Current Knowledge on the Background, Pathophysiology and Treatment of Levodopa-Induced Dyskinesia—Literature Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Structural and Functional Background
3.1.1. Grey and White Matter
3.1.2. Basal Ganglia
3.1.3. Cerebellum
3.1.4. Circulation and Angiogenesis
3.1.5. Alterations in Cerebrospinal Fluid
3.1.6. Metabolic Changes
3.2. Genetic Background
3.3. Alterations of Neurotransmission
3.3.1. Inhibitors of Monoamine Oxidase B and Catechol-O-Methyltransferase
3.3.2. Dopaminergic Pathways and Dopamine Receptors
3.3.3. GTPases of Ras Family
3.3.4. FosB Transcription Factor
3.3.5. Glutamatergic Signalling
3.3.6. Cholinergic Signalling
3.3.7. Serotonergic Signalling
3.4. Clinical and Environmental Background
3.5. Treatment-Preclinical Studies
3.5.1. Modification of L-DOPA Delivery and Release
3.5.2. Amantadine Counteracts LID
3.5.3. Serotonin in the Treatment of LID
3.5.4. β-Adrenoceptor Blockade—Propranolol
3.5.5. Nicotinic Receptor and Its Agonists
3.5.6. Ionotropic Receptors of Glu
3.5.7. Histamine H2 Receptor Antagonism
3.5.8. Opioid Modulators
3.5.9. cAMP and cGMP Signalling–Inhibitors of Phosphodiesterase 10A
3.5.10. Genetic Treatment
3.6. Treatment-Clinical Trials
3.6.1. Modification of L-DOPA Delivery and Release
3.6.2. Amantadine Counteracts LID
3.6.3. D3 Selective Agonism
3.6.4. MAO-B Inhibition
3.6.5. Serotonin in the Treatment of LID
3.6.6. Histamine H2 Receptor Antagonism
3.6.7. Invasive and Non-Invasive Brain Stimulation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Albin, R.L.; Leventhal, D.K. The missing, the short, and the long: L-dopa responses and dopamine actions. Ann. Neurol. 2018, 82, 4–19. [Google Scholar] [CrossRef]
- Ockleford, C.; Adriaanse, P.; Berny, P.; Brock, T.; Duquesne, S.; Grilli, S.; Hernandez-Jerez, A.F.; Hougaard Bennekou, S.; Klein, M.; Kuhl, T.; et al. Investigation into experimental toxicological properties of plant protection products having a potential link to Parkinson’s disease and childhood leukaemia. EFSA J. 2017, 15, e04691. [Google Scholar] [PubMed] [Green Version]
- Eusebi, P.; Romoli, M.; Paoletti, F.P.; Tambasco, N.; Calabresi, P.; Parnetti, L. Risk factors of levodopa-induced dyskinesia in Parkinson’s disease: Results from the PPMI cohort. NPJ Parkinsons Dis. 2018, 4, 33. [Google Scholar] [CrossRef]
- Calabresi, P.; Standaert, D.G. Dystonia and levodopa-induced dyskinesias in Parkinson’s disease: Is there a connection? Neurobiol. Dis. 2019, 132, 104579. [Google Scholar] [CrossRef] [PubMed]
- Bjornestad, A.; Forsaa, E.B.; Pedersen, K.F.; Tysnes, O.-B.; Larsen, J.P.; Alves, G. Risk and course of motor complications in a population-based incident Parkinson’s disease cohort. Parkinsonism Relat. Disord. 2016, 22, 48–53. [Google Scholar] [CrossRef]
- Turcano, P.; Mielke, M.M.; Bower, J.H.; Parisi, J.E.; Cutsforth-Gregory, J.K.; Ahlskog, J.E.; Savica, R. Levodopa-induced dyskinesia in Parkinson disease: A population-based cohort study. Neurology 2018, 91, e2238–e2243. [Google Scholar] [CrossRef] [PubMed]
- Meissner, W.; Prunier, C.; Guilloteau, D.; Chalon, S.; Gross, C.E.; Bezard, E. Time-course of nigrostriatal degeneration in a progressive MPTP-lesioned macaque model of Parkinson’s disease. Mol. Neurobiol. 2003, 28, 209–218. [Google Scholar] [CrossRef]
- Potts, L.F.; Wu, H.; Singh, A.; Marcilla, I.; Luquin, M.R.; Papa, S.M. Modeling Parkinson’s disease in monkeys for translational studies, a critical analysis. Exp. Neurol. 2014, 256, 133–143. [Google Scholar] [CrossRef] [Green Version]
- Choudhury, G.R.; Daadi, M.M. Charting the onset of Parkinson-like motor and non-motor symptoms in nonhuman primate model of Parkinson’s disease. PLoS ONE 2018, 13, e0202770. [Google Scholar] [CrossRef]
- Burns, R.S.; Chiueh, C.C.; Markey, S.P.; Ebert, M.H.; Jacobowitz, D.M.; Kopin, I.J. A primate model of parkinsonism: Selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc. Natl. Acad. Sci. USA 1983, 80, 4546–4550. [Google Scholar] [CrossRef] [Green Version]
- Lundblad, M.; Picconi, B.; Lindgren, H.; Cenci, M.A. A model of L-DOPA-induced dyskinesia in 6-hydroxydopamine lesioned mice: Relation to motor and cellular parameters of nigrostriatal function. Neurobiol. Dis. 2004, 16, 110–123. [Google Scholar] [CrossRef]
- Picconi, B.; Paillé, V.; Ghiglieri, V.; Bagetta, V.; Barone, I.; Lindgren, H.S.; Bernardi, G.; Cenci, M.A.; Calabresi, P. l-DOPA dosage is critically involved in dyskinesia via loss of synaptic depotentiation. Neurobol. Dis. 2008, 29, 327–335. [Google Scholar] [CrossRef]
- Francardo, V.; Recchia, A.; Popovic, N.; Andersson, D.; Nissbrandt, H.; Cenci, M.A. Impact of the lesion procedure on the profiles of motor impairment and molecular responsiveness to L-DOPA in the 6-hydroxydopamine mouse model of Parkinson’s disease. Neurobiol. Dis. 2011, 42, 327–340. [Google Scholar] [CrossRef] [Green Version]
- Fletcher, E.J.R.; Finlay, C.J.; Lopez, A.A.; Crum, W.R.; Vernon, A.C.; Duty, S. Neuroanatomical and Microglial alterations in the striatum of levodopa-treated, dyskinetic hemi-Parkinsonian rats. Front. Neurosci. 2020, 14, 567222. [Google Scholar] [CrossRef]
- Ueno, T.; Nishijima, H.; Ueno, S.; Tomiyama, M. Spine enlargement of pyramidal tract-type neurons in the motor cortex of a rat model of levodopa-induced dyskinesia. Front. Neurosci. 2017, 11, 206. [Google Scholar] [CrossRef] [Green Version]
- Zhi, Y.; Wang, M.; Yuan, Y.-S.; Shen, Y.-T.; Ma, K.-W.; Gan, C.-T.; Si, Q.-Q.; Wang, L.-N.; Cao, S.-W.; Zhang, K.-Z. The increased gray matter volumes of precentral gyri in Parkinson’s disease patients with diphasic dyskinesia. Aging 2019, 11, 9661–9671. [Google Scholar] [CrossRef] [PubMed]
- Lindenbach, D.; Conti, M.M.; Ostock, C.Y.; Dupre, K.B.; Bishop, C. Alterations in primary motor cortex neurotransmission and gene expression in hemi-Parkinsonian rats with drug-induced dyskinesia. Neuroscience 2015, 310, 12–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, S.J.; Yoo, H.S.; Lee, Y.H.; Jung, J.H.; Baik, K.; Ye, B.S.; Sohn, Y.H.; Lee, P.H. White matter hyperintensities and risk of levodopa-induced dyskinesia in Parkinson’s disease. Ann. Clin. Transl. Neurol. 2020, 7, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhuang, P.; Li, Y. Altered neuronal firing pattern of the basal ganglia nucleus plays a role in levodopa-induced dyskinesia in patients with Parkinson’s disease. Front. Hum. Neurosci. 2015, 9, 630. [Google Scholar] [CrossRef] [Green Version]
- Porras, G.; De Deurwaerdere, P.; Li, Q.; Marti, M.; Morgenstern, R.; Sohr, R.; Bezard, E.; Morari, M.; Meissner, W.G. L-dopa-induced dyskinesia: Beyond an excessive dopamine tone in the striatum. Sci. Rep. 2014, 4, 3730. [Google Scholar] [CrossRef] [Green Version]
- Aristeta, A.; Azkona, G.; Sagarduy, A.; Miguelez, C.; Ruiz-Ortega, J.Á.; Sanchez-Pernaute, R.; Ugedo, L. The role of the subthalamic nucleus in L-DOPA induced dyskinesia in 6-hydroxydopamine lesioned rats. PLoS ONE 2012, 7, e42652. [Google Scholar] [CrossRef]
- Aristieta, A.; Ruiz-Ortega, J.A.; Morera-Herreras, T.; Miguelez, C.; Ugedo, L. Acute L-DOPA administration reverses changes in firing pattern and low frequency oscillatory activity in the entopeduncular nucleus from long term L-DOPA treated 6-OHDA-lesioned rats. Exp. Neurol. 2019, 322, 113036. [Google Scholar] [CrossRef]
- Yoo, H.S.; Choi, Y.H.; Chung, S.J.; Lee, Y.H.; Ye, B.S.; Sohn, Y.H.; Lee, J.M.; Lee, P.H. Cerebellar connectivity in Parkinson’s disease with levodopa-induced dyskinesia. Ann. Clin. Transl. Neurol. 2019, 6, 2251–2260. [Google Scholar] [CrossRef] [Green Version]
- Lewis, M.M.; Du, G.; Kidacki, M.; Patel, N.; Shaffer, M.L.; Mailman, R.B.; Huang, X. Higher iron in the red nucleus marks Parkinson’s dyskinesia. Neurobiol. Aging 2013, 34, 1497–1503. [Google Scholar] [CrossRef] [Green Version]
