Analysis of the Peripapillary and Macular Regions Using OCT Angiography in Patients with Schizophrenia and Bipolar Disorder
Abstract
:1. Introduction
2. Material and Methods
Statistical Analysis
3. Results
3.1. Patient Group Characteristic
3.2. OCTA Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Silverstein, S.M.; Rosen, R. Schizophrenia and the eye. Schizophr. Research. Cogn. 2015, 2, 46–55. [Google Scholar] [CrossRef] [Green Version]
- Merikangas, K.R.; Akiskal, H.S.; Angst, J.; Greenberg, P.E.; Hirschfeld, R.M.; Petukhova, M.; Kessler, R.C. Lifetime and 12-month prevalence of bipolar spectrum disorder in the national comorbidity survey replication. Arch. Gen. Psychiatry 2007, 64, 543–552. [Google Scholar] [CrossRef] [PubMed]
- Gracitelli, C.P.; Abe, R.Y.; Diniz-Filho, A.; Vaz-de-Lima, F.B.; Paranhos, A., Jr.; Medeiros, F.A. Ophthalmology issues in schizophrenia. Curr. Psychiatry Rep. 2015, 17, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Honea, R.; Crow, T.J.; Passingham, D.; Mackay, C.E. Regional deficits in brain volume in schizophrenia: A meta-analysis of voxel-based morphometry studies. Am. J. Psychiatry 2005, 162, 2233–2245. [Google Scholar] [CrossRef]
- Kempton, M.J.; Geddes, J.R.; Ettinger, U.; Williams, S.C.; Grasby, P.M. Meta-analysis, database, and meta-regression of 98 structural imaging studies in bipolar disorder. Arch. Gen. Psychiatry 2008, 65, 1017–1032. [Google Scholar] [CrossRef]
- Wong, T.Y.; Klein, R.; Sharrett, A.R.; Couper, D.J.; Klein, B.E.; Liao, D.P.; Hubbard, L.D.; Mosley, T.H. Cerebral white matter lesions, retinopathy, and incident clinical stroke. JAMA 2002, 288, 67–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andreasen, N.C.; Calarge, C.A.; O’Leary, D.S. Theory of mind and schizophrenia: A positron emission tomography study of medication-free patients. Schizophr. Bull. 2008, 34, 708–719. [Google Scholar] [CrossRef]
- Chu, E.M.; Kolappan, M.; Barnes, T.R.; Joyce, E.M.; Ron, M.A. A window into the brain: An in vivo study of the retina in schizophrenia using optical coherence tomography. Psychiatry Res. 2012, 203, 89–94. [Google Scholar] [CrossRef] [Green Version]
- Kemenyova, P.; Turcani, P.; Sutovsky, S.; Waczulikova, I. Optical coherence tomography and its use in optical neuritis and multiple sclerosis. Bratisl. Lek. Listy 2014, 115, 723–729. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.W.; Tajunisah, I.; Sharmilla, K.; Peyman, M.; Subrayan, V. Retinal nerve fiber layer structure abnormalities in schizophrenia and its relationship to disease state: Evidence from optical coherence tomography. Investig. Ophthalmol. Vis. Sci. 2013, 54, 7785–7792. [Google Scholar] [CrossRef] [Green Version]
- Brinkmann, M.P.; Kibele, N.X.; Prasuhn, M.; Kakkassery, V.; Toro, M.D.; Ranjbar, M.; Grisanti, S.; Becker, M.; Rommel, F. Evaluating retinal and choroidal perfusion changes after isometric and dynamic activity using optical coherence tomography angiography. Diagnostics 2021, 11, 808. [Google Scholar] [CrossRef]
- Ceravolo, I.; Oliverio, G.W.; Alibrandi, A.; Bhatti, A.; Trombetta, L.; Rejdak, R.; Toro, M.D.; Trombetta, C.J. The application of structural retinal biomarkers to evaluate the effect of intravitreal ranibizumab and dexamethasone intravitreal implant on treatment of diabetic macular edema. Diagnostics 2020, 10, 413. [Google Scholar] [CrossRef] [PubMed]
