive Care and Sepsis Trial Group for Global Evaluation and Research in Sepsis); Tacquard, C.; Severac, F.; Leonard-Lorant, I.; Ohana, M.; Delabranche, X.; Merdji, H.; Clere-Jehl, R.; Schenck, M.; et al. High risk of thrombosis in patients with severe SARS-CoV-2 infection: A multicenter prospective cohort study. Intensiv. Care Med. 2020, 46, 1089–1098. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Tecson, K.M.; McCullough, P.A. Endothelial dysfunction contributes to COVID-19-associated vascular inflammation and coagulopathy. Rev. Cardiovasc. Med. 2020, 21, 315–319. [Google Scholar] [CrossRef] [PubMed]
- Oliva, A.; Franchi, C.; Gatto, M.C.; Galardo, G.; Pugliese, F.; Mastroianni, C. Prevalence and clinical significance of relative bradycardia at hospital admission in patients with coronavirus disease 2019 (COVID-19). Clin. Microbiol. Infect. 2021, 27, 1185–1187. [Google Scholar] [CrossRef] [PubMed]
- Iba, T.; Connors, J.M.; Levy, J.H. The coagulopathy, endotheliopathy, and vasculitis of COVID-19. Inflamm. Res. 2020, 69, 1181–1189. [Google Scholar] [CrossRef]
- Silva, M.; Videira, P.A.; Sackstein, R. E-selectin ligands in the human mononuclear phagocyte system: Implications for infection, inflammation, and immunotherapy. Front. Immunol. 2018, 8, 1878. [Google Scholar] [CrossRef] [Green Version]
- Roldán, V.; Marín, F.; Lip, G.Y.; Blann, A.D. Soluble E-selectin in cardiovascular disease and its risk factors. A review of the literature. Thromb. Haemost. 2003, 90, 1007–1020. [Google Scholar] [CrossRef]
- Konstantinides, S.V.; Meyer, G.; Becattini, C.; Bueno, H.; Geersing, G.-J.; Harjola, V.-P.; Huisman, M.V.; Humbert, M.; Jennings, C.S.; Jiménez, D.; et al. 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS). Eur. Heart J. 2020, 41, 543–603. [Google Scholar] [CrossRef]
- Thygesen, K.; Alpert, J.S.; Jaffe, A.S.; Chaitman, B.R.; Bax, J.J.; Morrow, D.A.; White, H.D.; The Executive Group on behalf of the Joint European Society of Cardiology (ESC)/American College of Cardiology (ACC)/American Heart Association (AHA)/World Heart Federation (WHF) Task Force for the Universal Definition of Myocardial Infarction. Fourth Universal Definition of Myocardial Infarction (2018). J. Am. Coll. Cardiol. 2018, 138, e618–e651. [Google Scholar] [CrossRef]
- Kernan, W.N.; Ovbiagele, B.; Black, H.R.; Bravata, D.M.; Chimowitz, M.I.; Ezekowitz, M.D.; Fang, M.C.; Fisher, M.; Furie, K.L.; Heck, D.V.; et al. Guidelines for the Prevention of Stroke in Patients With Stroke and Transient Ischemic Attack. Stroke 2014, 45, 2160–2236. [Google Scholar] [CrossRef]
- Bonaca, M.P.; Gutierrez, J.A.; Creager, M.A.; Scirica, B.M.; Olin, J.; Murphy, S.A.; Braunwald, E.; Morrow, D.A. Acute Limb Ischemia and Outcomes With Vorapaxar in Patients With Peripheral Artery Disease. Circulation 2016, 133, 997–1005. [Google Scholar] [CrossRef]