- Jourdain, V.A.; Schindlbeck, K.A.; Tang, C.C.; Niethammer, M.; Choi, Y.Y.; Markowitz, D.; Nazem, A.; Nardi, D.; Carras, N.; Feigin, A. Increased putamen hypercapnic vasoreactivity in levodopa-induced dyskinesia. JCI Insight 2017, 2, e96411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jourdain, V.A.; Tang, C.C.; Holtbernd, F.; Dresel, C.; Choi, Y.Y.; Ma, Y.; Dhawan, V.; Eidelberg, D. Flow-metabolism dissociation in the pathogenesis of levodopa-induced dyskinesia. JCI Insight 2016, 1, e86615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aljuaid, M.; Booth, S.; Hobson, D.E.; Borys, A.; Williams, K.; Katako, A.; Ryner, L.; Goertzen, A.L.; Ko, J.H. Blood flow and glucose metabolism dissociation in the putamen is predictive of levodopa induced dyskinesia in Parkinson’s disease patients. Front. Neurol. 2019, 10, 1217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersen, A.D.; Blaabjerg, M.; Binzer, M.; Kamal, A.; Thagesen, H.; Kjaer, T.W.; Stenager, E.; Gramsbergen, J.B.P. Cerebrospinal fluid levels of catecholamines and its metabolites in Parkinson’s disease: Effect of l-DOPA treatment and changes in levodopa-induced dyskinesia. J. Neurochem. 2017, 141, 614–625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rao, J.S.; Kellom, M.; Kim, H.-W.; Rapoport, S.I. Neuroinflammation and synaptic loss. Neurochem. Res. 2012, 37, 903–910. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, Y.; Zheng, X.; Fang, T.; Yang, X.; Luo, X.; Guo, A.; Newell, K.A.; Huang, X.F.; Yu, Y. Galantamine improves cognition, hippocampal inflammation, and synaptic plasticity impairments induced by lipopolysaccharide in mice. J. Neuroinflamm. 2018, 15, 112. [Google Scholar] [CrossRef] [Green Version]
- Gipson, C.D.; Olive, M.F. Structural and functional plasticity of dendritic spines—Root or result of behavior? Genes Brain Behav. 2017, 16, 101–117. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Zhang, T.; Wang, W.; Xiang, Y.; Huang, Q.; Xie, C.; Zhao, L.; Zheng, H.; Yang, Y.; Gao, H. Brain-region specific metabolic abnormalities in Parkinson’s disease and levodopa-induced dyskinesia. Front. Aging Neurosci. 2020, 12, 75. [Google Scholar] [CrossRef]
- Ryu, H.S.; Park, K.W.; Choi, N.; Kim, J.; Park, Y.M.; Jo, S.; Kim, M.J.; Kim, Y.J.; Kim, J.; Kim, K.; et al. Genomic analysis identifies new loci associated with motor complications in Parkinson’s disease. Front. Neurol. 2020, 11, 570. [Google Scholar] [CrossRef]
- Ivanova, S.A.; Loonen, A.J.M.; Pechlivanoglou, P.; Freidin, M.B.; Al Hadithy, A.F.Y.; Rudikov, E.V.; Zhukova, I.A.; Govorin, N.V.; Sorokina, V.A.; Fedorenko, O.Y.; et al. NMDA receptor genotypes associated with the vulnerability to develop dyskinesia. Transl. Psychiatry 2012, 2, e67. [Google Scholar] [CrossRef]
- Kakinuma, S.; Beppu, M.; Sawai, S.; Nakayama, A.; Hirano, S.; Yamanaka, Y.; Yamamoto, T.; Masafumi, C.; Aisihaer, X.; Aersilan, A.; et al. Monoamine oxidase B rs1799836 G allele polymorphism is a risk factor for early development of levodopa-induced dyskinesia in Parkinson’s disease. eNeurologicalSci 2020, 19, 100239. [Google Scholar] [CrossRef]
- Han, C.-L.; Liu, Y.-P.; Sui, Y.P.; Chen, N.; Du, T.T.; Jiang, Y.; Guo, C.J.; Wang, K.L.; Wang, Q.; Fan, S.Y.; et al. Integrated transcriptome expression profiling reveals a novel lncRNA associated with l-DOPA-induced dyskinesia in a rat model of Parkinson’s disease. Aging 2020, 12, 718–739. [Google Scholar] [CrossRef]
- Heiman, M.; Heilbut, A.; Francardo, V.; Kulicke, R.; Fenster, R.J.; Kolaczyk, E.D.; Mesirov, J.P.; Surmeier, D.J.; Cenci, M.A.; Greengard, P. Molecular adaptations of striatal spiny projection neurons during levodopa-induced dyskinesia. Proc. Natl. Acad. Sci. USA 2014, 111, 4578–4583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Figge, D.A.; Eskow Jaunarajs, K.L.; Standaert, D.G. Dynamic DNA methylation regulates levodopa-induced dyskinesia. J. Neurosci. 2016, 36, 6514–6524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Figge, D.A.; Standaert, D.G. Dysregulation of BET proteins in levodopa-induced dyskinesia. Neurobiol. Dis. 2017, 102, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Suwjin, S.R.; van Boheemen, C.J.M.; de Haan, R.J.; Tissingh, G.; Booij, J.; de Bie, R.M. The diagnostic accuracy of dopamine transporter SPECT imaging to detect nigrostriatal cell loss in patients with Parkinson’s disease or clinically uncertain parkinsonism: A systematic review. EJNMMI Res. 2015, 5, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palermo, G.; Giannoni, S.; Frosini, D.; Morganti, R.; Volterrani, D.; Bonuccelli, U.; Pavese, N.; Ceravolo, R. Dopamine transporter, age, and motor complications in Parkinson’s disease: A clinical and single-photon emission computed tomography study. Mov. Disord. 2020, 35, 1028–1036. [Google Scholar] [CrossRef]
- Jakobson Mo, S.; Linder, J.; Forsgren, L.; Holmberg, H.; Larsson, A.; Riklund, K. Pre- and postsynaptic dopamine SPECT in Idiopathic Parkinsonian diseases: A follow-up study. Biomed. Res. Int. 2013, 2013, 143532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeong, E.H.; Sunwoo, M.K.; Song, Y.S. Serial I-123-FP-CIT SPECT image Findings of Parkinson’s disease patients with levodopa-induced dyskinesia. Front. Neurol. 2018, 9, 1133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cerasa, A.; Pugliese, P.; Messina, D.; Morelli, M.; Gioia, M.C.; Salsone, M.; Novellino, F.; Nicoletti, G.; Arabia, G.; Quattrone, A. Prefrontal alterations in Parkinson’s disease with levodopa-induced dyskinesia during fMRI motor task. Mov. Disord. 2012, 27, 364–371. [Google Scholar] [CrossRef] [PubMed]
- Herz, D.M.; Haagensen, B.N.; Christensen, M.S.; Madsen, K.H.; Rowe, J.B.; Løkkegaard, A.; Siebner, H.R. Abnormal dopaminergic modulation of striato-cortical networks underlies levodopa-induced dyskinesias in humans. Brain 2015, 138, 1658–1666. [Google Scholar] [CrossRef] [Green Version]
- Herz, D.M.; Haagensen, B.N.; Christensen, M.S.; Madsen, K.H.; Rowe, J.B.; Løkkegaard, A.; Siebner, H.R. The acute brain response to levodopa heralds dyskinesias in Parkinson disease. Ann. Neurol. 2014, 75, 829–836. [Google Scholar] [CrossRef] [Green Version]
- Girasole, A.E.; Lum, M.Y.; Nathaniel, D.; Bair-Marshall, C.J.; Guenthner, C.J.; Luo, L.; Kreitzer, A.C.; Nelson, A.B. A subpopulation of striatal neurons mediates levodopa-induced dyskinesia. Neuron 2018, 97, 787–795.e6. [Google Scholar] [CrossRef]
- Ryan, M.B.; Bair-Marshall, C.; Nelson, A.B. Aberrant striatal activity in parkinsonism and levodopa-induced dyskinesia. Cell Rep. 2018, 23, 3438–3446.e5. [Google Scholar] [CrossRef]
- Parker, J.G.; Marshall, J.D.; Ahanonu, B.; Wu, Y.W.; Kim, T.H.; Grewe, B.F.; Zhang, Y.; Li, J.Z.; Ding, J.B.; Ehlers, M.D.; et al. Diametric neural ensemble dynamics in parkinsonian and dyskinetic states. Nature 2019, 557, 177–182. [Google Scholar] [CrossRef]
- Li, L.; Zhou, F.M. Parallel dopamine D1 receptor activity dependence of l-Dopa-induced normal movement and dyskinesia in mice. Neuroscience 2013, 236, 66–76. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Liang, L.; Kaneoke, Y.; Cao, X.; Papa, S.M. Dopamine regulates distinctively the activity patterns of striatal output neurons in advanced parkinsonian primates. J. Neurophysiol. 2015, 113, 1533–1544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belić, J.J.; Halje, P.; Richter, U.; Petersson, P.; Kotaleski, J.H. Untangling cortico-striatal connectivity and cross-frequency coupling in L-DOPA-induced dyskinesia. Front. Syst. Neurosci. 2016, 10, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alberico, S.L.; Kim, Y.-C.; Lence, T.; Narayanan, N.S. Axial levodopa-induced dyskinesias and neuronal activity in the dorsal striatum. Neuroscience 2017, 343, 240–249. [Google Scholar] [CrossRef] [Green Version]
- Thiele, S.L.; Chen, B.; Lo, C.; Gertler, T.S.; Warre, R.; Surmeier, J.D.; Brotchie, J.M.; Nash, J.E. Selective loss of bi-directional synaptic plasticity in the direct and indirect striatal output pathways accompanies generation of parkinsonism and l-DOPA induced dyskinesia in mouse models. Neurobiol. Dis. 2014, 71, 334–344. [Google Scholar] [CrossRef] [Green Version]
- Halje, P.; Tamtè, M.; Richter, U.; Mohammed, M.; Cenci, M.A.; Petersson, P. Levodopa-induced dyskinesia is strongly associated with resonant cortical oscillations. J. Neurosci. 2012, 32, 16541–16551. [Google Scholar] [CrossRef] [PubMed]
- Perez, X.A.; Zhang, D.; Bordia, T.; Quik, M. Striatal D1 medium spiny neuron activation induces dyskinesias in parkinsonian mice. Mov. Disord. 2017, 32, 538–548. [Google Scholar] [CrossRef] [Green Version]