- Brinkmann, M.P.; Michels, S.; Brinkmann, C.; Toro, M.D.; Johansen, N.G.; Rommel, F.; Ranjbar, M.; Becker, M. Influences of central bouquet alterations on the visual outcome in eyes receiving epiretinal membrane surgery. Appl. Sci. 2021, 11, 926. [Google Scholar] [CrossRef]
- Longo, A.; Avitabile, T.; Uva, M.G.; Bonfiglio, V.; Russo, A.; Toro, M.D.; Faro, S.; Reibaldi, M. Morphology of the optic nerve head in glaucomatous eyes with visual field defects in superior or inferior hemifield. Eur. J. Ophthalmol. 2018, 28, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Longo, A.; Avitabile, T.; Uva, M.G.; Bonfiglio, V.; Russo, A.; Toro, M.D.; Gagliano, C.; Fallico, M.; Reibaldi, M. Optic nerve head in central retinal vein occlusion by spectral-domain oct. Eur. J. Ophthalmol. 2017, 27, 485–490. [Google Scholar] [CrossRef] [PubMed]
- Wrzesińska, D.; Nowomiejska, K.; Nowakowska, D.; Brzozowska, A.; Avitabile, T.; Reibaldi, M.; Rejdak, R.; Toro, M. Vertical and horizontal m-charts and microperimetry for assessment of the visual function in patients after vitrectomy with ilm peeling due to stage 4 macular hole. J. Ophthalmol. 2019, 2019, 4975973. [Google Scholar] [CrossRef] [Green Version]
- Wrzesińska, D.; Nowomiejska, K.; Nowakowska, D.; Toro, M.D.; Bonfiglio, V.; Reibaldi, M.; Avitabile, T.; Rejdak, R. Secondary vitrectomy with internal limiting membrane plug due to persistent full-thickness macular hole oct-angiography and microperimetry features: Case series. J. Ophthalmol. 2020, 2020, 2650873. [Google Scholar] [CrossRef] [PubMed]
- Porta, A.; Tripodi, S.; Toro, M.D.; Rejdak, R.; Rejdak, K.; Zanzottera, E.C.; Ferentini, F. Bilateral acute macular neuroretinopathy in a young patient: Imaging and visual field during two-year-follow-up. Diagnostics 2020, 10, 259. [Google Scholar] [CrossRef] [PubMed]
- Reibaldi, M.; Parravano, M.; Varano, M.; Longo, A.; Avitabile, T.; Uva, M.G.; Zagari, M.; Toro, M.; Boscia, F.; Boccassini, B.; et al. Foveal microstructure and functional parameters in lamellar macular hole. Am J Ophthalmol 2012, 154, 974–980.e971. [Google Scholar] [CrossRef]
- Reibaldi, M.; Uva, M.G.; Avitabile, T.; Toro, M.D.; Zagari, M.; Mariotti, C.; Cennamo, G.; Reibaldi, A.; Longo, A. Intrasession reproducibility of rnfl thickness measurements using sd-oct in eyes with keratoconus. Ophthalmic Surg. Lasers Imaging: Off. J. Int. Soc. Imaging Eye 2012, 43, S83–S89. [Google Scholar] [CrossRef] [Green Version]
- Satue, M.; Rodrigo, M.J.; Otin, S.; Bambo, M.P.; Fuertes, M.I.; Ara, J.R.; Martin, J.; Polo, V.; Larrosa, J.M.; Pablo, L.; et al. Relationship between visual dysfunction and retinal changes in patients with multiple sclerosis. PLoS ONE 2016, 11, e0157293. [Google Scholar] [CrossRef]
- Polo, V.; Satue, M.; Rodrigo, M.J.; Otin, S.; Alarcia, R.; Bambo, M.P.; Fuertes, M.I.; Larrosa, J.M.; Pablo, L.E.; Garcia-Martin, E. Visual dysfunction and its correlation with retinal changes in patients with parkinson’s disease: An observational cross-sectional study. BMJ Open 2016, 6, e009658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Y.; Li, Z.; Zhang, X.; Ming, B.; Jia, J.; Wang, R.; Ma, D. Retinal nerve fiber layer structure abnormalities in early alzheimer’s disease: Evidence in optical coherence tomography. Neurosci. Lett. 2010, 480, 69–72. [Google Scholar] [CrossRef] [PubMed]
