Heart Rate Variability and Its Associations with Organ Complications in Adults after Fontan Operation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Echocardiography
2.3. Laboratory Investigations
2.4. Cardiopulmonary Exercise Test
2.5. Chronotropic Incompetence
2.6. Ambulatory 24-h Holter Electrocardiogram
2.7. Heart Rate Variability
2.8. Statistical Analysis
3. Results
3.1. Patients’ Characteristics
3.2. Laboratory Tests Results
3.3. CPET Results
3.4. Heart Rate Variability
3.5. Relationship between HRV, CPET, and Chronotropic Incompetence Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baumagartner, H.; De Backer, J.; Babu-Narayan, S.V.; Budts, W.; Chessa, M.; Diller, G.; Lung, B.; Kluin, J.; Lang, I.M.; Meijboom, F.; et al. 2020 ESC Guidelines for the management of adult congenital heart disease. Eur. Heart J. 2021, 42, 563–645. [Google Scholar] [CrossRef]
- Davos, C.H.; Francis, D.P.; Leenarts, M.F.E.; Sing-Chien, Y.; Wei, L.; Davlouros, P.A.; Wensel, R.; Coats, A.J.S.; Piepoli, M.; Sreeram, N.; et al. Global impairment of cardiac autonomic nervous activity late after the Fontan operation. Circulation 2003, 108, II180–II185. [Google Scholar] [CrossRef] [Green Version]
- Kołcz, J.; Tomkiewicz-Pająk, L.; Wójcik, E.; Podolec, P.; Skalski, J. Prognostic significance of neurohumoral factors in early and late postoperative period after Fontan procedure. Interact. Cardiovasc. Thorac. Surg. 2011, 13, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Tomkiewicz-Pająk, L.; Hoffman, P.; Trojnarska, O.; Bednarek, J.; Płazak, W.; Pająk, J.W.; Olszowska, L.; Komar, M.; Podolec, P.S. Long-term follow-up in adult patients after Fontan operation. Kardiochir. Torakochirurgia Pol. 2013, 10, 357–363. [Google Scholar]
- Matusik, P.S.; Matusik, P.T.; Stein, P.K. Heart rate variability in patients with systemic lupus erythematosus: A systematic review and methodological considerations. Lupus 2018, 27, 1225–1239. [Google Scholar] [CrossRef] [PubMed]
- Kleiger, R.E.; Miller, J.P.; Bigger, J.T.; Moss, A.J. Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am. J. Cardiol. 1987, 59, 256. [Google Scholar] [CrossRef]
- Nolan, J.; Batin, P.D.; Andrews, R.; Lindsay, S.J.; Brooksby, P.; Mullen, M.; Baig, W.; Flapan, A.D.; Cowley, A.; Prescott, R.J.; et al. Prospective study of heart rate variability and mortality in heart failure. Circulation 1998, 98, 1510. [Google Scholar] [CrossRef] [Green Version]
- Bryniarski, L.; Kawwa, J.; Rajzer, M.; Stolarz, K.; Kawecka-Jaszcz, K. Zmienność rytmu zatokowego serca u pacjentów po zabiegach pomostowania aortalno-wieńcowego-wczesne i późne wyniki rehabilitacji kardiologicznej [Heart rate variability in patients after coronary artery bypass grafting—Early and long term effects of cardiac rehabilitation]. Przegl. Lek. 2002, 59, 699–702. (In Polish) [Google Scholar]
- McLeod, K.A.; Hillis, W.S.; Houston, A.B.; Wilson, N.; Trainer, A.; Neilson, J.; Doig, W.B. Reduced heart rate variability following repair of tetralogy of Fallot. Heart 1999, 81, 656–660. [Google Scholar] [CrossRef] [Green Version]
- Zandstra, T.; Kiès, P.; Maan, A.; Man, S.-C.; Bootsma, M.; Vliegen, H.; Egorova, A.; Mertens, B.; Holman, E.; Schalij, M.; et al. Association between reduced heart rate variability components and supraventricular tachyarrhythmias in patients with a systemic right ventricle. Auton. Neurosci. 2020, 227, 102696. [Google Scholar] [CrossRef]