- Shen, W.; Ren, W.; Zhai, S.; Yang, B.; Vanoye, C.G.; Mitra, A.; George, A.L., Jr.; Surmeier, D.J. Striatal Kir2 K+ channel inhibition mediates the antidyskinetic effects of amantadine. J. Clin. Investig. 2020, 130, 2593–2601. [Google Scholar] [CrossRef]
- Okada, M.; Nakao, R.; Hosoi, R.; Zhang, M.-R.; Fukumura, T.; Suzuki, K.; Inoue, O. Microdialysis with radiometric monitoring of -[β-11C]DOPA to assess dopaminergic metabolism: Effect of inhibitors of -amino acid decarboxylase, monoamine oxidase, and catechol-O-methyltransferase on rat striatal dialysate. J. Cereb. Blood Flow Metab. 2011, 31, 124–131. [Google Scholar] [CrossRef] [Green Version]
- Loonen, A.J.M.; Ivanova, S.A.; Pozhidaev, I.V.; Freidin, M.B.; Zhukova, I.A.; Osmanova, D.Z.; Zhukova, N.G.; Mironova, Y.A.; Tiguntsev, V.V.; Fedorenko, O.Y.; et al. Polymorphisms of catechol-O-Methyl Transferase (COMT) gene in vulnerability to levodopa-induced dyskinesia. J. Pharm. Pharm. Sci. 2018, 21, 340. [Google Scholar]
- Torkaman-Boutorabi, A.; Shahidi, G.A.; Choopani, S.; Rezvani, M.; Pourkosary, K.; Golkar, M.; Zarrindast, M.-R. The catechol-O-methyltransferase and monoamine oxidase B polymorphisms and levodopa therapy in the Iranian patients with sporadic Parkinson’s disease. Acta Neurobiol. Exp. 2012, 72, 272–282. [Google Scholar]
- Santini, E.; Feyder, M.; Gangarossa, G.; Bateup, H.S.; Greengard, P.; Fisone, G. Dopamine- and cAMP-regulated Phosphoprotein of 32-kDa (DARPP-32)-dependent Activation of Extracellular Signal-regulated Kinase (ERK) and Mammalian Target of Rapamycin Complex 1 (mTORC1) Signaling in experimental Parkinsonism. J. Biol. Chem. 2012, 287, 27806–27812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calabrese, V.; Di Maio, A.; Marino, G.; Cardinale, A.; Natale, G.; De Rosa, A.; Campanelli, F.; Mancini, M.; Napolitano, F.; Avallone, L.; et al. Rapamycin, by inhibiting mTORC1 signaling, prevents the loss of striatal bidirectional synaptic plasticity in a rat model of L-DOPA-induced dyskinesia. Front. Aging Neurosci. 2020, 12, 230. [Google Scholar] [CrossRef]
- Wu, N.; Wan, Y.; Song, L.; Qi, C.; Liu, Z.; Gan, J. The abnormal activation of D1R/Shp-2 complex involved in levodopa-induced dyskinesia in 6-hydroxydopamine-lesioned Parkinson’s rats. Neuropsychiatr. Dis. Treat. 2018, 14, 1779–1786. [Google Scholar] [CrossRef] [Green Version]
- Jones-Tabah, J.; Mohammad, H.; Hadj-Youssef, S.; Kim, L.E.H.; Martin, R.D.; Benaliouad, F.; Tanny, J.C.; Clarke, P.B.S.; Hébert, T.E. Dopamine D1 receptor signalling in dyskinetic Parkinsonian rats revealed by fiber photometry using FRET-based biosensors. Sci. Rep. 2020, 10, 14426. [Google Scholar] [CrossRef]
- Fieblinger, J.; Sebastianutto, I.; Alcacer, C.; Bimpisidis, Z.; Maslava, N.; Sandberg, S.; Engblom, D.; Cenci, M.A. Mechanisms of dopamine D1 receptor-mediated ERK1/2 activation in the Parkinsonian striatum and their modulation by metabotropic glutamate receptor type 5. J. Neurosci. 2014, 34, 4728–4740. [Google Scholar] [CrossRef] [Green Version]
- Alcacer, C.; Santini, E.; Valjent, E.; Gaven, F.; Girault, J.A.; Hervé, D. Gαolf mutation allows parsing the role of cAMP-dependent and extracellular signal-regulated kinase-dependent signaling in l-3,4-dihydroxyphenylalanine-induced dyskinesia. J. Neurosci. 2012, 32, 5900–5910. [Google Scholar] [CrossRef]
- Goto, S. Striatal Gαolf/cAMP signal-dependent mechanism to generate levodopa-induced dyskinesia in Parkinson’s disease. Front. Cell Neurosci. 2017, 11, 364. [Google Scholar] [CrossRef]
- Södersten, E.; Feyder, M.; Lerdrup, M.; Gomes, A.-L.; Kryh, H.; Spigolon, G.; Caboche, J.; Fisone, G.; Hansen, K. Dopamine signaling leads to loss of polycomb repression and aberrant gene activation in experimental Parkinsonism. PLoS Genet. 2014, 10, e1004574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sellnow, R.C.; Steece-Collier, K.; Altwal, F.; Sandoval, I.M.; Kordower, J.H.; Collier, T.J.; Sortwell, C.E.; West, A.R.; Manfredsson, F.P. Striatal Nurr1 facilitates the dyskinetic state and exacerbates levodopa-induced dyskinesia in a rat model of Parkinson’s disease. J. Neurosci. 2020, 40, 3675–3691. [Google Scholar] [CrossRef] [PubMed]
- Stanic, J.; Mellone, M.; Cirnaru, M.D.; Perez-Carrion, M.; Zianni, E.; Di Luca, M.; Gardoni, F.; Piccoli, G. LRRK2 phosphorylation level correlates with abnormal motor behaviour in an experimental model of levodopa-induced dyskinesias. Mol. Brain. 2016, 9, 53. [Google Scholar] [CrossRef] [Green Version]
- Divitio, C.B.; Steece-Collier, K.; Case, D.T.; Williams, S.P.; Stancati, J.A.; Zhi, L.; Rubio, M.E.; Sortwell, C.E.; Collier, T.J.; Sulzer, D.; et al. Loss of VGLUT3 produces circadian-dependent hyperdopaminergia and ameliorates motor dysfunction and l-Dopa-mediated dyskinesias in a model of Parkinson’s disease. J. Neurosci. 2015, 35, 14983–14999. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Saur, T.; Duke, A.N.; Grant, S.G.N.; Platt, D.M.; Rowlett, J.K.; Isacson, O.; Yao, W.-D. Motor impairments, striatal degeneration, and altered dopamine-glutamate interplay in mice lacking PSD-95. J. Neurogenet. 2014, 28, 98–111. [Google Scholar] [CrossRef] [Green Version]
- Porras, G.; Berthet, A.; Dehay, B.; Li, Q.; Ladepeche, L.; Normand, E.; Dovero, S.; Martinez, A.; Doudnikoff, E.; Martin-Négrier, M.L.; et al. PSD-95 expression controls l-DOPA dyskinesia through dopamine D1 receptor trafficking. J. Clin. Investig. 2012, 122, 3977–3989. [Google Scholar] [CrossRef] [Green Version]
- Berthet, A.; Bezard, E.; Porras, G.; Fasano, S.; Barroso-Chinea, P.; Dehay, B.; Martinez, A.; Thiolat, M.L.; Nosten-Bertrand, M.; Giros, B.; et al. l-DOPA impairs proteasome activity in parkinsonism through D1 dopamine receptor. J. Neurosci. 2012, 32, 681–691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyons, D.; de Jaeger, X.; Rosen, L.G.; Ahmad, T.; Lauzon, N.M.; Zunder, J.; Coolen, L.M.; Rushlow, W.; Laviolette, S.R. Opiate exposure and withdrawal induces a molecular memory switch in the basolateral amygdala between ERK1/2 and CaMKIIα-dependent signaling substrates. J. Neurosci. 2013, 33, 14693–14704. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.F.; Xie, C.L.; Wang, Q.; Liu, Z.G. Interactions of CaMKII with dopamine D2 receptors: Roles in levodopa-induced dyskinesia in 6-hydroxydopamine lesioned Parkinson’s rats. Sci. Rep. 2014, 4, 6811. [Google Scholar] [CrossRef] [PubMed]
- Albarrán-Bravo, S.; Ávalos-Fuentes, J.A.; Cortés, H.; Rodriguez-Sánchez, M.; Leyva-García, N.; Rangel-Barajas, C.; Erlij, D.; Florán, B. Severity of dyskinesia and D3R signaling changes induced by L-DOPA treatment of hemiparkinsonian rats are features inherent to the treated subjects. Biomolecules 2019, 9, 431. [Google Scholar] [CrossRef] [Green Version]
- Solís, O.; Garcia-Montes, J.R.; González-Granillo, A.; Xu, M.; Moratalla, R. Dopamine D3 receptor modulates l-DOPA-induced dyskinesia by targeting D1 receptor-mediated striatal signaling. Cereb. Cortex 2017, 27, 435–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Payer, D.E.; Guttman, M.; Kish, S.J.; Tong, J.; Adams, J.R.; Rusjan, P.; Houle, S.; Furukawa, Y.; Wilson, A.A.; Boileau, I. D3 dopamine receptor-preferring [11C]PHNO PET imaging in Parkinson patients with dyskinesia. Neurology 2016, 86, 224–230. [Google Scholar] [CrossRef] [Green Version]
- Castello, J.; Cortés, M.; Malave, L.; Kottmann, A.; Sibley, D.R.; Friedman, E.; Rebholz, H. The dopamine D5 receptor contributes to activation of cholinergic interneurons during L-DOPA induced dyskinesia. Sci. Rep. 2020, 10, 2542. [Google Scholar] [CrossRef] [Green Version]
- Bido, S.; Solari, N.; Indrigo, M.; D’Antoni, A.; Brambilla, R.; Morari, M.; Fasano, S. Differential involvement of Ras-GRF1 and Ras-GRF2 in L-DOPA-induced dyskinesia. Ann. Clin. Transl. Neurol. 2015, 2, 662–678. [Google Scholar] [CrossRef] [PubMed]