- Chisari, C.G.; Toro, M.D.; Cimino, V.; Rejdak, R.; Luca, M.; Rapisarda, L.; Avitabile, T.; Posarelli, C.; Rejdak, K.; Reibaldi, M.; et al. Retinal nerve fiber layer thickness and higher relapse frequency may predict poor recovery after optic neuritis in ms patients. J. Clin. Med. 2019, 8, 2022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Appaji, A.; Nagendra, B.; Chako, D.M.; Padmanabha, A.; Jacob, A.; Hiremath, C.V.; Varambally, S.; Kesavan, M.; Venkatasubramanian, G.; Rao, S.V.; et al. Retinal vascular tortuosity in schizophrenia and bipolar disorder. Schizophr. Res. 2019, 212, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Kalenderoglu, A.; Sevgi-Karadag, A.; Celik, M.; Egilmez, O.B.; Han-Almis, B.; Ozen, M.E. Can the retinal ganglion cell layer (gcl) volume be a new marker to detect neurodegeneration in bipolar disorder? Compr. Psychiatry 2016, 67, 66–72. [Google Scholar] [CrossRef]
- Lizano, P.; Bannai, D.; Lutz, O.; Kim, L.A.; Miller, J.; Keshavan, M. A meta-analysis of retinal cytoarchitectural abnormalities in schizophrenia and bipolar disorder. Schizophr. Bull. 2020, 46, 43–53. [Google Scholar] [CrossRef] [Green Version]
- Wiest, M.R.J.; Toro, M.D.; Nowak, A.; Baur, J.; Fasler, K.; Hamann, T.; Al-Sheikh, M.; Zweifel, S.A. Globotrioasylsphingosine levels and optical coherence tomography angiography in fabry disease patients. J. Clin. Med. 2021, 10, 1093. [Google Scholar] [CrossRef]
- Bonfiglio, V.; Ortisi, E.; Scollo, D.; Reibaldi, M.; Russo, A.; Pizzo, A.; Faro, G.; Macchi, I.; Fallico, M.; Toro, M.D.; et al. Vascular changes after vitrectomy for rhegmatogenous retinal detachment: Optical coherence tomography angiography study. Acta Ophthalmol. 2019, 98, e563–e569. [Google Scholar]
- Carnevali, A.; Giannaccare, G.; Gatti, V.; Battaglia, C.; Randazzo, G.; Yu, A.C.; Pellegrini, M.; Ferragina, F.; Toro, M.D.; Bruno, C.; et al. Retinal microcirculation abnormalities in patients with systemic sclerosis: An explorative optical coherence tomography angiography study. Rheumatology 2021. [Google Scholar] [CrossRef]
- Carnevali, A.; Mastropasqua, R.; Gatti, V.; Vaccaro, S.; Mancini, A.; D’Aloisio, R.; Lupidi, M.; Cerquaglia, A.; Sacconi, R.; Borrelli, E.; et al. Optical coherence tomography angiography in intermediate and late age-related macular degeneration: Review of current technical aspects and applications. Appl. Sci. 2020, 10, 8865. [Google Scholar] [CrossRef]
- Rabiolo, A.; Gelormini, F.; Sacconi, R.; Cicinelli, M.V.; Triolo, G.; Bettin, P.; Nouri-Mahdavi, K.; Bandello, F.; Querques, G. Comparison of methods to quantify macular and peripapillary vessel density in optical coherence tomography angiography. PLoS ONE 2018, 13, e0205773. [Google Scholar] [CrossRef]
- Koman-Wierdak, E.; Nowomiejska, K.; Brzozowska, A.; Nowakowska, D.; Toro, M.D.; Bonfiglio, V.; Reibaldi, M.; Avitabile, T.; Rejdak, R. Kinetic and static perimetry after 16 years and additional oct-a analysis in eyes with long-lasting optic disc drusen. PLoS ONE 2021, 16, e0247399. [Google Scholar] [CrossRef] [PubMed]
- Bonfiglio, V.; Ortisi, E.; Nebbioso, M.; Reibaldi, M.; Lupidi, M.; Russo, A.; Fallico, M.; Scollo, D.; Macchi, I.; Pizzo, A.; et al. Oct-angiography evaluation of peripapillary microvascular changes after rhegmatogenous retinal detachment repair. Retina 2021. [Google Scholar] [CrossRef]
