Clinical Predictors of Prolonged Hospital Stay in Patients with Myasthenia Gravis: A Study Using Machine Learning Algorithms
Abstract
:1. Introduction
2. Methods
3. Empirical Study
3.1. Dataset
3.2. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gilhus, N.E. Myasthenia Gravis. N. Engl. J. Med. 2016, 375, 2570–2581. [Google Scholar] [CrossRef]
- Lin, C.W.; Chen, T.C.; Jou, J.R.; Woung, L.C. Update on ocular myasthenia gravis in Taiwan. Taiwan J. Ophthalmol. 2018, 8, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Gilhus, N.E.; Verschuuren, J.J. Myasthenia gravis: Subgroup classification and therapeutic strategies. Lancet Neurol. 2015, 14, 1023–1036. [Google Scholar] [CrossRef]
- Phillips, W.D.; Vincent, A. Pathogenesis of myasthenia gravis: Update on disease types, models, and mechanisms. F1000Research 2016, 5, F1000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farmakidis, C.; Pasnoor, M.; Dimachkie, M.M.; Barohn, R.J. Treatment of Myasthenia Gravis. Neurol. Clin. 2018, 36, 311–337. [Google Scholar] [CrossRef]
- Wolfe, G.I.; Kaminski, H.J.; Aban, I.B.; Minisman, G.; Kuo, H.C.; Marx, A.; Strobel, P.; Mazia, C.; Oger, J.; Cea, J.G.; et al. Randomized Trial of Thymectomy in Myasthenia Gravis. N. Engl. J. Med. 2016, 375, 511–522. [Google Scholar] [CrossRef] [PubMed]
- Narayanaswami, P.; Sanders, D.B.; Wolfe, G.; Benatar, M.; Cea, G.; Evoli, A.; Gilhus, N.E.; Illa, I.; Kuntz, N.L.; Massey, J.; et al. International Consensus Guidance for Management of Myasthenia Gravis: 2020 Update. Neurology 2021, 96, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Wakata, N.; Iguchi, H.; Sugimoto, H.; Nomoto, N.; Kurihara, T. Relapse of ocular symptoms after remission of myasthenia gravis—A comparison of relapsed and complete remission cases. Clin. Neurol. Neurosurg. 2003, 105, 75–77. [Google Scholar] [CrossRef]
- Sabanciogullari, V.; Cevik, S.; Karacan, K.; Bolayir, E.; Cimen, M. Dermatoglyphic features in patients with multiple sclerosis. Neurosciences 2014, 19, 281–285. [Google Scholar]
- Jiang, F.; Jiang, Y.; Zhi, H.; Dong, Y.; Li, H.; Ma, S.; Wang, Y.; Dong, Q.; Shen, H.; Wang, Y. Artificial intelligence in healthcare: Past, present and future. Stroke Vasc. Neurol. 2017, 2, 230–243. [Google Scholar] [CrossRef]
- Bruffaerts, R. Machine learning in neurology: What neurologists can learn from machines and vice versa. J. Neurol. 2018, 265, 2745–2748. [Google Scholar] [CrossRef] [PubMed]
- Patel, U.K.; Anwar, A.; Saleem, S.; Malik, P.; Rasul, B.; Patel, K.; Yao, R.; Seshadri, A.; Yousufuddin, M.; Arumaithurai, K. Artificial intelligence as an emerging technology in the current care of neurological disorders. J. Neurol. 2021, 268, 1623–1642. [Google Scholar] [CrossRef] [PubMed]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Friedman, J.H. Stochastic gradient boosting. Comput. Stat. Data Anal. 2002, 38, 367–378. [Google Scholar] [CrossRef]
- Bishop, C. Pattern Recognition and Machine Learning; Springer: Heidelberg, Germany, 2006. [Google Scholar]
- Tibshirani, R. Regression shrinkage and selection via the Lasso. J. R Stat. Soc. Ser. B Methodol. 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Wainwright, M. Statistical Learning with Sparsity: The Lasso and Generalizations; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Kwon, S.; Lee, S.; Na, O. Tuning parameter selection for the adaptive Lasso in the autoregressive model. J. Korean Stat. Soc. 2017, 46, 285–297. [Google Scholar] [CrossRef]