- Fasano, S.; Bezard, E.; D’Antoni, A.; Francardo, V.; Indrigo, M.; Qin, L.; Doveró, S.; Cerovic, M.; Cenci, M.A.; Brambilla, R. Inhibition of Ras-guanine nucleotide-releasing factor 1 (Ras-GRF1) signaling in the striatum reverts motor symptoms associated with l-dopa–induced dyskinesia. Proc. Natl. Acad. Sci. USA 2010, 107, 21824–21829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eshraghi, M.; Ramírez-Jarquín, U.N.; Shahani, N.; Nuzzo, T.; De Rosa, A.; Swarnkar, S.; Galli, N.; Rivera, O.; Tsaprailis, G.; Scharager-Tapia, C.; et al. RasGRP1 is a causal factor in the development of l-DOPA–induced dyskinesia in Parkinson’s disease. Neuroscience 2020, 6, eeaz7001. [Google Scholar]
- Cerovic, M.; Bagetta, V.; Pendolino, V.; Ghiglieri, V.; Fasano, S.; Morella, I.; Hardingham, N.; Heuer, A.; Papale, A.; Marchisella, F.; et al. Derangement of Ras-guanine nucleotide-releasing factor 1 (Ras-GRF1) and extracellular signal-regulated kinase (ERK) dependent striatal plasticity in L-DOPA-induced dyskinesia. Biol. Psychiatry 2015, 77, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-DeDiego, I.; Fasano, S.; Solís, O.; Garcia-Montes, J.R.; Brea, J.; Loza, M.I.; Brambilla, R.; Moratalla, R. Genetic enhancement of Ras-ERK pathway does not aggravate L-DOPA-induced dyskinesia in mice but prevents the decrease induced by lovastatin. Sci. Rep. 2018, 8, 15381. [Google Scholar] [CrossRef]
- Beck, G.; Singh, A.; Zhang, J.; Potts, L.F.; Woo, J.-M.; Park, E.S.; Mochizuki, H.; Mouradian, M.M.; Papa, S.M. Role of striatal ΔFosB in l-Dopa–induced dyskinesias of parkinsonian nonhuman primates. Proc. Natl. Acad. Sci. USA 2019, 116, 18664–18672. [Google Scholar] [CrossRef] [Green Version]
- Cortés, M.; Malave, L.; Castello, J.; Flajolet, M.; Cenci, M.A.; Friedman, E.; Rebholz, H. CK2 oppositely modulates l-DOPA-induced dyskinesia via striatal projection neurons expressing D1 or D2 receptors. J. Neurosci. 2017, 37, 11930–11946. [Google Scholar] [CrossRef]
- Bastide, M.F.; Glangetas, C.; Doudnikoff, E.; Li, Q.; Bourdenx, M.; Fernagut, P.O.; Dumont, É.C.; Georges, F.; Bézard, E. Involvement of the bed nucleus of the stria terminalis in L-Dopa induced dyskinesia. Sci. Rep. 2017, 7, 2348. [Google Scholar] [CrossRef] [Green Version]
- Padovan-Neto, F.E.; Ferreira, N.R.; de Oliveira-Tavaras, D.; de Aguiar, D.; da Silva, C.A.; Raisman-Vozari, R.; Del Bel, E. Anti-dyskinetic effect of the neuronal nitric oxide synthase inhibitor is linked to decrease of FosB/DeltaFosB expression. Neurosci. Lett. 2013, 541, 126–131. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Jenkins, M.A.; Burke, K.J., Jr.; Beck, G.; Jenkins, A.; Scimemi, A.; Traynelis, S.F.; Papa, S.M. Glutamatergic tuning of hyperactive striatal projection neurons controls the motor response to dopamine replacement in Parkinsonian primates. Cell Rep. 2018, 22, 941–952. [Google Scholar] [CrossRef] [Green Version]
- Stanic, J.; Mellone, M.; Napolitano, F.; Racca, C.; Zianni, E.; Minocci, D.; Ghiglieri, V.; Thiolat, M.L.; Li, Q.; Longhi, A.; et al. Rabphilin 3A: A novel target for the treatment of levodopa-induced dyskinesias. Neurobiol. Dis. 2017, 108, 54–64. [Google Scholar] [CrossRef]
- Ba, M.; Kong, M.; Ma, G. Postsynaptic density protein 95-regulated NR2B tyrosine phosphorylation and interactions of Fyn with NR2B in levodopa-induced dyskinesia rat models. Drug Des. Dev. Ther. 2015, 9, 199–206. [Google Scholar] [CrossRef] [Green Version]
- Lindenbach, D.; Conti, M.M.; Ostock, C.Y.; George, J.A.; Goldenberg, A.A.; Melikhov-Sosin, M.; Nuss, E.E.; Bishop, C. The role of primary motor cortex (M1) glutamate and GABA signaling in l-DOPA-induced dyskinesia in Parkinsonian rats. J. Neurosci. 2016, 36, 9873–9887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brumberg, J.; Küsters, S.; Al-Momani, E.; Marotta, G.; Cosgrove, K.P.; van Dyck, C.H.; Herrmann, K.; Homola, G.A.; Pezzoli, G.; Buck, A.K.; et al. Cholinergic activity and levodopa-induced dyskinesia: A multitracer molecular imaging study. Ann. Clin. Transl. Neurol. 2017, 4, 632–639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brugnoli, A.; Pisanò, C.A.; Morari, M. Striatal and nigral muscarinic type 1 and type 4 receptors modulate levodopa-induced dyskinesia and striato-nigral pathway activation in 6-hydroxydopamine hemilesioned rats. Neurobiol. Dis. 2020, 144, 105044. [Google Scholar] [CrossRef]
- Shen, W.; Plotkin, J.L.; Francardo, V.; Ko, W.K.; Xie, Z.; Li, Q.; Fieblinger, T.; Wess, J.; Neubig, R.R.; Lindsley, C.W.; et al. M4 muscarinic receptor signaling ameliorates striatal plasticity deficits in models of L-DOPA-induced dyskinesia. Neuron 2015, 88, 762–763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahin, G.; Thompson, L.H.; Lavisse, S.; Ozgur, M.; Rbah-Vidal, L.; Dollé, F.; Hantraye, P.; Kirik, D. Differential dopamine receptor occupancy underlies L-DOPA-induced dyskinesia in a rat model of Parkinson’s disease. PLoS ONE 2014, 9, e90759. [Google Scholar]
- Rylander, D.; Parent, M.; O’Sullivan, S.S.; Dovero, S.; Lees, A.J.; Bezard, E.; Descarries, L.; Cenci, M.A. Maladaptive plasticity of serotonin axon terminals in levodopa-induced dyskinesia. Ann. Neurol. 2010, 68, 619–628. [Google Scholar] [CrossRef]
- Carta, M.; Carlsson, T.; Kirik, D.; Björklund, A. Dopamine released from 5-HT terminals is the cause of L-DOPA-induced dyskinesia in parkinsonian rats. Brain 2007, 130, 1819–1833. [Google Scholar] [CrossRef] [Green Version]
- Tronci, E.; Napolitano, F.; Muñoz, A.; Fidalgo, C.; Rossi, F.; Björklund, A.; Usiello, A.; Carta, M. BDNF over-expression induces striatal serotonin fiber sprouting and increases the susceptibility to l-DOPA-induced dyskinesia in 6-OHDA-lesioned rats. Exp. Neurol. 2017, 297, 73–81. [Google Scholar] [CrossRef]
- Gagnon, D.; Gregoire, L.; Di Paolo, T.; Parent, M. Serotonin hyperinnervation of the striatum with high synaptic incidence in Parkinsonian monkeys. Brain Struct. Funct. 2016, 221, 3675–3691. [Google Scholar] [CrossRef]
- Inden, M.; Abe, M.; Minamino, H.; Takata, K.; Yoshimoto, K.; Tooyama, I.; Kitamura, Y. Effect of selective serotonin reuptake inhibitors via 5-HT1A receptors on L-DOPA-induced rotational behavior in a hemiparkinsonian rat model. J. Pharmacol. Sci. 2012, 119, 10–19. [Google Scholar] [CrossRef] [Green Version]
- Bishop, C.; George, J.A.; Buchta, W.; Goldenberg, A.A.; Mohamed, M.; Dickinson, S.O.; Eissa, S.; Eskow Jaunarajs, K.L. Serotonin transporter inhibition attenuates l-DOPA-induced dyskinesia without compromising l-DOPA efficacy in hemi-parkinsonian rats. Eur. J. Neurosci. 2012, 36, 2839–2848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miguelez, C.; Navailles, S.; De Deurwaerdère, P.; Ugedo, L. The acute and long-term L-DOPA effects are independent from changes in the activity of dorsal raphe serotonergic neurons in 6-OHDA lesioned rats. Br. J. Pharmacol. 2016, 173, 2135–2146. [Google Scholar] [CrossRef] [PubMed]
- Santos-Lobato, B.L.; Schumacher-Schuh, A.F.; Rieder, C.R.M.; Hutz, M.H.; Borges, V.; Ferraz, H.B.; Mata, I.F.; Zabetian, C.P.; Tumas, V. Diagnostic prediction model for levodopa-induced dyskinesia in Parkinson’s disease. Arq. Neuropsiquiatr. 2020, 78, 206–216. [Google Scholar] [CrossRef]
- Hong, J.Y.; Sunwoo, M.K.; Yoon, J.H.; Kang, S.Y.; Sohn, Y.H.; Lee, P.H.; Kim, S.H. Rapid drug increase and early onset of levodopa-induced dyskinesia in Parkinson’s disease. PLoS ONE 2020, 15, e0237472. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.M.; Laureno, R. Less pulsatile levodopa therapy (6 doses daily) is associated with a reduced incidence of dyskinesia. J. Mov. Disord. 2019, 12, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Poewe, W.; Chaudhuri, K.R.; Bergmann, L.; Antonini, A. Levodopa–carbidopa intestinal gel in a subgroup of patients with dyskinesia at baseline from the GLORIA Registry. Neurodegener. Dis. Manag. 2019, 9, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Ramlackhansingh, A.F.; Bose, S.K.; Ahmed, I.; Turkheimer, F.E.; Pavese, N.; Brooks, D.J. Adenosine 2A receptor availability in dyskinetic and nondyskinetic patients with Parkinson disease. Neurology 2011, 76, 1811–1816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wills, A.-M.A.; Eberly, S.; Tennis, M.; Lang, A.E.; Messing, S.; Togasaki, D.; Tanner, C.M.; Kamp, C.; Chen, J.F.; Oakes, D.; et al. Caffeine consumption and risk of dyskinesia in CALM-PD. Mov. Disord. 2013, 28, 380–383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riggare, S.; Unruh, K.T.; Sturr, J.; Domingos, J.; Stamford, J.A.; Svenningsson, P.; Hägglund, M. Patient-driven N-of-1 in Parkinson’s disease; lessons learned from a placebo-controlled study of the effect of nicotine on dyskinesia. Methods Inf. Med. 2017, 56, e123–e128. [Google Scholar]