- Tsokolas, G.; Tsaousis, K.T.; Diakonis, V.F.; Matsou, A.; Tyradellis, S. Optical coherence tomography angiography in neurodegenerative diseases: A review. Eye Brain 2020, 12, 73–87. [Google Scholar] [CrossRef]
- Curtis, C.E.; Iacono, W.G.; Beiser, M. Relationship between nailfold plexus visibility and clinical, neuropsychological, and brain structural measures in schizophrenia. Biol. Psychiatry 1999, 46, 102–109. [Google Scholar] [CrossRef]
- Uranova, N.A.; Zimina, I.S.; Vikhreva, O.V.; Krukov, N.O.; Rachmanova, V.I.; Orlovskaya, D.D. Ultrastructural damage of capillaries in the neocortex in schizophrenia. World J. Biol. Psychiatry: Off. J. World Fed. Soc. Biol. Psychiatry 2010, 11, 567–578. [Google Scholar] [CrossRef]
- Lizano, P.; Bannai, D.; Adhan, I.; Douglas, K.A.A.; Kasetty, M.; Keshavan, M.; Miller, J.B. Superficial retinal vascular abnormalities in schizophrenia as shown by swept source oct-angiography: A preliminary study. Biol. Psychiatry 2020, 87, S445. [Google Scholar] [CrossRef]
- Samani, N.N.; Proudlock, F.A.; Siram, V.; Suraweera, C.; Hutchinson, C.; Nelson, C.P.; Al-Uzri, M.; Gottlob, I. Retinal layer abnormalities as biomarkers of schizophrenia. Schizophr. Bull. 2018, 44, 876–885. [Google Scholar] [CrossRef]
- Ascaso, F.J.; Rodriguez-Jimenez, R.; Cabezón, L.; López-Antón, R.; Santabárbara, J.; De la Cámara, C.; Modrego, P.J.; Quintanilla, M.A.; Bagney, A.; Gutierrez, L.; et al. Retinal nerve fiber layer and macular thickness in patients with schizophrenia: Influence of recent illness episodes. Psychiatry Res. 2015, 229, 230–236. [Google Scholar] [CrossRef]
- Topcu-Yilmaz, P.; Aydin, M.; Ilhan, B.C. Evaluation of retinal nerve fiber layer, macular, and choroidal thickness in schizophrenia: Spectral optic coherence tomography findings. Psychiat Clin Psych 2019, 29, 28–33. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Martin, E.; Gavin, A.; Garcia-Campayo, J.; Vilades, E.; Orduna, E.; Polo, V.; Larrosa, J.M.; Pablo, L.E.; Satue, M. Visual function and retinal changes in patients with bipolar disorder. Retina 2019, 39, 2012–2021. [Google Scholar] [CrossRef]
- Olabi, B.; Ellison-Wright, I.; McIntosh, A.M.; Wood, S.J.; Bullmore, E.; Lawrie, S.M. Are there progressive brain changes in schizophrenia? A meta-analysis of structural magnetic resonance imaging studies. Biol. Psychiatry 2011, 70, 88–96. [Google Scholar] [CrossRef] [Green Version]
- Moorhead, T.W.; McKirdy, J.; Sussmann, J.E.; Hall, J.; Lawrie, S.M.; Johnstone, E.C.; McIntosh, A.M. Progressive gray matter loss in patients with bipolar disorder. Biol. Psychiatry 2007, 62, 894–900. [Google Scholar] [CrossRef]
- Yılmaz, U.; Küçük, E.; Ülgen, A.; Özköse, A.; Demircan, S.; Ulusoy, D.M.; Zararsız, G. Retinal nerve fiber layer and macular thickness measurement in patients with schizophrenia. Eur. J. Ophthalmol. 2016, 26, 375–378. [Google Scholar] [CrossRef] [PubMed]
- Celik, M.; Kalenderoglu, A.; Sevgi Karadag, A.; Bekir Egilmez, O.; Han-Almis, B.; Şimşek, A. Decreases in ganglion cell layer and inner plexiform layer volumes correlate better with disease severity in schizophrenia patients than retinal nerve fiber layer thickness: Findings from spectral optic coherence tomography. Eur. Psychiatry: J. Assoc. Eur. Psychiatr. 2016, 32, 9–15. [Google Scholar] [CrossRef]