- Heiberg, J.; Eckerström, F.; Rex, C.E.; Maagaard, M.; Mølgaard, H.; Redington, A.; Gatzoulis, M.; Hjortdal, V.E. Heart rate variability is impaired in adults after closure of ventricular septal defect in childhood: A novel finding associated with right bundle branch block. Int. J. Cardiol. 2019, 274, 88–92. [Google Scholar] [CrossRef]
- Moon, J.R.; Huh, J.; Song, J.; Kang, I.S.; Yang, J.H.; Jun, T.G.; Chang, S.A.; Park, S.W. Depression and heart rate variability in adults with cyanotic congenital heart disease. Circulation 2019, 140, A13169. [Google Scholar] [CrossRef]
- Dahlqvist, J.A.; Wiklund, U.; Karlsson, M.; Hanséus, K.; Strömvall-Larsson, E.; Nygren, A.; Eliasson, H.; Rydberg, A. Sinus node dysfunction in patients with Fontan circulation: Could heart rate variability be predictor for pacemarker implantation? Pediatr. Cardiol. 2019, 40, 685–693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buttera, G.; Bonnet, D.; Iserin, L.; Sidi, D.; Kachaner, J.; Villain, E. Total cavopulmonary and atriopulmonary connection are associated with reduced heart rate variability. Heart 1999, 82, 704–707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dahlaqvist, J.A.; Karlsson, M.; Wiklund, U.; Hörnsten, R.; Strömvall-Larsson, E.; Berggren, H.; Hanséus, K.; Johansson, S.; Rydberg, A. Heart rate variability in children with Fontan circulation: Lateral tunnel and extracardiac conduit. Pediatr. Cardiol. 2021, 33, 307–315. [Google Scholar] [CrossRef]
- Rydberg, A.; Karlsson, M.; Hornsten, R.; Wiklund, U. Can analysis of heart rate variability predict arrhythmia in children with Fontan circulation? Pediatr. Cardiol. 2008, 29, 50–55. [Google Scholar] [CrossRef]
- Rydberg, A.; Rask, P.; Hornstern, R.; Teien, D. Heart rate variability in children with Fontan circulation. Pediatr. Cardiol. 2004, 25, 365–369. [Google Scholar] [CrossRef]
- Bossers, S.S.M.; Duppen, N.; Kapusta, L.; Maan, A.; Duim, A.R.; Bogers Ad, J.J.C.; Hazekamp, M.G.; Iperen, G.; Helbing, W.A.; Blom, N.A. Comprehensive rhythm evaluation in a large contemporary Fontan population. Eur. J. Cardiothorac. Surg. 2015, 48, 833–840. [Google Scholar] [CrossRef] [Green Version]
- Tomkiewicz-Pajak, L.; Podolec, P.; Drabik, L.; Pajak, J.; Kolcz, J.; Plazak, W. Single ventricle function and exercise tolerance in adult patients after Fontan operation. Acta Cardiol. 2014, 69, 155–160. [Google Scholar] [CrossRef]
- Wilkoff, B.L.; Corey, J.; Blackburn, G. A mathematical model of cardiac chronotropic response to exercise. J. Electrophysiol. 1989, 3, 176–180. [Google Scholar] [CrossRef]
- Straburzyńska-Migaj, E. Spiroergometric exercise test. In Cardiology Handbook of the Polish Cardiac Society; Ponikowski, P., Hoffmen, P., Witkowski, A., Lipiec, P., Eds.; Via Medica: Gdańsk, Poland, 2019; pp. 87–94. (In Polish) [Google Scholar]
- Guazzi, M.; Adams, V.; Conraads, V.; Viviane, C.; Martin, H.; Mezzani, A.; Vanhees, L.; Arena, R.; Fletcher, G.F.; Forman, D.F.; et al. Clinical recommendations for cardiopulmonary exercise testing data assessment in specific patient populations. Circulation 2012, 126, 2261–2274. [Google Scholar] [CrossRef]
- Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American society of Pacing Electrophysiology. Circulation 1996, 93, 1043–1065. [CrossRef] [Green Version]
- Ohuchi, H.; Hasegawa, S.; Yasuda, K.; Yamada, O.; Ono, Y.; Echigo, S. Severely impaired cardiac autonomic nervous activity after the Fontan operation. Circulation 2001, 104, 1513–1518. [Google Scholar] [CrossRef] [Green Version]
- Hofbeck, M.; Koch, A.; Buheitel, G.; Gerling, S.; Rauch, R.; Weyand, M.; Singer, H. Spätpostoperative Herzrhythmusstörungen nach totaler cavopulmonaler Anastomose und ihre Beziehung zum Operationsalter der Patienten [Late postoperative cardiac arrhythmias after total cavopulmonary anastomosis and correlation with age of the patients at operation]. Z. Kardiol. 2000, 89, 788–794. (In German) [Google Scholar] [CrossRef]
- Malec, E.; Zając, A.; Pająk, J. The results of one-stage and two-stage Fontan operation in children with single ventricle. Kardiol. Pol. 1998, 48, 23–30. [Google Scholar]
- Moll, J.A.; Ostrowska, K.; Dobrowolski, J. Diagnostic and therapeutic procedures in single ventricle—Own experience. Przegląd. Ped. 2000, 30, 140–144. [Google Scholar]
- Abbott, T.E.F.; Minto, G.; Lee, A.M.; Pearse, R.M.; Ackland, G.L. POM-HR, POMO-O and OPTIMISE study groups. Elevated preoperative heart rate is associated with cardiopulmonary and autonomic impairment in high-risk surgical patients. Br. J. Anaesth. 2017, 119, 87–94. [Google Scholar] [CrossRef] [Green Version]
- Mantegazza, V.; Apostolo, A.; Hager, A. Cardiopulmonary exercise testing in adult congenital heart disease. Ann. Am. Thorac. Soc. 2017, 14, S93–S101. [Google Scholar] [CrossRef]
- Takken, T.; Blank, A.C.; Hulzebos, E.H.; Van Brussel, M.; Groen, W.G.; Helders, P.J. Cardiopulmonary exercise testing in congenital heart diseases: (Contra)indication and interpretation. Neth. Heart J. 2009, 10, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Myers, J.; Arena, R.; Dewey, F.; Bensimhon, D.; Abella, J.; Hsu, L.; Chase, P.; Guazzi, M.; Peberdy, M.A. A cardiopulmonary exercise testing score for predicting outcomes in patients with heart failure. Am. Heart J. 2008, 156, 1177–1183. [Google Scholar] [CrossRef] [PubMed]
- Kato, Y.; Suzuki, S.; Uejima, T.; Semba, H.; Nagayama, O.; Hayama, E.; Yamashita, T. The relationship between resting heart rate and peak VO2: A comparison of atrial fibrillation and sinus rhythm. Eur. J. Prev. Cardiol. 2016, 23, 1429–1436. [Google Scholar] [CrossRef] [PubMed]
- Silvilairat, S.; Wongsathikun, J.; Sittiwangkul, R.; Pongprot, Y.; Chattipakorn, N. Heart rate variability and exercise capacity of patients with repaired tetralogy of Fallot. Pediatr. Cardiol. 2011, 32, 1158–1163. [Google Scholar] [CrossRef] [PubMed]
- Tomkiewicz-Pajak, L.; Podolec, P.; Kostkiewicz, M.; Tracz, W. Lung function and exercise tolerance in patients with heart failure. Acta Cardiol. 2002, 57, 80–81. [Google Scholar] [PubMed]
- Ponikowski, P.; Chua, T.P.; Piepoli, M.; Banasiak, W.; Anker, S.D.; Szelemej, R.; Molenda, W.; Wrabec, K.; Capucci, A.; Coats, A.J. Ventilatory response to exercise correlates with impaired heart rate variability in patients with chronic congestive heart failure. Am. J. Cardiol. 1998, 82, 338–344. [Google Scholar] [CrossRef]