- Popa, L.C.; Leucota, D.-C.; Tohanean, N.; Popa, S.-L.; Perju-Dumbrava, L. Intrajejunal vs oral levodopa-carbidopa therapy in Parkinson disease. Medicine 2020, 99, 46. [Google Scholar] [CrossRef]
- Wan, Y.; Wu, N.; Song, l.; Wang, X.; Liu, Z.; Yuan, W.; Gan, J. Levodopa/benserazide loaded microspheres alleviate L-dopa induced dyskinesia through preventing the over-expression of D1R/Shp-2/ERK1/2 signaling pathway in a rat model of Parkinson’s disease. Front. Aging Neurosci. 2017, 9, 331. [Google Scholar] [CrossRef]
- Yang, X.; Zheng, R.; Cai, Y.; Liao, M.; Yuan, W.; Liu, Z. Controlled-release levodopa methyl ester/benserazide-loaded nanoparticles ameliorate levodopa-induced dyskinesia in rats. Int. J. Nanomed. 2012, 7, 2077–2086. [Google Scholar]
- Xie, C.I.; Wang, W.W.; Zhang, S.-F.; Yuan, M.-L.; Che, J.-Y.; Gan, J.; Song, L.; Yuan, W.-E.; Liu, Z.-G. Levodopa/benserazide microsphere (LBM) prevents L-dopa induced dyskinesia by inactivation of the DR1/PKA/P-tau pathway in 6-OHDA-lesioned Parkinson’s rats. Sci. Rep. 2014, 4, 7506. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Chen, Y.; Hong, X.; Wu, N.; Song, L.; Yuan, W.; Liu, Z. Levodopa/benserazide microspheres reduced levodopa-induced dyskinesia by downregulating phosphorylated GluR1 expression in 6-OHDA-lesioned rats. Drug Des. Dev. Ther. 2012, 6, 341–347. [Google Scholar]
- Cao, X.; Hou, D.; Wang, L.; Li, S.; Sun, S.; Ping, Q.; Xu, Y. Effects and molecular mechanism of chitosan-coated levodopa nanoliposomes on behavior of dyskinesia rats. Biol. Res. 2016, 49, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bido, S.; Marti, M.; Morari, M. Amantadine attenuates levodopa-induced dyskinesia in mice and rats preventing the accompanying rise in nigral GABA levels. J. Neurochem. 2011, 118, 1043–1055. [Google Scholar] [CrossRef]
- Stansley, B.L.; Yamamoto, B.K. Chronic l-dopa decreases serotonin neurons in a subregion of the dorsal raphe nucleus. J. Pharmacol. Exp. Ther. 2014, 351, 440–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernandez, M.; Walsch, M.; Stead, T.; Quinones, A.; Ganti, L. Serotonin syndrome in the emergency department. Cureus 2019, 11, e6307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sagarduy, A.; Llorente, J.; Miguelez, C.; Morera-Herreras, T.; Ruiz-Ortega, J.A.; Ugedo, L. Buspirone requires the intact nigrostriatal pathway to reduce the activity of the subthalamic nucleus via 5-HT1A receptors. Exp. Neurol. 2016, 277, 35–45. [Google Scholar] [CrossRef] [Green Version]
- Vegas-Suárez, S.; Pisanò, C.A.; Requejo, C.; Bengoetxea, H.; Laufente, J.V.; Morari, M.; Miguelez, C.; Ugedo, L. 6-Hydroxydopamine lesion and levodopa treatment modify the effect of buspirone in the substantia nigra pars reticulata. Br. J. Pharmacol. 2020, 177, 3957–3974. [Google Scholar] [CrossRef]
- Nahimi, A.; Høltzermann, M.; Landau, A.M.; Simonsen, M.; Jakobsen, S.; Alstrup, A.K.O.; Vang, K.; Møller, A.; Wegener, G.; Gjedde, A.; et al. Serotonergic modulation of receptor occupancy in rats treated with L-DOPA after unilateral 6-OHDA lesioning. J. Neurochem. 2012, 120, 806–817. [Google Scholar] [CrossRef] [Green Version]
- Dupre, K.B.; Cruz, A.V.; McCoy, A.J.; Delaville, C.; Gerber, C.M.; Eyring, K.W.; Walters, J.R. Effects of L-dopa priming on cortical high beta and high gamma oscillatory activity in a rodent model of Parkinson’s disease. Neurobiol. Dis. 2016, 86, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindenbach, D.; Palumbo, N.; Ostock, C.Y.; Vilceus, N.; Conti, M.M.; Bishop, C. Side effect profile of 5-HT treatments for Parkinson’s disease and L-DOPA-induced dyskinesia in rats. Br. J. Pharmacol. 2014, 172, 119–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhide, N.; Lindenbach, D.; Surrena, M.A.; Goldenberg, A.A.; Bishop, C.; Berger, S.P.; Paquette, M.A. The effects of BMY-14802 against L-DOPA- and dopamine agonist-induced dyskinesia in the hemiparkinsonian rat. Psychopharmacology 2013, 227, 533–544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aboulghasemi, N.; Jahromy, M.H.; Ghasemi, A. Anti-dyskinetic efficacy of 5-HT3 receptor antagonist in the hemi-parkinsonian rat model. IBRO Rep. 2019, 6, 40–44. [Google Scholar] [CrossRef] [PubMed]
- Tronci, E.; Lisci, C.; Stancampiano, R.; Fidalgo, C.; Collu, M.; Devoto, P.; Carta, M. 5-Hydroxy-tryptophan for the treatment of l-DOPA-induced dyskinesia in the rat Parkinson’s disease model. Neurobiol. Dis. 2013, 60, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Maffei, M.E. 5-Hydroxytryptophan (5-HTP): Natural occurrence, analysis, biosynthesis, biotechnology, physiology and toxicology. Int. J. Mol. Sci. 2021, 22, 181. [Google Scholar] [CrossRef] [PubMed]
- Frau, R.; Savoia, P.; Fanni, S.; Fiorentini, C.; Fidalgo, C.; Tronci, E.; Stancampiano, R.; Meloni, M.; Cannas, A.; Marrosu, F.; et al. The 5-alpha reductase inhibitor finasteride reduces dyskinesia in a rat model of Parkinson’s disease. Exp. Neurol. 2017, 291, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, C.; Karali, K.; Fodelianaki, G.; Gravanis, A.; Chavakis, T.; Charalampopoulos, I.; Alexaki, V.I. Neurosteroids as regulators of neuroinflammation. Front. Neuroendocrinol. 2019, 55, 100788. [Google Scholar] [CrossRef]
- Robichaud, M.; Debonnel, G. Allopregnanolone and ganaxolone increase the firing activity of dorsal raphe nucleus serotonergic neurons in female rats. Int. J. Neuropsychopharmacol. 2006, 9, 191–200. [Google Scholar] [CrossRef] [Green Version]
- Hara, M.; Fukui, R.; Hieda, E.; Kuroiwa, M.; Bateup, H.S.; Kano, T.; Greengard, P.; Nishi, A. Role of adrenoceptors in the regulation of dopamine/DARPP-32 signaling in neostriatal neurons. J. Neurochem. 2010, 113, 1046–1059. [Google Scholar] [CrossRef] [Green Version]
- Lindenbach, D.; Ostock, C.Y.; Eskow Jaunarajs, K.L.; Dupre, K.B.; Barnum, C.J.; Bhide, N.; Bishop, C. Behavioral and cellular modulation of l-DOPA-induced dyskinesia by β-adrenoceptor blockade in the 6-hydroxydopamine-lesioned rat. J. Pharmacol. Exp. Ther. 2011, 337, 755–765. [Google Scholar] [CrossRef] [Green Version]
- Bhide, N.; Lindenbach, D.; Barnum, C.J.; George, J.A.; Surrena, M.A.; Bishop, C. Effects of the beta-adrenergic receptor antagonist Propranolol on dyskinesia and L-DOPA-induced striatal DA efflux in the hemi-parkinsonian rat. J. Neurochem. 2015, 134, 222–232. [Google Scholar] [CrossRef]
- Shi, Z.; Barnford, I.J.; McKinley, J.W.; Devi, S.P.S.; Vahedipour, A.; Bamford, N.S. Propranolol relieves L-dopa-induced dyskinesia in Parkinsonian mice. Brain Sci. 2020, 10, 903. [Google Scholar] [CrossRef]
- Crans, R.A.J.; Wouters, E.; Valle-León, M.; Taura, J.; Massari, C.M.; Fernández-Dueñas, V.; Stove, C.P.; Ciruela, F. Striatal dopamine D2-muscarinic acetylcholine M1 receptor—Receptor interaction in a model of movement disorders. Front. Pharmacol. 2020, 11, 194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seppä, T.; Ruotsalainen, M.; Laakso, I.; Tuominen, R.; Ahtee, L. Effect of acute nicotine administration on striatal dopamine output and metabolism in rats kept at different ambient temperatures. Br. J. Pharmacol. 2000, 130, 1147–1155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bordia, T.; McIntosh, J.M.; Quik, M. The nicotine-mediated decline in l-dopa-induced dyskinesias is associated with a decrease in striatal dopamine release. J. Neurochem. 2013, 125, 291–302. [Google Scholar] [CrossRef] [PubMed]
- Leino, S.; Kohtala, S.; Rantamäki, T.; Koski, S.K.; Rannanpää, S.; Salminen, O. Dyskinesia and brain-derived neurotrophic factor levels after long-term levodopa and nicotinic receptor agonist treatments in female mice with near-total unilateral dopaminergic denervation. BMC Neurosci. 2018, 19, 77. [Google Scholar] [CrossRef] [PubMed]
- Teng, L.; Hong, F.; Zhang, C.; He, J.; Wang, H. Compound Formula Rehmannia alleviates levodopa-induced dyskinesia in Parkinson’s disease. Neural Regen. Res. 2014, 9, 407–412. [Google Scholar] [PubMed]