- Hoerl, A.E.; Kennard, R.W. Ridge regression: Biased estimation for non-orthogonal problems. Technometrics 1970, 12, 55–67. [Google Scholar] [CrossRef]
- Ohsowski, B.M.; Dunfield, K.E.; Klironomos, J.N.; Hart, M.M. Improving plant biomass estimation in the field using partial least squares regression and ridge regression. Botany 2016, 94, 501–508. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Torlay, L.; Perrone-Bertolotti, M.; Thomas, E.; Baciu, M. Machine learning–XGBoost analysis of language networks to classify patients with epilepsy. Brain Inform. 2017, 4, 159–169. [Google Scholar] [CrossRef]
- Natekin, A.; Knoll, A. Gradient boosting machines, a tutorial. Front. Neurorobot. 2013, 7, 21. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, R.; Frank, E. Accelerating the XGBoost algorithm using GPU computing. PeerJ Comput. Sci. 2017, 3, e127. [Google Scholar] [CrossRef]
- Dorogush, A.V.; Ershov, V.; Gulin, A. CatBoost: Gradient boosting with categorical features support. arXiv 2018, arXiv:1810.11363. [Google Scholar]
- Prokhorenkova, L.; Gusev, G.; Vorobev, A.; Dorogush, A.V.; Gulin, A. Catboost: Unbiased boosting with categorical features. In Proceedings of the 32nd International Conference on Neural Information Processing Systems, Montréal, QC, Canada, 3–8 December 2018; Curran Associates Inc.: Red Hook, NY, USA, 2018; pp. 6639–6649. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019; Available online: http://www.R-project.org (accessed on 1 June 2021).
- RStudio Team. RStudio: Integrated Development Environment for R; RStudio Team: Boston, MA, USA, 2018; Available online: https://www.rstudio.com/products/rstudio/ (accessed on 1 June 2021).
- Greenwell, B.; Boehmke, B.; Cunningham, J. Gbm: Generalized Boosted Regression Models. R Package Version, 2.1.8. 2020. Available online: https://CRAN.R-project.org/package=gbm (accessed on 1 June 2021).
- Chen, T.; He, T.; Benesty, M.; Khotilovich, V.; Tang, Y.; Cho, H.; Chen, K.; Mitchell, R.; Cano, I.; Zhou, T.; et al. Xgboost: Extreme Gradient Boosting. R Package Version 1.3.2.1. 2021. Available online: https://CRAN.R-project.org/package=xgboost (accessed on 1 June 2021).
- Prokhorenkova, L.; Gusev, G.; Vorobev, A.; Dorogush, A.V.; Gulin, A. CatBoost: Unbiased Boosting with Categorical Features. R Package Version, 0.25.1. 2021. Available online: https://github.com/catboost/catboost/ (accessed on 1 June 2021).
- Kuhn, M. Caret: Classification and Regression Training. R Package Version, 6.0-88. 2021. Available online: https://CRAN.R-project.org/package=caret (accessed on 1 June 2021).
- Friedman, J.; Hastie, T.; Tibshirani, R.; Narasimhan, B.; Tay, K.; Simon, N. Glmnet: Lasso and Elastic-Net Regularized Generalized Linear Models. R Package Version, 4.1-1. 2021. Available online: https://CRAN.R-project.org/package=glmnet (accessed on 1 June 2021).
- Cui, M.; Gang, X.; Gao, F.; Wang, G.; Xiao, X.; Li, Z.; Li, X.; Ning, G.; Wang, G. Risk assessment of sarcopenia in patients with type 2 diabetes mellitus using data mining methods. Front. Endocrinol. 2020, 11, 123. [Google Scholar] [CrossRef] [PubMed]
- Hajian-Tilaki, K. Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation. Casp. J. Intern. Med. 2013, 4, 627. [Google Scholar]