- Zhang, J.; Defelice, A.F.; Hanig, J.P.; Colatsky, T. Biomarkers of endothelial cell activation serve as potential surrogate markers for drug-induced vascular injury. Toxicol. Pathol. 2010, 38, 856–871. [Google Scholar] [CrossRef] [Green Version]
- Hanff, T.C.; Mohareb, A.M.; Giri, J.; Cohen, J.B.; Chirinos, J.A. Thrombosis in COVID-19. Am. J. Hematol. 2020, 95, 1578–1589. [Google Scholar] [CrossRef] [PubMed]
- Violi, F.; Ceccarelli, G.; Cangemi, R.; Cipollone, F.; D’Ardes, D.; Oliva, A.; Pirro, M.; Rocco, M.; Alessandri, F.; D’Ettorre, G.; et al. Arterial and venous thrombosis in coronavirus 2019 disease (Covid-19): Relationship with mortality. Intern. Emerg. Med. 2021, 16, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Oliva, A.; Cammisotto, V.; Cangemi, R.; Ferro, D.; Miele, M.C.; De Angelis, M.; Cancelli, F.; Pignatelli, P.; Venditti, M.; Pugliese, F.; et al. Low-Grade Endotoxemia and Thrombosis in COVID-19. Clin. Transl. Gastroenterol. 2021, 12, e00348. [Google Scholar] [CrossRef] [PubMed]
- Violi, F.; Oliva, A.; Cangemi, R.; Ceccarelli, G.; Pignatelli, P.; Carnevale, R.; Cammisotto, V.; Lichtner, M.; Alessandri, F.; De Angelis, M.; et al. Nox2 activation in Covid-19. Redox Biol. 2020, 36, 101655. [Google Scholar] [CrossRef]
- Violi, F.; Ceccarelli, G.; Cangemi, R.; Alessandri, F.; D’Ettorre, G.; Oliva, A.; Pastori, D.; Loffredo, L.; Pignatelli, P.; Ruberto, F.; et al. Hypoalbuminemia, Coagulopathy, and Vascular Disease in COVID-19. Circ. Res. 2020, 127, 400–401. [Google Scholar] [CrossRef]
- Colling, M.E.; Kanthi, Y. COVID-19-associated coagulopathy: An exploration of mechanisms. Vasc. Med. 2020, 25, 471–478. [Google Scholar] [CrossRef]
- Birnhuber, A.; Fliesser, E.; Gorkiewicz, G.; Zacharias, M.; Seeliger, B.; David, S.; Welte, T.; Schmidt, J.; Olschewski, H.; Wygrecka, M.; et al. Between inflammation and thrombosis—Endothelial cells in COVID-19. Eur. Respir. J. 2021, 13, 2100377. [Google Scholar] [CrossRef] [PubMed]
- Smadja, D.M.; Guerin, C.L.; Chocron, R.; Yatim, N.; Boussier, J.; Gendron, N.; Khider, L.; Hadjadj, J.; Goudot, G.; Debuc, B.; et al. Angiopoietin-2 as a marker of endothelial activation is a good predictor factor for intensive care unit admission of COVID-19 patients. Angiogenesis 2020, 23, 611–620. [Google Scholar] [CrossRef] [PubMed]
- Vassiliou, A.; Keskinidou, C.; Jahaj, E.; Gallos, P.; Dimopoulou, I.; Kotanidou, A.; Orfanos, S. ICU Admission Levels of Endothelial Biomarkers as Predictors of Mortality in Critically Ill COVID-19 Patients. Cells 2021, 10, 186. [Google Scholar] [CrossRef] [PubMed]