- Mehraban, A.; Samimi, S.M.; Entezari, M.; Seifi, M.H.; Nazari, M.; Yaseri, M. Peripapillary retinal nerve fiber layer thickness in bipolar disorder. Graefe’s Arch. Clin. Exp. Ophthalmol. = Albrecht Von Graefes Arch. Fur Klin. Und Exp. Ophthalmol. 2016, 254, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Khalil, M.A.; Saleh, A.A.; Gohar, S.M.; Khalil, D.H.; Said, M. Optical coherence tomography findings in patients with bipolar disorder. J. Affect. Disord. 2017, 218, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh, M.; Delborde, Y.; Ahmadpanah, M.; Seifrabiee, M.A.; Jahangard, L.; Bazzazi, N.; Brand, S. Non-linear associations between retinal nerve fibre layer (rnfl) and positive and negative symptoms among men with acute and chronic schizophrenia spectrum disorder. J. Psychiatr. Res. 2021, 141, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Asanad, S.; O’Neill, H.; Addis, H.; Chen, S.; Wang, J.; Goldwaser, E.; Kochunov, P.; Hong, L.E.; Saeedi, O.J. Neuroretinal biomarkers for schizophrenia spectrum disorders. Transl. Vis. Sci. Technol. 2021, 10, 29. [Google Scholar] [CrossRef]
- Balk, L.J.; Petzold, A. Current and future potential of retinal optical coherence tomography in multiple sclerosis with and without optic neuritis. Neurodegener. Dis. Manag. 2014, 4, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Silverstein, S.M.; Lai, A.; Green, K.M.; Crosta, C.; Fradkin, S.I.; Ramchandran, R.S. Retinal microvasculature in schizophrenia. Eye Brain 2021, 13, 205–217. [Google Scholar]
- Budakoglu, O.; Ozdemir, K.; Safak, Y.; Sen, E.; Taskale, B. Retinal nerve fibre layer and peripapillary vascular density by optical coherence tomography angiography in schizophrenia. Clin. Exp. Optom. 2021, 104, 788–794. [Google Scholar] [CrossRef]
- Navari, S.; Dazzan, P. Do antipsychotic drugs affect brain structure? A systematic and critical review of mri findings. Psychol. Med. 2009, 39, 1763–1777. [Google Scholar] [CrossRef]
- Grewal, D.S.; Fine, H.F.; Fekrat, S. Is oct angiography useful in neurodegenerative diseases? Ophthalmic Surg. Lasers Imaging Retin. 2019, 50, 269–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polo, V.; Satue, M.; Gavin, A.; Vilades, E.; Orduna, E.; Cipres, M.; Garcia-Campayo, J.; Navarro-Gil, M.; Larrosa, J.M.; Pablo, L.E.; et al. Ability of swept source oct to detect retinal changes in patients with bipolar disorder. Eye 2019, 33, 549–556. [Google Scholar] [CrossRef] [PubMed]
- Silverstein, S.M.; Paterno, D.; Cherneski, L.; Green, S. Optical coherence tomography indices of structural retinal pathology in schizophrenia. Psychol. Med. 2018, 48, 2023–2033. [Google Scholar] [CrossRef] [PubMed]
RPC Density (%) | SZ | BD | Control Group | Statistical Analysis | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | Median | SD | Mean | Median | SD | Mean | Median | SD | ||
Whole capillary | 48.09 | 49.20 | 3.09 | 49.99 | 50.65 | 1.95 | 50.10 | 50.50 | 2.63 | H = 7.86 p = 0.02 * |
Superior | 51.71 | 52.00 | 6.02 | 51.44 | 51.00 | 5.99 | 52.90 | 53.00 | 3.38 | H = 0.75 p = 0.69 |
Nasal | 52.58 | 52.00 | 7.76 | 52.56 | 51.50 | 5.73 | 53.77 | 53.50 | 5.30 | H = 0.78 p = 0.68 |
Inferior | 52.42 | 51.50 | 5.14 | 52.06 | 52.00 | 4.55 | 54.10 | 54.00 | 3.71 | H = 3.77 p = 0.15 |
Temporal | 50.58 | 51.50 | 6.82 | 50.50 | 50.50 | 5.79 | 52.17 | 53.00 | 4.34 | H = 0.97 p = 0.61 |
