Magnesium Sulfate Enables Patient Immobilization during Moderate Block and Ameliorates the Pain and Analgesic Requirements in Spine Surgery, Which Can Not Be Achieved with Opioid-Only Protocol: A Randomized Double-Blind Placebo-Controlled Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study
2.2. Patients
2.3. Anesthesia and Intervention
2.4. Assessment of Outcomes
2.5. Intraoperative Neurophysiological Monitoring
2.6. Sample Size Calculation
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chou, R.; Gordon, D.B.; de Leon-Casasola, O.A.; Rosenberg, J.M.; Bickler, S.; Brennan, T.; Carter, T.; Cassidym, C.L.; Chittenden, E.V.; Degenhardt, E.; et al. Management of postoperative pain: A clinical practice guideline from the American Pain Society, the American Society of Regional Anesthesia and Pain Medicine, and the American Society of Anesthesiologists’ Committee on Regional Anesthesia, Executive Committee, and Administrative Council. J. Pain 2016, 17, 131–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gottschalk, A.; Durieux, M.E.; Nemergut, E.C. Intraoperative methadone improves postoperative pain control in patients undergoing complex spine surgery. Anesth. Analg. 2011, 112, 218–223. [Google Scholar] [CrossRef]
- Bajwa, S.J.; Haldar, R. Pain management following spinal surgeries: An appraisal of the available options. J. Craniovertebr. Junction Spine 2015, 6, 105–110. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, G.S.; Jr Castro-Alves, L.J.; Khan, J.H.; McCarthy, R.J. Perioperative systemic magnesium to minimize postoperative pain: A meta-analysis of randomized controlled trials. Anesthesiology 2013, 119, 178–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sohn, H.M.; Jheon, S.H.; Nam, S.; Do, S.H. Magnesium sulphate improves pulmonary function after video-assisted thoracoscopic surgery: A randomised double-blind placebo-controlled study. Eur. J. Anaesthesiol. 2017, 34, 508–514. [Google Scholar] [CrossRef] [PubMed]
- Nunes, R.R.; Bersot, C.D.A.; Garritano, J.G. Intraoperative neurophysiological monitoring in neuroanesthesia. Curr. Opin. Anaesthesiol. 2018, 31, 532–538. [Google Scholar] [CrossRef] [PubMed]
- Sloan, T.B.; Toleikis, J.R.; Toleikis, S.C.; Koht, A. Intraoperative neurophysiological monitoring during spine surgery with total intravenous anesthesia or balanced anesthesia with 3% desflurane. J. Clin. Monit. Comput. 2015, 29, 77–85. [Google Scholar] [CrossRef]
- Pajewski, T.N.; Arlet, V.; Phillips, L.H. Current approach on spinal cord monitoring: The point of view of the neurologist, the anesthesiologist and the spine surgeon. Eur. Spine J. 2007, 16, S115–S129. [Google Scholar] [CrossRef] [Green Version]
- Hadley, M.N.; Shank, C.D.; Rozzelle, C.J.; Walters, B.C. Guidelines for the use of electrophysiological monitoring for surgery of the human spinal column and spinal cord. Neurosurgery 2017, 81, 713–732. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.M.; Kim, S.H.; Seo, D.W.; Lee, K.W. Intraoperative neurophysiologic monitoring: Basic principles and recent update. J. Korean Med. Sci. 2013, 28, 1261–1269. [Google Scholar] [CrossRef] [Green Version]
- Macdonald, D.B.; Skinner, S.; Shils, J.; Yingling, C. American Society of Neurophysiological Monitoring. Intraoperative motor evoked potential monitoring–a position statement by the American Society of Neurophysiological Monitoring. Clin. Neurophysiol. 2013, 124, 2291–2316. [Google Scholar] [CrossRef] [PubMed]