- Alshekhlee, A.; Miles, J.D.; Katirji, B.; Preston, D.C.; Kaminski, H.J. Incidence and Mortality Rates of Myasthenia Gravis and Myasthenic Crisis in US Hospitals. Neurology 2009, 72, 1548–1554. [Google Scholar] [CrossRef]
- Coutinho, A.E.; Chapman, K.E. The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Mol. Cell. Endocrinol. 2011, 335, 2–13. [Google Scholar] [CrossRef] [PubMed]
- Arsura, E.; Brunner, N.G.; Namba, T.; Grob, D. High-dose intravenous methylprednisolone in myasthenia gravis. Arch. Neurol. 1985, 42, 1149–1153. [Google Scholar] [CrossRef]
- Utsugisawa, K.; Nagane, Y.; Akaishi, T.; Suzuki, Y.; Imai, T.; Tsuda, E.; Minami, N.; Uzawa, A.; Kawaguchi, N.; Masuda, M.; et al. Early fast-acting treatment strategy against generalized myasthenia gravis. Muscle Nerve 2017, 55, 794–801. [Google Scholar] [CrossRef]
- Murai, H.; Utsugisawa, K.; Nagane, Y.; Suzuki, S.; Imai, T.; Motomura, M. Rationale for the clinical guidelines for myasthenia gravis in Japan. Ann. N. Y. Acad. Sci. 2018, 1413, 35–40. [Google Scholar] [CrossRef]
- Kanai, T.; Uzawa, A.; Kawaguchi, N.; Oda, F.; Ozawa, Y.; Himuro, K.; Kuwabara, S. Predictive score for oral corticosteroid-induced initial worsening of seropositive generalized myasthenia gravis. J. Neurol. Sci. 2019, 396, 8–11. [Google Scholar] [CrossRef]
- Torda, C.; Wolff, H.G. Effects of adrenocorticotrophic hormone on neuro-muscular function in patients with myasthenia gravis. J. Clin. Investig. 1949, 28, 1228–1235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jenkins, R.B. Treatment of myasthenia gravis with prednisone. Lancet 1972, 299, 765–767. [Google Scholar] [CrossRef]
- Seybold, M.E.; Drachman, D.B. Gradually increasing doses of prednisone in myasthenia gravis. Reducing the hazards of treatment. N. Engl. J. Med. 1974, 290, 81–84. [Google Scholar] [CrossRef]
- Gajdos, P.; Chevret, S.; Clair, B.; Tranchant, C.; Chastang, C. Clinical trial of plasma exchange and high-dose intravenous immunoglobulin in myasthenia gravis. Myasthenia Gravis Clinical Study Group. Ann. Neurol. 1997, 41, 789–796. [Google Scholar] [CrossRef] [PubMed]
- Barth, D.; Nabavi Nouri, M.; Ng, E.; Nwe, P.; Bril, V. Comparison of IVIg and PLEX in patients with myasthenia gravis. Neurology 2011, 76, 2017–2023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samuelsson, A.; Towers, T.L.; Ravetch, J.V. Anti-inflammatory activity of IVIG mediated through the inhibitory Fc receptor. Science 2001, 291, 484–486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanders, D.B.; Wolfe, G.I.; Benatar, M.; Evoli, A.; Gilhus, N.E.; Illa, I.; Kuntz, N.; Massey, J.M.; Melms, A.; Murai, H.; et al. International consensus guidance for management of myasthenia gravis: Executive summary. Neurology 2016, 87, 419–425. [Google Scholar] [CrossRef] [Green Version]
- Farrugia, M.E.; Goodfellow, J.A. A practical approach to managing patients with Myasthenia Gravis—Opinions and a review of the literature. Front. Neurol. 2020, 11, 604. [Google Scholar] [CrossRef]
- Tiamkao, S.; Pranboon, S.; Thepsuthammarat, K.; Sawanyawisuth, K. Prevalence of factors associated with poor outcomes of hospitalized myasthenia gravis patients in Thailand. Neurosciences 2014, 19, 286–290. [Google Scholar]
- Jaretzki, A.; Barohn, R.J.; Ernstoff, R.M.; Kaminski, H.J.; Keesey, J.C.; Penn, A.S.; Sanders, D.B. Myasthenia gravis: Recommendations for clinical research standards. Task Force of the Medical Scientific Advisory Board of the Myasthenia Gravis Foundation of America. Neurology 2000, 55, 16–23. [Google Scholar] [CrossRef]