RNFL µm | SZ | BD | Control Group | Statistical Analysis | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | Median | SD | Mean | Median | SD | Mean | Median | SD | ||
Peripapillary | 118.09 | 114.00 | 23.56 | 113.07 | 114.00 | 20.45 | 112.57 | 116.00 | 9.01 | H = 0.98 p = 0.61 |
Superior | 137.17 | 138.00 | 20.10 | 140.00 | 138.00 | 28.05 | 132.63 | 135.00 | 10.06 | H = 2.08 p = 0.35 |
Nasal | 97.42 | 98.50 | 18.72 | 96.69 | 96.00 | 15.72 | 100.14 | 99.00 | 11.47 | H = 0.70 p = 0.71 |
Inferior | 142.63 | 140.50 | 20.78 | 138.31 | 132.00 | 29.41 | 140.20 | 146.00 | 13.15 | H = 0.57 p = 0.75 |
Temporal | 79.04 | 76.50 | 12.84 | 76.69 | 68.50 | 16.78 | 76.60 | 79.00 | 11.16 | H = 0.90 p = 0.64 |
Macula Vessel Density % | SZ | BD | Control Group | Statistical Analysis | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | Median | SD | Mean | Median | SD | Mean | Median | SD | ||
Whole superficial vascular complex | 47.93 | 48.40 | 3.37 | 48.56 | 48.60 | 3.13 | 47.80 | 48.10 | 2.84 | H = 0.55 p = 0.76 |
Whole deep vascular complex | 43.66 | 42.45 | 5.50 | 50.41 | 49.25 | 6.54 | 50.66 | 51.45 | 4.26 | H = 19.91 p < 0.0001 * |
Foveal superficial vascular complex | 24.15 | 24.95 | 6.96 | 23.59 | 21.45 | 9.45 | 21.27 | 20.75 | 3.86 | H = 3.00 p = 0.22 |
Foveal deep vascular complex | 38.81 | 40.40 | 7.74 | 39.38 | 37.40 | 8.64 | 38.43 | 39.00 | 4.87 | H = 1.15 p = 0.56 |
Macular Thickness µm | SZ | BD | Control Group | Statistical Analysis | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | Median | SD | Mean | Median | SD | Mean | Median | SD | ||
Whole | 284.25 | 283.00 | 14.77 | 278.50 | 273.50 | 12.59 | 305.23 | 301.50 | 11.33 | H = 33.05 p < 0.0001 * |
Fovea | 260.67 | 262.00 | 24.28 | 249.63 | 244.00 | 21.43 | 263.53 | 263.50 | 15.37 | H = 7.41 p = 0.02 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koman-Wierdak, E.; Róg, J.; Brzozowska, A.; Toro, M.D.; Bonfiglio, V.; Załuska-Ogryzek, K.; Karakuła-Juchnowicz, H.; Rejdak, R.; Nowomiejska, K. Analysis of the Peripapillary and Macular Regions Using OCT Angiography in Patients with Schizophrenia and Bipolar Disorder. J. Clin. Med. 2021, 10, 4131. https://doi.org/10.3390/jcm10184131
Koman-Wierdak E, Róg J, Brzozowska A, Toro MD, Bonfiglio V, Załuska-Ogryzek K, Karakuła-Juchnowicz H, Rejdak R, Nowomiejska K. Analysis of the Peripapillary and Macular Regions Using OCT Angiography in Patients with Schizophrenia and Bipolar Disorder. Journal of Clinical Medicine. 2021; 10(18):4131. https://doi.org/10.3390/jcm10184131
Chicago/Turabian StyleKoman-Wierdak, Edyta, Joanna Róg, Agnieszka Brzozowska, Mario Damiano Toro, Vincenza Bonfiglio, Katarzyna Załuska-Ogryzek, Hanna Karakuła-Juchnowicz, Robert Rejdak, and Katarzyna Nowomiejska. 2021. "Analysis of the Peripapillary and Macular Regions Using OCT Angiography in Patients with Schizophrenia and Bipolar Disorder" Journal of Clinical Medicine 10, no. 18: 4131. https://doi.org/10.3390/jcm10184131
APA StyleKoman-Wierdak, E., Róg, J., Brzozowska, A., Toro, M. D., Bonfiglio, V., Załuska-Ogryzek, K., Karakuła-Juchnowicz, H., Rejdak, R., & Nowomiejska, K. (2021). Analysis of the Peripapillary and Macular Regions Using OCT Angiography in Patients with Schizophrenia and Bipolar Disorder. Journal of Clinical Medicine, 10(18), 4131. https://doi.org/10.3390/jcm10184131