- Gan, T.J. Poorly controlled postoperative pain: Prevalence, consequences, and prevention. J. Pain Res. 2017, 10, 2287–2298. [Google Scholar] [CrossRef] [Green Version]
- Brown, E.N.; Pavone, K.J.; Naranjo, M. Multimodal general anesthesia: Theory and practice. Anesth. Analg. 2018, 127, 1246–1258. [Google Scholar] [CrossRef]
- Bohl, D.D.; Louie, P.K.; Shah, N.; Mayo, B.C.; Ahn, J.; Kim, T.D.; Massel, D.H.; Modi, K.D.; William, L.W.; Asokumar, B.; et al. Multimodal versus patient-controlled analgesia after an anterior cervical decompression and fusion. Spine 2016, 41, 994–998. [Google Scholar] [CrossRef] [Green Version]
- Gottschalk, A.; Freitag, M.; Tank, S.; Burmeister, M.A.; Kreil, S.; Kothe, R.; Hansen-Algenstedt, N.; Weisner, L.; Staude, H.-J.; Standl, T.; et al. Quality of postoperative pain using an intraoperatively placed epidural catheter after major lumbar spinal surgery. Anesthesiology 2004, 101, 175–180. [Google Scholar] [CrossRef]
- Loftus, R.W.; Yeager, M.P.; Clark, J.A.; Brown, J.R.; Abdu, W.A.; Sengupta, D.K.; Beach, M.L. Intraoperative ketamine reduces perioperative opiate consumption in opiate-dependent patients with chronic back pain undergoing back surgery. Anesthesiology 2010, 113, 639–646. [Google Scholar] [CrossRef] [Green Version]
- Bennett, G.J. Update on the neurophysiology of pain transmission and modulation: Focus on the NMDA-receptor. J. Pain Symptom Manag. 2000, 19, S2–S6. [Google Scholar] [CrossRef]
- Albrecht, E.; Kirkham, K.R.; Liu, S.S.; Brull, R. Peri-operative intravenous administration of magnesium sulphate and postoperative pain: A meta-analysis. Anaesthesia 2013, 68, 79–90. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Rubio, L.; Nava, E.; Del Pozo, J.S.G.; Jordan, J. Influence of the perioperative administration of magnesium sulfate on the total dose of anesthetics during general anesthesia. a systematic review and meta-analysis. J. Clin. Anesth. 2017, 39, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Shanthanna, H.; Ladha, K.S.; Kehlet, H.; Joshi, G.P. Perioperative opioid administration: A critical review of opioid-free versus opioid-sparing approaches. Anesthesiology 2021, 134, 645–659. [Google Scholar] [CrossRef]
- Fuchs-Buder, T.; Czarnetzki, C.; Tassonyi, E. Peri-operative administration of magnesium and its neuromuscular consequences. Eur. J. Anaesthesiol. 2021, 38, 333–334. [Google Scholar] [CrossRef]
- Queiroz Rangel Micuci, A.J.; Vercosa, N.; Filho, P.A.G.; de Boer, H.D.; Barbosa, D.D.; Cavalcanti, I.L. Effect of pretreatment with magnesium sulphate on the duration of intense and deep neuromuscular blockade with rocuronium: A randomised controlled trial. Eur. J. Anaesthesiol. 2019, 36, 502–508. [Google Scholar] [CrossRef]
- Do, S.H. Magnesium: A versatile drug for anesthesiologists. Korean J. Anesthesiol. 2013, 65, 4–8. [Google Scholar] [CrossRef] [Green Version]
- Na, H.S.; Lee, J.H.; Hwang, J.Y.; Ryu, J.H.; Han, S.H.; Jeon, Y.T.; Do, S.-H. Effects of magnesium sulphate on intraoperative neuromuscular blocking agent requirements and postoperative analgesia in children with cerebral palsy. Br. J. Anaesth. 2010, 104, 344–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okusanya, B.O.; Oladapo, O.T.; Long, Q.; Lumbiganon, P.; Carroli, G.; Qureshi, Z.; Duley, L.; Souza, J.P.; Gülmezoglu, A.M. Clinical pharmacokinetic properties of magnesium sulphate in women with pre-eclampsia and eclampsia. BJOG 2016, 123, 356–366. [Google Scholar] [CrossRef] [PubMed]