- Zhang, Z.; Cui, Y.; Jia, R.; Xue, L.; Liang, H. Myasthenia gravis in patients with thymoma affects survival rate following extended thymectomy. Oncol. Lett. 2016, 11, 4177–4182. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Wang, Y.; Peng, T.; Zhang, K.; Lin, C.; Han, R.; Lu, C.; He, Y. Metformin restores crizotinib sensitivity in crizotinib-resistant human lung cancer cells through inhibition of IGF1-R signaling pathway. Oncotarget 2016, 7, 34442–34452. [Google Scholar] [CrossRef]
- Yu, L.; Zhang, X.J.; Ma, S.; Jing, Y.; Li, F.; Krasna, M.J. Different characteristics of thymomas with and without myasthenia gravis. Ann. Surg. Oncol. 2012, 19, 94–98. [Google Scholar] [CrossRef] [PubMed]
- Sakai, W.; Matsui, N.; Ishida, M.; Furukawa, T.; Miyazaki, Y.; Fujita, K.; Miyamoto, R.; Yamamoto, N.; Sako, W.; Sato, K.; et al. Late-onset myasthenia gravis is predisposed to become generalized in the elderly. eNeurologicalSci 2016, 2, 17–20. [Google Scholar] [CrossRef] [PubMed]
- Esteva, A.; Robicquet, A.; Ramsundar, B.; Kuleshov, V.; DePristo, M.; Chou, K.; Cui, C.; Corrado, G.; Thrun, S.; Dean, J. A guide to deep learning in healthcare. Nat. Med. 2019, 25, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Rajkomar, A.; Dean, J.; Kohane, I. Machine Learning in Medicine. N. Engl. J. Med. 2019, 380, 1347–1358. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, S.; Nishimoto, T.; Kohno, M.; Utsugisawa, K.; Nagane, Y.; Kuwana, M.; Suzuki, N. Clinical and immunological predictors of prognosis for Japanese patients with thymoma-associated myasthenia gravis. J. Neuroimmunol. 2013, 258, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, Y.; He, M. Clinical predictors for the prognosis of myasthenia gravis. BMC Neurol. 2017, 17, 77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristics | Metrics |
---|---|
Basic Information: | Mean ± SD |
V1 Age at admission (year-old) | 49.43 ± 17.14 |
V2 Disease duration (months) | 67.56 ± 84.14 |
V3 Age at onset (year-old) | 42.47 ± 18.18 |
V4 Gender: | n (%) |
Male | 89 (38.36%) |
Female | 143 (61.64%) |
V5 The reason for hospitalization: | n (%) |
1: Thymectomy | 60 (25.86%) |
2: Acute exacerbation of MG | 125 (53.88%) |
3: Pneumonia | 39 (16.81%) |
4: Influenza | 5 (2.16%) |
5: Hospitalization for Rituximab | 3 (1.29%) |
V6 MGFA clinical classification: | n (%) |
1: Class I: ocular muscle weakness | 24 (10.34%) |
2: Class IIA: Mild limbs, axial predominant weakness | 27 (11.64%) |
3: Class IIB: Mild bulbar and respiratory predominant weakness | 64 (27.59%) |
4: Class IIIA: Moderate limbs, axial predominant weakness | 16 (6.90%) |
5: Class IIIB: Moderate bulbar and respiratory predominant weakness | 58 (25.00%) |
6: Class IVA: Severe limbs, axial predominant weakness | NA |
7: Class IVB: Severe bulbar and respiratory predominant weakness | 27 (11.64%) |
8: Class V: Intubation | 16 (6.90%) |
Thymus: | n (%) |
V7 Thymoma: | |
0: No | 122 (52.59%) |
1: Yes | 110 (47.41%) |
V8 Hyperplasia: | |
0: No | 165 (71.12%) |
1: Yes | 67 (28.88%) |
V9 Thymectomy: | |
0: No | 84 (36.21%) |
1: Underwent thymectomy during this admission | 93 (40.09%) |
2: Had undergone thymectomy before | 55 (23.71%) |
Autoantibody: | n (%) |
V10 Anti-AChR Ab: | |
0: No | 28 (12.07%) |
1: Yes | 204 (87.93%) |
V11 Anti-MuSK Ab: | |
0: No | 221 (95.26%) |