- Okólska, M.; Skubera, M.; Matusik, P.; Płazak, W.; Pająk, J.; Róg, B.; Podolec, P.; Tomkiewicz-Pająk, L. Chronotropic incompetence causes multiple organ complications in adults after the Fontan procedure. Kardiol. Pol. 2021, 79, 410–417. [Google Scholar] [CrossRef]
- Smaś-Suska, M.; Skubera, M.; Wilkosz, T.; Wryński, T.; Kołcz, J.; Olszowska, M.; Podolec, P.; Tomkiewicz-Pająk, L. Noninvasive assessment of liver status in adult patients after Fontan procedure. Pol. Arch. Intern. Med. 2019, 129, 181–188. [Google Scholar] [PubMed]
- Kaulitz, R.; Haber, P.; Sturm, E.; Schäfer, J.; Hofbeck, M. Serial evaluation of hepatic function profile after Fontan operation. Herz 2014, 39, 98–104. [Google Scholar] [CrossRef]
- Ates, F.; Topal, E.; Kosar, F.; Karincaoglu, M.; Yildirim, B.; Aksoy, Y.; Aladag, M.; Harputluoglu, M.M.; Demirel, U.; Alan, H.; et al. The relationship of heart rate variability with severity and prognosis of cirrhosis. Dig. Dis. Sci. 2006, 51, 1614–1618. [Google Scholar] [CrossRef] [PubMed]
- Mani, A.R.; Montagnese, S.; Jackson, C.D.; Jenkins, C.W.; Head, I.M.; Stephens, R.C.; Moore, K.P.; Morgan, M.Y. Decreased heart rate variability in patients with cirrhosis relates to the presence and degree of hepatic encephalopathy. Am. J. Physiol. Gastrointest. Liver Physiol. 2009, 296, G330–G338. [Google Scholar] [CrossRef]
- Bhogal, A.S.; De Rui, M.; Pavanello, D.; El-Azizi, I.; Rowshan, S.; Amodio, P.; Montagnese, S.; Mani, A.R. Which heart rate variability index is an independent predictor of mortality in cirrhosis? Dig. Liver Dis. 2019, 51, 695–702. [Google Scholar] [CrossRef] [Green Version]
- Marinković, M.; Mujović, N.; Vučićević, V.; Steffel, J.; Potpara, T.S. A square root pattern of changes in heart rate variability during the first year after circumferential pulmonary vein isolation for paroxysmal atrial fibrillation and their relation with long-term arrhythmia recurrence. Kardiol. Pol. 2020, 78, 209–218. [Google Scholar] [CrossRef] [Green Version]
Variables | Fontan Patients (n = 30) | Controls (n = 30) | p-Value |
---|---|---|---|
Age, years | 24 (5.4) | 25.6 (3.8) | 0.23 |
Female sex, n (%) | 13 (43) | 12 (40) | 0.95 |
Height, cm | 170 (8.1) | 173 (6.9) | 0.19 |
Weight, kg | 65.08 (9.7) | 69.0 (9.3) | 0.85 |
Body mass index, kg/m2 | 22.5 (2.7) | 22.7 (2.2) | 0.69 |
Variables | Patients (n = 30) |
---|---|
Anatomic diagnosis, n (%) | |
Tricuspid atresia | 5 (17) |
Pulmonary stenosis/TGA | 4 (13) |
Right ventricular hypoplasia | 11 (36) |
Hypoplastic left heart syndrome | 5 (17) |
Double-outlet right ventricle with left ventricular hypoplasia | 3 (10) |
Double-inflow left ventricle | 1 (4) |
Common atrioventricular canal | 1 (4) |
Systemic ventricle type, n (%) | |
Left ventricle | 24 (80) |
Right ventricle | 6 (20) |
NYHA functional class, n (%) | |
I | 5 (17) |
II | 21 (71) |
III | 4 (12) |
IV | 0 (0) |
Types of Fontan operation, n (%) | |
Total cavopulmonary connection, lateral tunnel | 29 (96) |
Atriopulmonary connection | 1 (4) |
Variables | Fontan Group (n = 30) | Controls (n = 30) | p-Value |
---|---|---|---|
NT-proBNP, pg/mL | 148.0 (96.0–470.0) | 24.5 (6.0–35.0) | <0.001 |
RBC, 109/μL | 5.5 (0.6) | 4.9 (0.5) | <0.001 |
Hemoglobin, g/dL | 18.8 (1.8) | 14.7 (1.3) | 0.011 |