- Ogawa, M.; Zhou, Y.; Tsuji, R.; Kasahara, J.; Goto, S. Intrastriatal memantine infusion dampens levodopa-induced dyskinesia and motor deficits in a mouse model of hemiparkinsonism. Front. Neurol. 2019, 10, 1258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, S.A.O.; Xia, R.; Ding, Y.; Won, L.; Ray, W.J.; Hitchcock, S.A.; McGehee, D.S.; Kang, U.J. Enhanced histamine H2 excitation of striatal cholinergic interneurons in l-DOPA-induced dyskinesia. Neurobiol. Dis. 2015, 76, 67–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, G.; Yang, X.; Wang, X.; Zhang, Z.; Yue, X.; Shi, H.; Shen, X. Ranitidine reduced levodopa-induced dyskinesia in a rat model of Parkinson’s disease. Neuropsychiatr. Dis. Treat. 2014, 10, 39–46. [Google Scholar]
- Shi, H.; Yang, X.; Zhao, H.; Zhang, S.; Zu, J.; Zhang, W.; Shen, X.; Cui, G.; Hua, F.; Yan, C. Ranitidine reduced levodopa-induced dyskinesia by remodeling neurochemical changes in hemiparkinsonian model of rats. Neuropsychiatr. Dis. Treat. 2015, 11, 1331–1337. [Google Scholar]
- Johansson, P.A.; Andersson, M.; Andersson, K.E.; Cenci, M.A. Alterations in cortical and basal ganglia levels of opioid receptor binding in a rat model of l-DOPA-induced dyskinesia. Neurobiol. Dis. 2001, 8, 220–239. [Google Scholar] [CrossRef] [Green Version]
- Potts, L.F.; Park, E.S.; Woo, J.-M.; Dyavar Shetty, B.L.; Singh, A.; Braithwaite, S.P.; Voronkov, M.; Papa, S.M.; Mouradian, M.M. Dual κ-agonist/μ-antagonist opioid receptor modulation reduces levodopa-induced dyskinesia and corrects dysregulated striatal changes in the nonhuman primate model of Parkinson disease. Ann. Neurol. 2015, 77, 930–941. [Google Scholar] [CrossRef]
- Bartlett, M.J.; So, L.Y.; Szabò, L.; Skinner, D.P.; Parent, K.L.; Heien, M.L.; Vanderah, T.W.; Polt, R.; Sherman, S.J.; Falk, T. Highly-selective µ-opioid receptor antagonism does not block L-DOPA-induced dyskinesia in a rodent model. BMC Res. Notes 2020, 13, 149. [Google Scholar] [CrossRef]
- Bezard, E.; Li, Q.; Hulme, H.; Fridjonsdottir, E.; Nilsson, A.; Pioli, E.; Andren, P.E.; Crossman, A.R. µ opioid receptor agonism for L-DOPA-induced dyskinesia in Parkinson’s disease. J. Neurosci. 2020, 40, 6812–6819. [Google Scholar] [CrossRef] [PubMed]
- Arcuri, L.; Novello, S.; Frassineti, M.; Mercatelli, D.; Pisanò, C.A.; Morella, I.; Fasano, S.; Journigan, B.V.; Meyer, M.E.; Polgar, W.E.; et al. Anti-Parkinsonian and anti-dyskinetic profiles of two novel potent and selective nociceptin/orphanin FQ receptor agonists. Br. J. Pharmacol. 2018, 175, 782–796. [Google Scholar] [CrossRef] [Green Version]
- Megens, A.A.H.P.; Hendrickx, H.M.R.; Mahieu, M.M.A.; Wellens, A.L.Y.; de Boer, P.; Vanhoof, G. PDE10A inhibitors stimulate or suppress motor behavior dependent on the relative activation state of the direct and indirect striatal output pathways. Pharmacol. Res. Perspect. 2014, 2, e00057. [Google Scholar] [CrossRef] [Green Version]
- Niccolini, F.; Foltynie, T.; Marques, T.R.; Muhlert, N.; Tziortzi, A.C.; Searle, G.E.; Natesan, S.; Kapur, S.; Rabiner, E.A.; Gunn, R.N.; et al. Loss of phosphodiesterase 10A expression is associated with progression and severity in Parkinson’s disease. Brain 2015, 138, 3003–3015. [Google Scholar] [CrossRef] [Green Version]
- Beck, G.; Maehara, S.; Chang, P.Y.; Papa, S.M. A selective phosphodiesterase 10A inhibitor reduces L-dopa-induced dyskinesias in Parkinsonian monkeys. Mov. Disord. 2018, 33, 805–814. [Google Scholar] [CrossRef]
- Sellnow, R.C.; Newman, J.H.; Chambers, N.; West, A.R.; Steece-Collier, K.; Sandoval, I.M.; Benskey, M.J.; Bishop, C.; Manfredsson, F.P. Regulation of dopamine neurotransmission from serotonergic neurons by ectopic expression of the dopamine D2 autoreceptor blocks levodopa-induced dyskinesia. Acta Neuropathol. Commun. 2019, 7, 8. [Google Scholar] [CrossRef] [PubMed]
- Marongiu, R.; Arango-Lievano, M.; Francardo, V.; Morgenstern, P.; Zhang, X.; Cenci, M.A.; Svenningsson, P.; Greengard, P.; Kaplitt, M.G. Gene therapy blockade of dorsal striatal p11 improves motor function and dyskinesia in parkinsonian mice. Proc. Natl. Acad. Sci. USA 2016, 113, 1423–1428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breger, L.S.; Kienle, K.; Smith, G.A.; Dunnett, S.B.; Lane, E.L. Influence of chronic L-DOPA treatment on immune response following allogeneic and xenogeneic graft in a rat model of Parkinson’s disease. Brain Behav. Immun. 2017, 61, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.R.; Bychkov, E.; Kook, S.; Zurkovsky, L.; Dalby, K.N.; Gurevich, E.V. Overexpression of GRK6 rescues l-DOPA-induced signaling abnormalities in the dopamine-depleted striatum of hemiparkinsonian rats. Exp. Neurol. 2015, 266, 42–54. [Google Scholar] [CrossRef] [Green Version]
- Şensoy, Ö. The single nucleotide β -arrestin2 variant, A248T, resembles dynamical properties of activated arrestin. Turk. J. Chem. 2020, 44, 409–420. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.R.; Zhang, Z.-R.; Chen, S.-Y.; Wang, W.-W.; Wang, X.-S.; He, J.-C.; Xie, C.-L. β-arrestin2 alleviates L-dopa–induced dyskinesia via lower D1R activity in Parkinson’s rats. Aging 2019, 11, 12315–12327. [Google Scholar] [CrossRef] [PubMed]
- Urs, N.M.; Bido, S.; Peterson, S.M.; Daigle, T.L.; Bass, C.E.; Gainetdinov, R.R.; Bezard, E.; Caron, M.G. Targeting β-arrestin2 in the treatment of l-DOPA–induced dyskinesia in Parkinson’s disease. Proc. Natl. Acad. Sci. USA 2015, 112, E2517–E2526. [Google Scholar] [CrossRef] [Green Version]
- Park, H.-Y.; Kang, Y.-M.; Kang, Y.; Park, T.-S.; Ryu, Y.-K.; Hwang, J.-H.; Kim, Y.-H.; Chung, B.-H.; Nam, K.-H.; Kim, M.-R. Inhibition of adenylyl cyclase type 5 prevents l-DOPA-induced dyskinesia in an animal model of Parkinson’s disease. J. Neurosci. 2014, 34, 11744–11753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leino, S.; Koski, S.K.; Hänninen, R.; Tapanainen, T.; Rannanpää, S.; Salminen, O. Attenuated dopaminergic neurodegeneration and motor dysfunction in hemiparkinsonian mice lacking the α5 nicotinic acetylcholine receptor subunit. Neuropharmacology 2018, 138, 371–380. [Google Scholar] [CrossRef]
- Yang, X.; Wu, N.; Song, L.; Liu, Z. Intrastriatal injections of KN-93 ameliorates levodopa-induced dyskinesia in a rat model of Parkinson’s disease. Neuropsychiatr. Dis. Treat. 2013, 9, 1213–1220. [Google Scholar]
- Plotkin, J.L.; Shen, W.; Rafalovich, I.; Sebel, L.E.; Day, M.; Chan, C.S.; Surmeier, D.J. Regulation of dendritic calcium release in striatal spiny projection neurons. J. Neurophysiol. 2013, 110, 2325–2336. [Google Scholar] [CrossRef] [Green Version]
- Steece-Collier, K.; Stancat, J.A.; Collier, N.J.; Sandoval, I.M.; Mercado, N.M.; Sortwell, C.E.; Collier, T.J.; Manfredsson, F.P. Genetic silencing of striatal CaV1.3 prevents and ameliorates levodopa dyskinesia. Mov. Disord. 2019, 34, 697–707. [Google Scholar] [CrossRef]
- Martinez, A.A.; Morgese, M.G.; Pisanu, A.; Macheda, T.; Paquette, M.A.; Seillier, A.; Cassano, T.; Carta, A.R.; Giuffrida, A. Activation of PPAR gamma receptors reduces levodopa-induced dyskinesias in 6-OHDA-lesioned rats. Neurobiol. Dis. 2015, 74, 295–304. [Google Scholar] [CrossRef] [Green Version]
- Fernandez, H.H.; Vanagunas, A.; Odin, P.; Espay, A.J.; Hauser, R.A.; Standaert, D.G.; Chatamra, K.; Benesh, J.; Pritchett, Y.; Hass, S.L.; et al. Levodopa-carbidopa intestinal gel in advanced Parkinson’s disease open-label study: Interim results. Parkinsonism Relat. Disord. 2013, 19, 339–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poewe, W.; Bergmann, L.; Kukreja, P.; Robieson, W.Z.; Antonini, A. Levodopa-carbidopa intestinal gel monotherapy: GLORIA registry demographics, efficacy, and safety. J. Parkinsons Dis. 2019, 9, 531–541. [Google Scholar] [CrossRef] [Green Version]
- Băjenaru, O.; Ene, A.; Popescu, B.O.; Szász, J.A.; Sabău, M.; Mureşan, D.F.; Perju-Dumbrava, L.; Popescu, C.D.; Constantinescu, A.; Buraga, I.; et al. The effect of levodopa-carbidopa intestinal gel infusion long-term therapy on motor complications in advanced Parkinson’s disease: A multicenter Romanian experience. J. Neural Transm. 2016, 123, 407–414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopiano, L.; Modugno, N.; Marano, P.; Sensi, M.; Meco, G.; Cannas, A.; Gusmaroli, G.; Tamma, F.; Mancini, F.; Quatrale, R.; et al. Motor outcomes in patients with advanced Parkinson’s disease treated with levodopa/carbidopa intestinal gel in Italy: An interim analysis from the GREENFIELD observational study. Neurol. Sci. 2016, 37, 1785–1792. [Google Scholar] [CrossRef] [PubMed]