1: Yes | 11 (4.74%) |
V12 dSN: | |
0: No | 214 (92.24%) |
1: Yes | 18 (7.76%) |
Treatment status: | Mean ± SD |
V13 PSL Maximum daily dose (mg) | 14.35 ± 15.63 |
V14 OI: | n (%) |
0: No | 91 (39.22%) |
1: Yes | 141 (60.78%) |
V15 AZA: | n (%) |
0: No | 156 (67.24%) |
1: Yes | 76 (32.76%) |
V16 MMF: | n (%) |
0: No | 223 (96.12%) |
1: Yes | 9 (3.88%) |
V17 OT: | n (%) |
0: No | 226 (97.41%) |
1: Yes | 6 (2.59%) |
V18 IVIG: | n (%) |
0: No | 217 (93.53%) |
1: Yes | 15 (6.47%) |
V19 PP: | n (%) |
0: No | 70 (30.17%) |
1: 5 sessions | 131 (56.47%) |
2: >5 sessions | 31 (13.36%) |
V20 IC: | n (%) |
0: No | 189 (81.47%) |
1: Yes | 43 (18.53%) |
V21 RTX: | n (%) |
0: No | 226 (97.41%) |
1: Yes | 6 (2.59%) |
Y Hospital stay timing: | n (%) |
0: Less than 14 days hospital stay | 176 (75.86%) |
1: More than 14 days hospital stay | 56 (24.14%) |
Methods | Accuracy | Sensitivity | Specificity | AUC |
---|---|---|---|---|
SGB | 0.6286 | 0.5741 | 0.8125 | 0.6713 |
Lasso | 0.7286 | 0.7037 | 0.8125 | 0.6910 |
Ridge | 0.6857 | 0.6482 | 0.8125 | 0.6921 |
XGboost | 0.6000 | 0.5370 | 0.8125 | 0.6777 |
Catboost | 0.6714 | 0.6667 | 0.6875 | 0.6817 |
Factors | SGB | Lasso | Ridge | XGboost | Catboost | Average Rank |
---|---|---|---|---|---|---|
V1: Age at admission | 3 | 4 | 4 | 4 | 4 | 3.8 |
V2: Disease duration | 5 | 21 | 21 | 5 | 6 | 11.6 |
V3: Age at onset | 4 | 21 | 8 | 9 | 7 | 9.8 |
V4: Gender | 21 | 21 | 21 | 10 | 18 | 18.2 |
V5: The reason for hospitalization | 9 | 21 | 21 | 21 | 3 | 15 |
V6: MGFA clinical classification | 2 | 1 | 2 | 2 | 1 | 1.6 |
V7: Thymoma | 8 | 6 | 7 | 7 | 15 | 8.6 |
V8: Hyperplasia | 21 | 21 | 21 | 21 | 17 | 20.2 |
V9: Thymectomy | 7 | 21 | 21 | 8 | 9 | 13.2 |
V10: Anti-AChR Ab | 21 | 21 | 21 | 21 | 21 | 21 |
V11: Anti-MuSK Ab | 21 | 21 | 21 | 21 | 21 | 21 |
V12: dSN | 21 | 21 | 21 | 21 | 11 | 19 |
V13: PSL Maximum daily dose | 6 | 21 | 9 | 6 | 8 | 10 |
V14: OI | 21 | 21 | 21 | 21 | 21 | 21 |
V15: AZA | 10 | 21 | 21 | 21 | 16 | 17.8 |
V16: MMF | 21 | 5 | 5 | 21 | 10 | 12.4 |
V17: OT | 21 | 21 | 6 | 21 | 13 | 16.4 |
V18: IVIG | 21 | 2 | 1 | 3 | 5 | 6.4 |
V19: PP | 21 | 21 | 9 | 21 | 14 | 17.2 |
V20: IC | 1 | 3 | 3 | 1 | 2 | 2 |
V21: RTX | 21 | 21 | 21 | 21 | 12 | 19.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, C.-C.; Yeh, J.-H.; Chen, Y.-M.; Jhou, M.-J.; Lu, C.-J. Clinical Predictors of Prolonged Hospital Stay in Patients with Myasthenia Gravis: A Study Using Machine Learning Algorithms. J. Clin. Med. 2021, 10, 4393. https://doi.org/10.3390/jcm10194393
Chang C-C, Yeh J-H, Chen Y-M, Jhou M-J, Lu C-J. Clinical Predictors of Prolonged Hospital Stay in Patients with Myasthenia Gravis: A Study Using Machine Learning Algorithms. Journal of Clinical Medicine. 2021; 10(19):4393. https://doi.org/10.3390/jcm10194393
Chicago/Turabian StyleChang, Che-Cheng, Jiann-Horng Yeh, Yen-Ming Chen, Mao-Jhen Jhou, and Chi-Jie Lu. 2021. "Clinical Predictors of Prolonged Hospital Stay in Patients with Myasthenia Gravis: A Study Using Machine Learning Algorithms" Journal of Clinical Medicine 10, no. 19: 4393. https://doi.org/10.3390/jcm10194393
APA StyleChang, C. -C., Yeh, J. -H., Chen, Y. -M., Jhou, M. -J., & Lu, C. -J. (2021). Clinical Predictors of Prolonged Hospital Stay in Patients with Myasthenia Gravis: A Study Using Machine Learning Algorithms. Journal of Clinical Medicine, 10(19), 4393. https://doi.org/10.3390/jcm10194393