Hematocrit, % | 47.6 (4.5) | 43.0 (3.3) | <0.001 |
RDW, % | 13.2 (12.9–14.4) | 12.4 (12.0–12.6) | <0.001 |
Platelet count, 103/μL | 164.4 (70.8) | 228.2 (38.1) | <0.001 |
PDW, fL | 16.0 (3.2) | 12.2 (2.3) | <0.001 |
MPV, fL | 12.0 (1.2) | 10.4 (1.0) | <0.001 |
Cystatin C, mg/L | 0.9 (0.2) | 0.8 (0.1) | 0.009 |
Creatinine, μmol/L | 72.8 (12.9) | 77.4 (14.2) | 0.19 |
eGFR, mL/min/1.73 m2 | 116.5 (13.6) | 112.0 (12.9) | 0.26 |
AST, IU/L | 24.0 (20.0–28.0) | 19.5 (17.0–22.0) | <0.001 |
ALT, IU/L | 24.0 (19.0–27.0) | 20.0 (17.0–23.0) | 0.04 |
GGTP, U/L | 61.5 (44.0–117.0) | 15.5 (14.0–18.0) | <0.001 |
Bilirubin, μmol/L | 18.3 (10.7–34.0) | 12.0 (7.7–17.0) | 0.002 |
α-Fetoprotein, ng/mL | 2.5 (1.9–3.6) | 2.3 (1.9–3.4) | 0.657 |
ALP, U/L | 80.5 (64.0–88.0) | 67.0 (55.0–89.0) | 0.11 |
Total protein, g/dL | 75.1 (70.2–78.8) | 75.0 (73.0–78.6) | 0.43 |
Prothrombin time, s | 13.6 (12.6–15.2) | 11.9 (11.4–12.0) | <0.001 |
INR | 1.2 (1.2–1.65) | 1.0 (0.9–1.1) | <0.001 |
AST/ALT ratio | 1.1 (0.4) | 1.0 (0.3) | 0.21 |
Variables | Fontan Group (n = 30) | Controls (n = 30) | p-Value |
---|---|---|---|
Exercise time, min | 13.5 (3.4) | 16.65 (2.7) | <0.001 |
Sat. O2 rest, % | 92.0 (89.0–93.0) | 97.0 (96.0–98.0) | <0.001 |
Sat. O2 exercise, % | 87.0 (84.0–89.0) | 97.0 (96.0–97.0) | <0.001 |
Peak VO2 per kg, mL/kg/min | 20.6 (18.2–23.2) | 50.9 (46.5–54.1) | <0.001 |
Peak VO2, %n | 55.0 (48.0–63.0) | 97.0 (95.0–98.0) | <0.001 |
VE | 46.0 (35.0–63.0) | 123 (97–138) | <0.001 |
VE/VCO2, L/L | 33.3 (3.9) | 26.5 (2.9) | <0.001 |
RER peak | 1.0 (0.08) | 1.1 (0.9) | 0.01 |
Chronotropic index | 0.55 (0.47–0.62) | 0.93 (0.88–0.99) | <0.001 |
HRR | 32.0 (24.0–60.0) | 8.0 (1.0–14.0) | <0.001 |
Variables | Fontan Patients (n = 30) | Controls (n = 30) | p-Value |
---|---|---|---|
Heart rate, bpm | 69.1 (10.4) | 80.5 (6.5) | <0.001 |
Mean NN, ms | 922.0 (157.9) | 771.57 (59.4) | <0.001 |
SDNN, ms | 121.8 (29.6) | 152.74 (23.94) | <0.001 |
SDANN, ms | 111.9 (31.6) | 133.63 (25.2) | <0.001 |
rMSSD, ms | 16.5 (10.9–33.5) | 32.65 (27.4–43.7) | <0.001 |
pNN50, ms | 6.75 (2.7–13.0) | 11.8 (7.2–13.2) | 0.018 |
HRV triangular index, ms | 34.5 (11.3) | 45.7 (7.8) | <0.001 |
Very low frequency (ms2) | 301.6 (13.1–491.2) | 491.8 (256.2–71.2) | 0.030 |
Low frequency (ms2) | 332.8 (93.4–551.2) | 712.3 (538.3–1129.1) | <0.001 |
High frequency (ms2) | 140.1 (46.1–303.2) | 289.0 (156.7–370) | 0.019 |
Total power (ms2) | 861.1 (1.0–1738.0) | 1618.7 (957.4–2031) | 0.003 |
Low frequency/high frequency ratio | 3.5 (2.5) | 4.2 (1.5) | 0.190 |
Share of the Autonomous Components in the Modulation of HRV Parameters | |||||||
---|---|---|---|---|---|---|---|
Overall HRV or Sympathetic and Parasympathetic Nervous System Activities | Parasympathetic Nervous System Activity | ||||||
HRV Parameters | SDNN | HRV Index | Low Frequency | Total Power | rMSSD | pNN50 | High Frequency |
Group characteristic | |||||||
Age at the time of Fontan operation | R = −0.379, p = 0.039 | R = −0.250, p = 0.183 | R = −0.074, p = 0.697 | R = −0.153, p = 0.421 | R = 0.270, p = 0.149 | R = −0.422, p = 0.020 | R = −0.047, p = 0.805 |
Age during the study | R = −0.426, p = 0.019 | R = −0.217, p = 0.25 | R = −0.31, p = 0.094 | R = −0.432, p = 0.017 | R = −0.061, p = 0.749 | R = −0.481, p = 0.007 | R = −0.205, p = 0.276 |