- Lopiano, L.; Modugno, N.; Marano, P.; Sensi, M.; Meco, G.; Solla, P.; Gusmaroli, G.; Tamma, F.; Mancini, F.; Quatrale, R.; et al. Motor and non-motor outcomes in patients with advanced Parkinson’s disease treated with levodopa/carbidopa intestinal gel: Final results of the GREENFIELD observational study. J. Neurol. 2019, 266, 2164–2176. [Google Scholar] [CrossRef] [Green Version]
- Fernandez, H.H.; Standaert, D.G.; Hauser, R.A.; Lang, A.E.; Fung, V.S.C.; Klostermann, F.; Lew, M.F.; Odin, P.; Steiger, M.; Yakupov, E.Z.; et al. Levodopa-carbidopa intestinal gel in advanced Parkinson’s disease: Final 12-month, open-label results. Mov. Disord. 2015, 30, 500–509. [Google Scholar] [CrossRef] [PubMed]
- Thakkar, S.; Fung, V.S.C.; Merola, A.; Rollins, M.; Soileau, M.J.; Kovács, N. 24-hour levodopa-carbidopa intestinal gel: Clinical experience and practical recommendations. CNS Drugs 2021, 35, 137–149. [Google Scholar] [CrossRef] [PubMed]
- Cruse, B.; Morales-Briceño, H.; Chang, F.C.F.; Mahant, N.; Ha, A.D.; Kim, S.D.; Wolfe, N.; Kwan, V.; Tsui, D.S.; Griffith, J.M.; et al. 24-hour levodopa-carbidopa intestinal gel may reduce troublesome dyskinesia in advanced Parkinson’s disease. NPJ Parkinsons Dis. 2018, 4, 34. [Google Scholar] [CrossRef] [PubMed]
- Olanow, C.W.; Kieburtz, K.; Odin, P.; Espay, A.J.; Standaert, D.G.; Fernandez, H.H.; Vanagunas, A.; Othman, A.A.; Widnell, K.L.; Robieson, W.Z.; et al. Continuous intrajejunal infusion of levodopa-carbidopa intestinal gel for patients with advanced Parkinson’s disease: A randomised, controlled, double-blind, double-dummy study. Lancet Neurol. 2014, 13, 141–149. [Google Scholar] [CrossRef] [Green Version]
- Fabbri, M.; Zibetti, M.; Beccaria, L.; Merola, A.; Romagnolo, A.; Montanaro, E.; Ferreira, J.J.; Palermo, S.; Lopiano, L. Levodopa/carbidopa intestinal gel infusion and weight loss in Parkinson’s disease. Eur. J. Neurol. 2019, 26, 490–496. [Google Scholar] [CrossRef] [Green Version]
- Antonini, A.; Yegin, A.; Preda, C.; Bergmann, L.; Poewe, W.; GLORIA Study Investigators and Coordinators. Global long-term study on motor and non-motor symptoms and safety of levodopa-carbidopa intestinal gel in routine care of advanced Parkinson’s disease patients; 12-month interim outcomes. Parkinsonism Relat. Disord. 2015, 21, 231–235. [Google Scholar] [CrossRef]
- Morgante, F.; Oppo, V.; Fabbri, M.; Olivola, E.; Sorbera, C.; De Micco, R.; Ielo, G.C.; Colucci, F.; Bonvegna, S.; Novelli, A.; et al. Levodopa-carbidopa intrajejunal infusion in Parkinson’s disease: Untangling the role of age. J. Neurol. 2021, 268, 1728–1737. [Google Scholar] [CrossRef]
- Meloni, M.; Solla, P.; Mascia, M.M.; Marrosu, F.; Cannas, A. Diphasic dyskinesias during levodopa-carbidopa intestinal gel (LCIG) infusion in Parkinson’s disease. Parkinsonism Relat. Disord. 2017, 37, 92–96. [Google Scholar] [CrossRef]
- Santos García, D.; Martínez Castrillo, J.C.; Puente Périz, V.; Seoane Urgorri, A.; Fernández Díez, S.; Benita León, V.; Udaeta Baldivieso, B.; Campolongo Perillo, A.; Mariscal Pérez, N. Clinical management of patients with advanced Parkinson’s disease treated with continuous intestinal infusion of levodopa/carbidopa. Neurodegener. Dis. Manag. 2016, 6, 187–202. [Google Scholar] [CrossRef] [Green Version]
- García Ruiz, P.J.; Sesar Ignacio, A.; Ares Pensado, B.; Castro García, A.; Alonso Frech, F.; Alvarez López, M.; Arbelo González, J.; Baiges Octavio, J.; Burguera Hernández, J.A.; Calopa Garriga, M.; et al. Efficacy of long-term continuous subcutaneous apomorphine infusion in advanced Parkinson’s disease with motor fluctuations: A multicenter study. Mov. Disord. 2008, 23, 1130–1136. [Google Scholar] [CrossRef]
- Houvenghel, J.-F.; Drapier, S.; Duprez, J.; Robert, G.H.; Riou, A.; Drapier, D.; Sauleau, P.; Vérin, M. Effects of continuous subcutaneous apomorphine infusion in Parkinson’s disease without cognitive impairment on motor, cognitive, psychiatric symptoms and quality of life. J. Neurol. Sci. 2018, 395, 113–118. [Google Scholar] [CrossRef]
- Katzenschlager, R.; Poewe, W.; Rascol, O.; Trenkwalder, C.; Deuschl, G.; Chaudhuri, K.R.; Henriksen, T.; van Laar, T.; Lockhart, D.; Staines, H.; et al. Long-term safety and efficacy of apomorphine infusion in Parkinson’s disease patients with persistent motor fluctuations: Results of the open-label phase of the TOLEDO study. Parkinsonism Relat. Disord. 2021, 83, 79–85. [Google Scholar] [CrossRef]
- Henriksen, T.; Staines, H. Continuous subcutaneous apomorphine infusion in Parkinson’s Disease: A single-center, long-term follow-up study of the causes for discontinuation. J. Pers. Med. 2021, 11, 525. [Google Scholar] [CrossRef]
- Papuć, E.; Trzciniecka, O.; Rejdak, K. Continuous subcutaneous apomorphine monotherapy in Parkinson’s disease. Ann. Agric. Environ. Med. 2019, 26, 133–137. [Google Scholar] [CrossRef] [PubMed]
- Drapier, S.; Eusebio, A.; Degos, B.; Vérin, M.; Durif, F.; Azulay, J.P.; Viallet, F.; Rouaud, T.; Moreau, C.; Defebvre, L.; et al. Quality of life in Parkinson’s disease improved by apomorphine pump: The OPTIPUMP cohort study. J. Neurol. 2016, 263, 1111–1119. [Google Scholar] [CrossRef]
- Olivola, E.; Fasano, A.; Varanese, S.; Lena, F.; Santilli, M.; Femiano, C.; Centonze, D.; Modugno, N. Continuous subcutaneous apomorphine infusion in Parkinson’s disease: Causes of discontinuation and subsequent treatment strategies. Neurol. Sci. 2019, 40, 1917–1923. [Google Scholar] [CrossRef]
- Meira, B.; Degos, B.; Corsetti, E.; Doulazmi, M.; Berthelot, E.; Virbel-Fleischman, C.; Dodet, P.; Méneret, A.; Mariani, L.L.; Delorme, C.; et al. Long-term effect of apomorphine infusion in advanced Parkinson’s disease: A real-life study. NPJ Parkinsons Dis. 2021, 7, 50. [Google Scholar] [CrossRef]
- LeWitt, P.A.; Metman, L.V.; Rubens, R.; Khanna, S.; Kell, S.; Gupta, S. Effect of concomitant medications on the safety and efficacy of extended-release carbidopa-levodopa (IPX066) in patients with advanced Parkinson disease: A post hoc analysis. Clin. Neuropharmacol. 2018, 41, 47–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stocchi, F.; Hsu, A.; Khanna, S.; Ellenbogen, A.; Mahler, A.; Liang, G.; Dillmann, U.; Rubens, R.; Kell, S.; Gupta, S. Comparison of IPX066 with carbidopa–levodopa plus entacapone in advanced PD patients. Parkinsonism Relat. Disord. 2014, 20, 1335–1340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, M.; Ba, M.; Ren, C.; Yu, L.; Dong, S.; Yu, G.; Liang, H. An updated meta-analysis of amantadine for treating dyskinesia in Parkinson’s disease. Oncotarget 2017, 8, 57316–57326. [Google Scholar] [CrossRef] [Green Version]
- Kim, A.; Kim, Y.E.; Yun, J.Y.; Kim, H.-J.; Yang, H.-J.; Lee, W.-W.; Shin, C.W.; Park, H.; Jung, Y.J.; Kim, A.; et al. Amantadine and the risk of dyskinesia in patients with early Parkinson’s disease: An open-label, pragmatic trial. J. Mov. Disord. 2018, 11, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Hauser, R.A.; Walsh, R.R.; Pahwa, R.; Chernick, D.; Formella, A.E. Amantadine ER (Gocovri®) significantly increases ON time without any dyskinesia: Pooled analyses from pivotal trials in Parkinson’s disease. Front. Neurol. 2021, 12, 645706. [Google Scholar] [CrossRef] [PubMed]
- Pahwa, R.; Tanner, C.M.; Hauser, R.A.; Sethi, K.; Isaacson, S.; Truong, D.; Struck, L.; Ruby, A.E.; McClure, N.L.; Went, G.T. Amantadine extended release for levodopa-induced dyskinesia in Parkinson’s disease (EASED Study). Mov. Disord. 2015, 30, 788–795. [Google Scholar] [CrossRef] [PubMed]
- Oertel, W.; Eggert, K.; Pahwa, R.; Tanner, C.M.; Hauser, R.A.; Trenkwalder, C.; Ehret, R.; Azulay, J.P.; Isaacson, S.; Felt, L.; et al. Randomized, placebo-controlled trial of ADS-5102 (amantadine) extended-release capsules for levodopa-induced dyskinesia in Parkinson’s disease (EASE LID 3). Mov. Disord. 2017, 32, 1701–1709. [Google Scholar] [CrossRef]