- Spadaro, S.; Fogagnolo, A.; Campo, G.; Zucchetti, O.; Verri, M.; Ottaviani, I.; Tunstall, T.; Grasso, S.; Scaramuzzo, V.; Murgolo, F.; et al. Markers of endothelial and epithelial pulmonary injury in mechanically ventilated COVID-19 ICU patients. Crit. Care 2021, 25, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Rosazza, T.; Warner, J.; Sollberger, G. NET formation—Mechanisms and how they relate to other cell death pathways. FEBS J. 2021, 288, 3334–3350. [Google Scholar] [CrossRef]
- Papayannopoulos, V. Neutrophil extracellular traps in immunity and disease. Nat. Rev. Immunol. 2018, 18, 134–147. [Google Scholar] [CrossRef]
- Mutua, V.; Gershwin, L.J. A review of Neutrophil Extracellular Traps (NETs) in disease: Potential Anti-NETs therapeutics. Clin. Rev. Allergy Immunol. 2020, 61, 1–18. [Google Scholar] [CrossRef]
- Hoeksema, M.; Tripathi, S.; White, M.; Qi, L.; Taubenberger, J.; van Eijk, M.; Haagsman, H.; Hartshorn, K.L. Arginine-rich histones have strong antiviral activity for influenza A viruses. Innate Immun. 2015, 21, 736–745. [Google Scholar] [CrossRef] [Green Version]
- Narasaraju, T.; Yang, E.; Samy, R.P.; Ng, H.H.; Poh, W.P.; Liew, A.-A.; Phoon, M.C.; van Rooijen, N.; Chow, V.T. Excessive Neutrophils and Neutrophil Extracellular Traps Contribute to Acute Lung Injury of Influenza Pneumonitis. Am. J. Pathol. 2011, 179, 199–210. [Google Scholar] [CrossRef]
- Vogel, S.; Bodenstein, R.; Chen, Q.; Feil, S.; Feil, R.; Rheinlaender, J.; Schäffer, T.; Bohn, E.; Frick, J.-S.; Borst, O.; et al. Platelet-derived HMGB1 is a critical mediator of thrombosis. J. Clin. Investig. 2015, 125, 4638–4654. [Google Scholar] [CrossRef] [Green Version]
- Cheng, O.Z.; Palaniyar, N. NET balancing: A problem in inflammatory lung diseases. Front. Immunol. 2013, 4, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saffarzadeh, M.; Juenemann, C.; Queisser, M.A.; Lochnit, G.; Barreto, G.; Galuska, S.P.; Lohmeyer, J.; Preissner, K.T. Neutrophil Extracellular Traps Directly Induce Epithelial and Endothelial Cell Death: A Predominant Role of Histones. PLoS ONE 2012, 7, e32366. [Google Scholar] [CrossRef] [PubMed]
- Radermecker, C.; Detrembleur, N.; Guiot, J.; Cavalier, E.; Henket, M.; D’Emal, C.; Vanwinge, C.; Cataldo, D.; Oury, C.; Delvenne, P.; et al. Neutrophil extracellular traps infiltrate the lung airway, interstitial, and vascular compartments in severe COVID-19. J. Exp. Med. 2020, 217. [Google Scholar] [CrossRef]
- Thierry, A.R.; Roch, B. Neutrophil extracellular traps and by-products play a key role in COVID-19: Pathogenesis, risk factors, and therapy. J. Clin. Med. 2020, 9, 2942. [Google Scholar] [CrossRef]