- Johnson, T.; Kale, E.B.; Husain, A.M. Magnesium sulfate-induced motor evoked potential changes. Neurodiagn. J. 2018, 58, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Levaux, C.; Bonhomme, V.; Dewandre, P.Y.; Brichant, J.F.; Hans, P. Effect of intra-operative magnesium sulphate on pain relief and patient comfort after major lumbar orthopaedic surgery. Anaesthesia 2003, 58, 131–135. [Google Scholar] [CrossRef] [PubMed]
- Brull, S.J.; Kopman, A.F. Current status of neuromuscular reversal and monitoring: Challenges and opportunities. Anesthesiology 2017, 126, 173–190. [Google Scholar] [CrossRef] [PubMed]
Magnesium Group (n = 34) | Control Group (n = 34) | p-Value | |
---|---|---|---|
Gender (male/female) | 14/20 | 17/17 | 0.465 |
Age (year) | 56.5 ± 13.7 | 56.5 ± 14.7 | 0.993 |
Height (cm) | 160.8 ± 10.8 | 161.9 ± 8.7 | 0.650 |
Weight (kg) | 60.8 ± 13.7 | 63.7 ± 12.7 | 0.375 |
ASA physical status score (I/II/III) | 7/22/5 | 7/22/5 | 1.000 |
Diagnosis, n (%) | |||
Herniated disc | 7 (20.6%) | 6 (17.6%) | 0.758 |
Myelopathy | 6 (17.6%) | 6 (17.6%) | 1.000 |
Tumor | 11 (32.4%) | 12 (35.3%) | 0.798 |
Ossification of ligament | 2 (5.9%) | 4 (11.8%) | 0.673 |
Spinal stenosis | 3 (8.8%) | 2 (5.9%) | 1.000 |
Other (fracture, deformities) | 5 (14.7%) | 4 (11.8%) | 1.000 |
Number of spines operated on | |||
Levels | 2 (1–3) | 1.5 (1–2) | |
1 level, n (%) | 17 (50%) | 14 (41.2%) | 0.465 |
≥2 level, n (%) | 17 (50%) | 20 (58.8%) | 0.465 |
Surgical Level | |||
Cervical (anterior/posterior approach) | 20 (58.8%) (6/14) | 18 (52.9%) (7/11) | 0.625 |
Thoracic | 5 (14.7%) | 12 (35.3%) | 0.05 |
Lumbar | 4 (11.8%) | 2 (5.9%) | 0.673 |
Cervicothoracic | 2 (5.9%) | 0 | 0.493 |
Thoracolumbar | 3 (8.8%) | 2 (5.9%) | 1.000 |
Type of Surgery | |||
Decompression/laminectomy | 4 (11.8%) | 6 (17.6%) | 0.493 |
Laminoplasty/duroplasty | 8 (23.5%) | 4 (11.8%) | 0.203 |
Fusion | 10 (29.4%) | 12 (35.3%) | 0.604 |
Tumorectomy | 11 (32.4%) | 12 (35.3%) | 0.798 |
Corpectomy | 1 (2.9%) | 0 | 1.000 |
Duration of surgery (min) | 144.1 ± 52.0 | 158.5 ± 42.7 | 0.216 |
Duration of anesthesia (min) | 204.9 ± 51.0 | 220.9 ± 44.9 | 0.173 |
Magnesium Group (n = 34) | Control Group (n = 34) | p-Value | |
---|---|---|---|
Fentanyl consumption (mcg) | |||
Postoperative 6 h | 104.3 ± 88.3 | 115.2 ± 79.9 | 0.595 |
Postoperative 24 h | 284.8 ± 234.7 * | 426.2 ± 268.4 | 0.024 |
Postoperative 48 h | 503.2 ± 436.4 * | 743.4 ± 496.9 | 0.038 |
Pain scores (NRS) | |||
Pre-operative period | 4.7 ± 2.5 | 4.4 ± 2.5 | 0.632 |
PACU | 4.8 ± 2.5 | 5.0 ± 2.3 | 0.801 |
Postoperative 2 h | 4.3 ± 2.5 | 4.1 ± 2.2 | 0.716 |
Postoperative 6 h | 4.1 ± 1.4 | 4.4 ± 1.6 | 0.341 |
Postoperative 24 h | 3.2 ± 1.7 *,† | 4.4 ± 1.8 | 0.009 |
Postoperative 48 h | 3.0 ± 1.2 *,† | 3.8 ± 1.6 | 0.018 |
Magnesium Group (n = 34) | Recovery | Control Group (n = 34) | Recovery | p-Value | |
---|---|---|---|---|---|
MEP change | 1 (2.9%) | Only the affected limb decreased and the MEP recovered 10 min later | 5 (14.7%) | 3 recovered 2 completed operation with a reduced MEP response (>80%) of specific operation-related muscles | 0.197 |