Echocardiography | |||||||
Ejection fraction of the systemic ventricle | R = 0.584, p = 0.001 | R = 0.424, p = 0.02 | R = 0.347, p = 0.06 | R = 0.453, p = 0.012 | R = 0.032, p = 0.104 | R = 0.638, p = 0.001 | R = 0.281, p = 0.132 |
Chronotropic parameters | |||||||
HRR | R = −0.137, p = 0.471 | R = −0.411, p = 0.023 | R = −0.221, p = 0.240 | R = −0.264, p = 0.159 | R = −0.323, p = 0.082 | R = −0.262, p = 0.162 | R = −0.193, p = 0.307 |
Chronotropic index | R = 0.220, p = 0.243 | R = 0.330, p = 0.075 | R = 0.332, p = 0.073 | R = 0.333, p = 0.072 | R = 0.291, p = 0.118 | R = 0.419, p = 0.021 | R = 0.164, p = 0.386 |
CPET parameters | |||||||
Exercise time | R = 0.318, p = 0.086 | R = 0.709, p < 0.001 | R = 0.544, p = 0.002 | R = 0.45, p = 0.013 | R = −0.099, p = 0.601 | R = 0.440, p = 0.015 | R = 0.38, p = 0.038 |
Peak heart rate | R = 0.262, p = 0.163 | R = 0.485, p = 0.007 | R = 0.384, p = 0.036 | R = 0.375, p = 0.041 | R = 0.377, p = 0.040 | R = 0.394, p = 0.031 | R = 0.277, p = 0.138 |
Peak VO2 per kg | R = 0.404, p = 0.027 | R = 0.607, p < 0.001 | R = 0.394, p = 0.031 | R = 0.360, p = 0.051 | R = 0.142, p = 0.453 | R = 0.524, p = 0.003 | R = 0.290, p = 0.119 |
Peak VO2, %N | R = 0.137, p = 0.469 | R = 0.541, p = 0.002 | R = 0.233, p = 0.216 | R = 0.185, p = 0.328 | R = −0.016, p = 0.933 | R = 0.222, p = 0.238 | R = 0.077, p = 0.687 |
VE | R = 0.434, p = 0.017 | R = 0.369, p = 0.045 | R = 0.274, p = 0.143 | R = 0.249, p = 0.184 | R = 0.076, p = 0.690 | R = 0.298, p = 0.110 | R = 0.377, p = 0.04 |
VE/VCO2 | R = −0.012, p = 0.951 | R = −0.424, p = 0.019 | R = −0.240, p = 0.202 | R = −0.156, p = 0.411 | R = 0.119, p = 0.530 | R = −0.305, p = 0.102 | R = −0.197, p = 0.296 |
Laboratory tests | |||||||
GGTP | R = −0.322, p = 0.083 | R = −0.245, p = 0.192 | R = −0.385, p = 0.036 | R = −0.346, p = 0.061 | R = −0.154, p = 0.415 | R = −0.368, p = 0.046 | R = −0.309, p = 0.096 |
Univariable Analysis | Multivariable Analysis | |||||||
---|---|---|---|---|---|---|---|---|
b | 95% CI | p-Value | R2 | b | 95% CI | p-Value | R2 | |
Sat. O2 rest | 0.026 | (0.004–0.047) | 0.02 | 0.18 | 0.021 | (0.006–0.035) | 0.006 | |
pNN50 | 0.016 | (0.003–0.029) | 0.018 | 0.19 | 0.011 | (0.003–0.02) | 0.013 | 0.7 |
Peak heart rate | 0.005 | (0.003–0.007) | <0.001 | 0.54 | 0.004 | (0.002–0.006) | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okólska, M.; Łach, J.; Matusik, P.T.; Pająk, J.; Mroczek, T.; Podolec, P.; Tomkiewicz-Pająk, L. Heart Rate Variability and Its Associations with Organ Complications in Adults after Fontan Operation. J. Clin. Med. 2021, 10, 4492. https://doi.org/10.3390/jcm10194492
Okólska M, Łach J, Matusik PT, Pająk J, Mroczek T, Podolec P, Tomkiewicz-Pająk L. Heart Rate Variability and Its Associations with Organ Complications in Adults after Fontan Operation. Journal of Clinical Medicine. 2021; 10(19):4492. https://doi.org/10.3390/jcm10194492
Chicago/Turabian StyleOkólska, Magdalena, Jacek Łach, Paweł T. Matusik, Jacek Pająk, Tomasz Mroczek, Piotr Podolec, and Lidia Tomkiewicz-Pająk. 2021. "Heart Rate Variability and Its Associations with Organ Complications in Adults after Fontan Operation" Journal of Clinical Medicine 10, no. 19: 4492. https://doi.org/10.3390/jcm10194492