- Veras, F.P.; Pontelli, M.C.; Silva, C.M.; Toller-Kawahisa, J.E.; de Lima, M.; Nascimento, D.C.; Schneider, A.H.; Caetité, D.; Tavares, L.A.; Paiva, I.M.; et al. SARS-CoV-2–triggered neutrophil extracellular traps mediate COVID-19 pathology. J. Exp. Med. 2020, 217, e20201129. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Overall, N = 100 1 | ICU Admission | p-Value 2 | |
---|---|---|---|---|
Non-ICU 1 | ICU 1 | |||
Demographic | ||||
Age (years), median (IQR) | 65 (58, 78) | 64 (58, 78) | 68 (58, 75) | 0.97 |
Male sex, n (%) | 62/100 (62) | 38/71 (54) | 24/29 (83) | 0.006 |
Comorbidities, n (%) | ||||
Diabetes | 18/96 (19) | 13/71 (18) | 5/25 (20) | 0.85 |
CAD | 13/96 (14) | 9/71 (13) | 4/25 (16) | 0.74 |
ISH | 42/96 (44) | 31/71 (44) | 11/25 (44) | 0.98 |
CHF | 12/96 (12) | 6/71 (8.5) | 6/25 (24) | 0.073 |
AF | 6/96 (6.2) | 5/71 (7.0) | 1/25 (4.0) | >0.99 |
PAD | 16/96 (17) | 12/71 (17) | 4/25 (16) | >0.99 |
CVA/TIA | 3/96 (3.1) | 2/71 (2.8) | 1/25 (4.0) | >0.99 |
Dementia | 9/95 (9.5) | 8/71 (11) | 1/24 (4.2) | 0.44 |
Asthma | 7/96 (7.3) | 6/71 (8.5) | 1/25 (4.0) | 0.67 |
COPD | 14/92 (15) | 11/70 (16) | 3/22 (14) | >0.99 |
Liver disease | 6/96 (6.2) | 6/71 (8.5) | 0/25 (0) | 0.33 |
Hemiplegia | 2/96 (2.1) | 1/71 (1.4) | 1/25 (4.0) | 0.46 |
Solid tumor (last 5 years) | 11/92 (12) | 10/70 (14) | 1/22 (4.5) | 0.29 |
Leukemia/Lymphoma | 6/96 (6.2) | 5/71 (7.0) | 1/25 (4.0) | >0.99 |
CCI | 4 (1, 6) | 4 (1, 6) | 3 (2, 4) | 0.25 |
Onset of symptoms to | ||||
Hospitalization (days), median (IQR) | 6 (4, 8) | 5 (3, 8) | 6 (4, 8) | 0.67 |
Signs and symptoms, n (%) | ||||
Cough | 52/96 (54) | 38/71 (54) | 14/25 (56) | 0.83 |
Dyspnea | 48/97 (49) | 30/71 (42) | 18/26 (69) | 0.019 |
Diarrhea | 11/96 (11) | 10/71 (14) | 1/25 (4.0) | 0.28 |
Fever | 89/98 (91) | 62/71 (87) | 27/27 (100) | 0.060 |
Fatigue | 17/96 (18) | 14/71 (20) | 3/25 (12) | 0.55 |
Blood gas analysis, median (IQR) | ||||
SpO2 (%) | 96 (92, 97) | 97 (94, 98) | 91 (85, 97) | <0.001 |
PaO2/FiO2 ratio | 324 (242, 403) | 352 (295, 424) | 185 (117, 273) | <0.001 |
Laboratory, median (IQR) | ||||
WBCs (μL) | 5740 (4490, 8250) | 5370 (4390, 6830) | 8790 (4915, 10,685) | 0.005 |
PMNLs (μL) | 4590 (2910, 6390) | 4050 (2780, 5122) | 7560 (3768, 9840) | 0.002 |
Lymphocytes (μL) | 780 (560, 1140) | 800 (590, 1190) | 720 (472, 982) | 0.13 |
Monocytes (μL) | 310 (240, 425) | 310 (248, 422) | 300 (230, 405) | 0.70 |
PLT (μL) | 187,000 (156,000, 229,000) | 185,000 (158,000, 228,000) | 201,500 (146,500, 239,750) | 0.91 |
SCr (mg/mL) | 0.90 (0.80, 1.10) | 0.90 (0.80, 1.00) | 1.10 (0.83, 1.30) | 0.042 |
Albumin (g/dL) | 37 (32, 40) | 38 (33, 41) | 34 (30, 36) | 0.008 |
LDH (U/L) | 308 (242, 404) | 284 (231, 360) | 389 (274, 465) | 0.021 |
D-dimer (ng/mL) | 1366 (609, 3170) | 1180 (513, 1999) | 4474 (2516, 4610) | <0.001 |