SSEP change | 0 (0%) | 1 (2.9%) | Recovered 5 min later | 1.000 | |
EMG change | 7 (20.6%) | No correlation to post-op outcomes | 7 (20.6%) | No correlation to post-operation outcomes | 1.000 |
Warning criteria (MEP + SSEP) occurrence | 1 (2.9%) | 5 (14.7%) * | 0.197 |
Magnesium Group (n = 34) | Control Group (n = 34) | p-Value | |
---|---|---|---|
Crystalloids (mL) | 1163.2 ± 424.1 | 1171.6 ± 355.5 | 0.930 |
Colloids (mL) intraoperatively | 170.6 ± 295.2 | 163.2 ± 315.1 | 0.921 |
Estimated blood loss (mL) | 225.0 ± 208.6 | 195.9 ± 209.1 | 0.567 |
Packed red blood cells, n (%) | 0 | 1 (2.9%) | 1.000 |
Transfusion via cell-saver, n (mL) | 1 (100) | 0 | 1.000 |
Rocuronium induction (mg) | 44.6 ± 9.7 | 47.4 ± 8.9 | 0.143 |
Rocuronium added dose, n (%) | 0 | 6 (17.6%) | 0.025 |
Timing of reversal agents injection | |||
During IOM baseline acquisition before surgery | 1 (2.9%) | 2 (5.9%) | 1.000 |
Within 1 h after the skin incision | 4 (11.8%) | 0 (0%) | 0.114 |
At the end of surgery | 29 (85.3%) | 32 (94.1%) | 0.427 |
Ionized Mg (Mg++) (mmol L−1) | 0.71 ± 0.15 | 0.55 ± 0.11 | 0.000 |
Magnesium Group (n = 34) | Control Group (n = 34) | p-Value | |
---|---|---|---|
PONV overall | 10 (29.4%) | 8 (23.5%) | 0.549 |
PONV at 6 h | 2 (5.9%) | 3 (8.8%) | 0.642 |
PONV at 24 h | 6 (17.6%) | 8 (23.5%) | 0.549 |
PONV at 48 h | 4 (11.8%) | 4 (11.8%) | 1.000 |
Rescue antiemetics | 4 (11.8%) | 4 (11.8%) | 1.000 |
Rescue opioids at postop 6 h | 6 (17.6%) | 9 (26.5%) | 0.111 |
Rescue opioids at postop 24 h | 4 (11.8%) | 4 (11.8%) | 1.000 |
Rescue opioids at postop 48 h | 1 (2.9%) | 1 (2.9%) | 1.000 |
Rescue NSAIDs overall | 7 (20.6%) | 4 (11.8%) | 0.323 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sohn, H.-M.; Kim, B.-Y.; Bae, Y.-K.; Seo, W.-S.; Jeon, Y.-T. Magnesium Sulfate Enables Patient Immobilization during Moderate Block and Ameliorates the Pain and Analgesic Requirements in Spine Surgery, Which Can Not Be Achieved with Opioid-Only Protocol: A Randomized Double-Blind Placebo-Controlled Study. J. Clin. Med. 2021, 10, 4289. https://doi.org/10.3390/jcm10194289
Sohn H-M, Kim B-Y, Bae Y-K, Seo W-S, Jeon Y-T. Magnesium Sulfate Enables Patient Immobilization during Moderate Block and Ameliorates the Pain and Analgesic Requirements in Spine Surgery, Which Can Not Be Achieved with Opioid-Only Protocol: A Randomized Double-Blind Placebo-Controlled Study. Journal of Clinical Medicine. 2021; 10(19):4289. https://doi.org/10.3390/jcm10194289
Chicago/Turabian StyleSohn, Hye-Min, Bo-Young Kim, Yu-Kyung Bae, Won-Seok Seo, and Young-Tae Jeon. 2021. "Magnesium Sulfate Enables Patient Immobilization during Moderate Block and Ameliorates the Pain and Analgesic Requirements in Spine Surgery, Which Can Not Be Achieved with Opioid-Only Protocol: A Randomized Double-Blind Placebo-Controlled Study" Journal of Clinical Medicine 10, no. 19: 4289. https://doi.org/10.3390/jcm10194289
APA StyleSohn, H.-M., Kim, B.-Y., Bae, Y.-K., Seo, W.-S., & Jeon, Y.-T. (2021). Magnesium Sulfate Enables Patient Immobilization during Moderate Block and Ameliorates the Pain and Analgesic Requirements in Spine Surgery, Which Can Not Be Achieved with Opioid-Only Protocol: A Randomized Double-Blind Placebo-Controlled Study. Journal of Clinical Medicine, 10(19), 4289. https://doi.org/10.3390/jcm10194289