- Tanner, C.M.; Pahwa, R.; Hauser, R.A.; Oertel, W.H.; Isaacson, S.H.; Jankovic, J.; Johnson, R.; Chernick, D.; Hubble, J. EASE LID 2: A 2-year open-label trial of gocovri (amantadine) extended release for dyskinesia in Parkinson’s disease. J. Parkinsons Dis. 2020, 10, 543–558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hauser, R.A.; Pahwa, R.; Tanner, C.M.; Oertel, W.; Isaacson, S.H.; Johnson, R.; Felt, L.; Stempien, M.J. ADS-5102 (amantadine) extended-release capsules for levodopa-induced dyskinesia in Parkinson’s disease (EASE LID 2 study): Interim results of an open-label safety study. J. Parkinsons Dis. 2017, 7, 511–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pahwa, R.; Tanner, C.M.; Hauser, R.A.; Isaacson, S.H.; Nausieda, P.A.; Truong, D.D.; Agarwal, P.; Hull, K.L.; Lyons, K.E.; Johnson, R.; et al. ADS-5102 (amantadine) extended-release capsules for levodopa-induced dyskinesia in Parkinson disease (EASE LID study). JAMA Neurol. 2017, 74, 941–949. [Google Scholar] [CrossRef]
- Xu, W.; Wang, X.; Tocker, A.M.; Huang, P.; Reith, M.E.A.; Liu-Chen, L.-Y.; Smith, A.B., 3rd; Kortagere, S. Functional characterization of a novel series of biased signaling dopamine D3 receptor agonists. ACS Chem. Neurosci. 2017, 8, 486–500. [Google Scholar] [CrossRef] [PubMed]
- Berthet, A.; Porras, G.; Duodnikoff, E.; Stark, H.; Cador, M.; Bezard, E.; Bloch, B. Pharmacological analysis demonstrates dramatic alteration of D1 dopamine receptor neuronal distribution in the rat analog of l-DOPA-induced dyskinesia. J. Neurosci. 2009, 29, 4829–4835. [Google Scholar] [CrossRef]
- Visanji, N.P.; Fox, S.H.; Johnston, T.; Reyes, G.; Millan, M.J.; Brotchie, J.M. Dopamine D3 receptor stimulation underlies the development of L-DOPA-induced dyskinesia in animal models of Parkinson’s disease. Neurobiol. Dis. 2009, 35, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Utsumi, H.; Okuma, Y.; Kano, O.; Suzuki, Y.; Iijima, M.; Tomimitsu, H.; Hashida, H.; Kubo, S.-I.; Suzuki, M.; Nanri, K.; et al. Evaluation of the Efficacy of pramipexole for treating levodopa-induced dyskinesia in patients with Parkinson’s disease. Intern. Med. 2013, 52, 325–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Svenningsson, P.; Johansson, A.; Nyholm, D.; Tsitsi, P.; Hansson, F.; Sonesson, C.; Tedroff, J. Safety and tolerability of IRL790 in Parkinson’s disease with levodopa-induced dyskinesia—A phase 1b trial. NPJ Parkinsons Dis. 2018, 4, 35. [Google Scholar] [CrossRef]
- Borgohain, R.; Szasz, J.; Stanzione, P.; Meshram, C.; Bhatt, M.; Chirilineau, D.; Stocchi, F.; Lucini, V.; Giuliani, R.; Forrest, E.; et al. Randomized trial of safinamide add-on to levodopa in Parkinson’s disease with motor fluctuations. Mov. Disord. 2014, 29, 229–237. [Google Scholar] [CrossRef] [PubMed]
- Borgohain, R.; Szasz, J.; Stanzione, P.; Meshram, C.; Bhatt, M.H.; Chirilineau, D.; Stocchi, F.; Lucini, V.; Giuliani, R.; Forrest, E.; et al. Two-year, randomized, controlled study of safinamide as add-on to levodopa in mid to late Parkinson’s disease. Mov. Disord. 2014, 29, 1273–1280. [Google Scholar] [CrossRef]
- Cattaneo, C.; Jost, W.H.; Bonizzoni, E. Long-term efficacy of safinamide on symptoms severity and quality of life in fluctuating Parkinson’s disease patients. J. Parkinsons Dis. 2020, 10, 89–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gardoni, F.; Morari, M.; Kulisevsky, J.; Brugnolii, A.; Novello, S.; Pisanò, C.A.; Caccia, C.; Mellone, M.; Melloni, E.; Padoani, G.; et al. Safinamide modulates striatal glutamatergic signaling in a rat model of levodopa-induced dyskinesia. J. Pharmacol. Exp. Ther. 2018, 367, 442–451. [Google Scholar] [CrossRef] [Green Version]
- Svenningsson, P.; Rosenblad, C.; Af Edholm Arvidsson, K.; Wictorin, K.; Keywood, C.; Shankar, B.; Lowe, D.A.; Björklund, A.; Widner, H. Eltoprazine counteracts l-DOPA-induced dyskinesias in Parkinson’s disease: A dose-finding study. Brain 2015, 138, 963–973. [Google Scholar] [CrossRef]
- Meloni, M.; Puligheddu, M.; Sanna, F.; Cannas, A.; Farris, R.; Tronci, E.; Figorilli, M.; Defazio, G.; Carta, M. Efficacy and safety of 5-hydroxytryptophan on levodopa-induced motor complications in Parkinson’s disease: A preliminary finding. J. Neurol. Sci. 2020, 415, 116869. [Google Scholar] [CrossRef]
- Mestre, T.A.; Shah, B.B.; Connolly, B.S.; de Aquino, C.; Al Dhakeel, A.; Walsh, R.; Ghate, T.; Lui, L.P.; Fox, S.H. Famotidine, a histamine H2 receptor antagonist, does not reduce levodopa-induced dyskinesia in Parkinson’s disease: A proof-of-concept study. Mov. Disord. Clin. Pract. 2014, 1, 219–224. [Google Scholar] [CrossRef]
- Fan, S.-Y.; Wang, K.-L.; Hu, W.; Eisinger, R.S.; Han, A.; Han, C.-L.; Wang, Q.; Michitomo, S.; Zhang, J.-G.; Weng, F.; et al. Pallidal versus subthalamic nucleus deep brain stimulation for levodopa-induced dyskinesia. Ann. Clin. Transl. Neurol. 2020, 7, 59–68. [Google Scholar] [CrossRef]
- Liu, Y.; Li, F.; Luo, H.; He, Q.; Chen, L.; Cheng, Y.; Zhang, W.; Xie, Z. Improvement of deep brain stimulation in dyskinesia in Parkinson’s disease: A meta-analysis. Front. Neurol. 2019, 10, 151. [Google Scholar] [CrossRef] [Green Version]
- Ryu, H.-S.; Kim, M.-S.; You, S.; Kim, M.-J.; Kim, Y.-J.; Kim, J.; Kim, K.; Chung, S.J. Comparison of pallidal and subthalamic deep brain stimulation in Parkinson’s disease: Therapeutic and adverse effects. J. Mov. Disord. 2017, 10, 80–86. [Google Scholar] [CrossRef] [Green Version]
- Schuepbach, W.M.M.; Rau, J.; Knudsen, K.; Volkmann, J.; Krack, P.; Timmermann, L.; Hälbig, T.D.; Hesekamp, H.; Navarro, S.M.; Meier, N.; et al. Neurostimulation for Parkinson’s disease with early motor complications. N. Engl. J. Med. 2013, 368, 610–622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weaver, F.M.; Follett, K.A.; Stern, M.; Luo, P.; Harris, C.L.; Hur, K.; Marks, W.J., Jr.; Rothlind, J.; Sagher, O.; Moy, C.; et al. Randomized trial of deep brain stimulation for Parkinson disease. Thirty-six-month outcomes. Neurology 2012, 79, 55–65. [Google Scholar] [CrossRef] [Green Version]
- Sobstyl, M.; Zabek, M.; Zaczynski, A.; Gorecki, W.; Mossakowski, Z.; Brzuszkiewicz-Kuzmicka, G. Unilateral subthalamic nucleus stimulation in the treatment of asymmetric Parkinson’s disease with early motor complications. Turk. Neurosurg. 2017, 27, 294–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.H.; Chang, W.S.; Jung, H.H.; Chang, J.W. Effect of subthalamic deep brain stimulation on levodopa-induced dyskinesia in Parkinson’s disease. Yonsei Med. J. 2015, 56, 1316–1321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lohse, A.; Meder, D.; Nielsen, S.; Lund, A.E.; Herz, D.M.; Løkkegaard, A.; Siebner, H.R. Low-frequency transcranial stimulation of pre-supplementary motor area alleviates levodopa-induced dyskinesia in Parkinson’s disease: A randomized cross-over trial. Brain Commun. 2020, 2, fcaa147. [Google Scholar] [CrossRef]
- Ni, Z.; Chen, R. Transcranial magnetic stimulation to understand pathophysiology and as potential treatment for neurodegenerative diseases. Transl. Neurodegener. 2015, 4, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hutny, M.; Hofman, J.; Klimkowicz-Mrowiec, A.; Gorzkowska, A. Current Knowledge on the Background, Pathophysiology and Treatment of Levodopa-Induced Dyskinesia—Literature Review. J. Clin. Med. 2021, 10, 4377. https://doi.org/10.3390/jcm10194377
Hutny M, Hofman J, Klimkowicz-Mrowiec A, Gorzkowska A. Current Knowledge on the Background, Pathophysiology and Treatment of Levodopa-Induced Dyskinesia—Literature Review. Journal of Clinical Medicine. 2021; 10(19):4377. https://doi.org/10.3390/jcm10194377
Chicago/Turabian StyleHutny, Michał, Jagoda Hofman, Aleksandra Klimkowicz-Mrowiec, and Agnieszka Gorzkowska. 2021. "Current Knowledge on the Background, Pathophysiology and Treatment of Levodopa-Induced Dyskinesia—Literature Review" Journal of Clinical Medicine 10, no. 19: 4377. https://doi.org/10.3390/jcm10194377
APA StyleHutny, M., Hofman, J., Klimkowicz-Mrowiec, A., & Gorzkowska, A. (2021). Current Knowledge on the Background, Pathophysiology and Treatment of Levodopa-Induced Dyskinesia—Literature Review. Journal of Clinical Medicine, 10(19), 4377. https://doi.org/10.3390/jcm10194377