Home therapy, n(%) | ||||
ACE-inhibitors/ARBs | 19/90 (21) | 13/68 (19) | 6/22 (27) | 0.42 |
Diuretics | 17/90 (19) | 12/68 (18) | 5/22 (23) | 0.75 |
Antiaggregants | 14/94 (15) | 9/69 (13) | 5/25 (20) | 0.51 |
Anticoagulants | 4/94 (4.3) | 3/69 (4.3) | 1/25 (4.0) | >0.99 |
Statins | 12/90 (13) | 9/68 (13) | 3/22 (14) | >0.99 |
Outcomes, n (%) | ||||
Death | 28/100 (28) | 8/71 (11) | 20/29 (69) | <0.001 |
Thrombotic event | 19/100 (19) | 7/71 (9.9) | 12/29 (41) | <0.001 |
Markers, median (IQR) | ||||
sE-selectin (ng/mL) | 26.1 (18.1, 35.0) | 24.1 (17.0, 30.1) | 36.6 (25.8, 47.1) | <0.001 |
Analysis | |||
---|---|---|---|
Characteristic | OR 1 | 95% CI 1 | p-Value |
sE-selectin | 1.07 | 1.03, 1.12 | <0.001 |
Prediction | Optimal Cutoff 1 (ng/mL) | Se | Sp | Acc |
---|---|---|---|---|
ICU vs. Non-ICU | 32.7 | 0.61 | 0.83 | 0.77 |
Characteristic. | Univariable | Multivariable | ||||
---|---|---|---|---|---|---|
OR 1 | 95% CI 1 | p-Value | OR 1 | 95% CI 1 | p-Value | |
Male Sex | 4.11 | 1.37–15.3 | 0.019 | |||
PMNL > 8000/μL | 12.5 | 3.61–51.6 | <0.001 | |||
LDH > 300 U/L | 2.64 | 1.00–7.63 | 0.058 | |||
sE-selectin > 33 ng/mL | 7.39 | 2.66–21.8 | <0.001 | 13.7 | 3.25–82.0 | 0.001 |
PaO2/FiO2 ratio | ||||||
200–300 | 7.14 | 1.67–37.4 | 0.011 | 9.08 | 1.74–62.1 | 0.013 |
<200 | 46.7 | 11.2–264 | <0.001 | 80.3 | 14.4–716 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliva, A.; Rando, E.; Al Ismail, D.; De Angelis, M.; Cancelli, F.; Miele, M.C.; Aronica, R.; Mauro, V.; Di Timoteo, F.; Loffredo, L.; et al. Role of Serum E-Selectin as a Biomarker of Infection Severity in Coronavirus Disease 2019. J. Clin. Med. 2021, 10, 4018. https://doi.org/10.3390/jcm10174018
Oliva A, Rando E, Al Ismail D, De Angelis M, Cancelli F, Miele MC, Aronica R, Mauro V, Di Timoteo F, Loffredo L, et al. Role of Serum E-Selectin as a Biomarker of Infection Severity in Coronavirus Disease 2019. Journal of Clinical Medicine. 2021; 10(17):4018. https://doi.org/10.3390/jcm10174018
Chicago/Turabian StyleOliva, Alessandra, Emanuele Rando, Dania Al Ismail, Massimiliano De Angelis, Francesca Cancelli, Maria Claudia Miele, Raissa Aronica, Vera Mauro, Federica Di Timoteo, Lorenzo Loffredo, and et al. 2021. "Role of Serum E-Selectin as a Biomarker of Infection Severity in Coronavirus Disease 2019" Journal of Clinical Medicine 10, no. 17: 4018. https://doi.org/10.3390/jcm10174018
APA StyleOliva, A., Rando, E., Al Ismail, D., De Angelis, M., Cancelli, F., Miele, M. C., Aronica, R., Mauro, V., Di Timoteo, F., Loffredo, L., & Mastroianni, C. M. (2021). Role of Serum E-Selectin as a Biomarker of Infection Severity in Coronavirus Disease 2019. Journal of Clinical Medicine, 10(17), 4018. https://doi.org/10.3390/jcm10174018