Longitudinal Study to Assess the Quantitative Use of Fundus Autofluorescence for Monitoring Disease Progression in Choroideremia
Abstract
:1. Introduction
2. Experimental Section
2.1. Subjects
2.2. Clinical Evaluation
2.3. Fundus Autofluorescence (FAF) Imaging
2.4. Statistical Analysis
3. Results
3.1. Clinical Findings
3.2. FAF Findings
3.3. Intra- and Inter-Observer Measurement Repeatability
3.4. Genotype-FAF Phenotype Correlation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sergeev, Y.V.; Smaoui, N.; Sui, R.; Stiles, D.; Gordiyenko, N.; Strunnikova, N.; Macdonald, I.M. The functional effect of pathogenic mutations in Rab escort protein 1. Mutat. Res. 2009, 665, 44–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seabra, M.C.; Mules, E.H.; Hume, A.N. Rab GTPases, intracellular traffic and disease. Trends Mol. Med. 2002, 8, 23–30. [Google Scholar] [CrossRef]
- Strunnikova, N.V.; Barb, J.; Sergeev, Y.V.; Thiagarajasubramanian, A.; Silvin, C.; Munson, P.J.; Macdonald, I.M. Loss-of-function mutations in Rab escort protein 1 (REP-1) affect intracellular transport in fibroblasts and monocytes of choroideremia patients. PLoS ONE 2009, 4, e8402. [Google Scholar] [CrossRef]
- Moosajee, M.; Ramsden, S.C.; Black, G.C.; Seabra, M.C.; Webster, A.R. Clinical utility gene card for: Choroideremia. Eur. J. Hum. Genet. 2014, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aylward, J.W.; Xue, K.; Patricio, M.I.; Jolly, J.K.; Wood, J.C.; Brett, J.; Jasani, K.M.; MacLaren, R.E. Retinal Degeneration in Choroideremia follows an Exponential Decay Function. Ophthalmology 2018, 125, 1122–1124. [Google Scholar] [CrossRef] [Green Version]
- Esposito, G.; De Falco, F.; Tinto, N.; Testa, F.; Vitagliano, L.; Tandurella, I.C.; Iannone, L.; Rossi, S.; Rinaldi, E.; Simonelli, F.; et al. Comprehensive mutation analysis (20 families) of the choroideremia gene reveals a missense variant that prevents the binding of REP1 with Rab geranylgeranyl transferase. Hum. Mutat. 2011, 32, 1460–1469. [Google Scholar] [CrossRef]
- Radziwon, A.; Arno, G.; Wheaton, D.K.; McDonagh, E.M.; Baple, E.L.; Webb-Jones, K.; Birch, D.G.; Webster, A.R.; MacDonald, I.M. Single-base substitutions in the CHM promoter as a cause of choroideremia. Hum. Mutat. 2017, 38, 704–715. [Google Scholar] [CrossRef]
- Ramsden, S.C.; O’Grady, A.; Fletcher, T.; O’Sullivan, J.; Hart-Holden, N.; Barton, S.J.; Hall, G.; Moore, A.T.; Webster, A.R.; Black, G.C. A clinical molecular genetic service for United Kingdom families with choroideraemia. Eur. J. Med. Genet. 2013, 56, 432–438. [Google Scholar] [CrossRef]
- Simunovic, M.P.; Jolly, J.K.; Xue, K.; Edwards, T.L.; Groppe, M.; Downes, S.M.; MacLaren, R.E. The Spectrum of CHM Gene Mutations in Choroideremia and Their Relationship to Clinical Phenotype. Investig. Ophthalmol. Vis. Sci. 2016, 57, 6033–6039. [Google Scholar] [CrossRef] [Green Version]
- Renner, A.B.; Kellner, U.; Cropp, E.; Preising, M.N.; MacDonald, I.M.; van den Hurk, J.A.; Cremers, F.P.; Foerster, M.H. Choroideremia: Variability of clinical and electrophysiological characteristics and first report of a negative electroretinogram. Ophthalmology 2006, 113, 2066–2073.e2. [Google Scholar] [CrossRef]
- Fry, L.E.; Patricio, M.I.; Williams, J.; Aylward, J.W.; Hewitt, H.; Clouston, P.; Xue, K.; Barnard, A.R.; MacLaren, R.E. Association of Messenger RNA Level With Phenotype in Patients With Choroideremia: Potential Implications for Gene Therapy Dose. JAMA Ophthalmol. 2019. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, H.; Mitsios, A.; Smart, M.; Skinner, J.; Welch, A.A.; Kalatzis, V.; Coffey, P.J.; Dubis, A.M.; Webster, A.R.; Moosajee, M. Nonsense-mediated mRNA decay efficiency varies in choroideremia providing a target to boost small molecule therapeutics. Hum. Mol. Genet. 2019, 28, 1865–1871. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, I.M.; Russell, L.; Chan, C.C. Choroideremia: New findings from ocular pathology and review of recent literature. Surv. Ophthalmol. 2009, 54, 401–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marmorstein, A.D.; Marmorstein, L.Y.; Sakaguchi, H.; Hollyfield, J.G. Spectral profiling of autofluorescence associated with lipofuscin, Bruch‘s Membrane, and sub-RPE deposits in normal and AMD eyes. Investig. Ophthalmol. Vis. Sci. 2002, 43, 2435–2441. [Google Scholar]
- Von Ruckmann, A.; Fitzke, F.W.; Bird, A.C. Distribution of fundus autofluorescence with a scanning laser ophthalmoscope. Br. J. Ophthalmol. 1995, 79, 407–412. [Google Scholar] [CrossRef] [Green Version]
- Jolly, J.K.; Edwards, T.L.; Moules, J.; Groppe, M.; Downes, S.M.; MacLaren, R.E. A Qualitative and Quantitative Assessment of Fundus Autofluorescence Patterns in Patients with Choroideremia. Investig. Ophthalmol. Vis. Sci. 2016, 57, 4498–4503. [Google Scholar] [CrossRef]
- Abbouda, A.; Lim, W.S.; Sprogyte, L.; Webster, A.R.; Moosajee, M. Quantitative and Qualitative Features of Spectral-Domain Optical Coherence Tomography Provide Prognostic Indicators for Visual Acuity in Patients With Choroideremia. Ophthalmic Surg. Lasers Imaging Retina 2017, 48, 711–716. [Google Scholar] [CrossRef]
- Jolly, J.K.; Xue, K.; Edwards, T.L.; Groppe, M.; MacLaren, R.E. Characterizing the Natural History of Visual Function in Choroideremia Using Microperimetry and Multimodal Retinal Imaging. Investig. Ophthalmol. Vis. Sci. 2017, 58, 5575–5583. [Google Scholar] [CrossRef]
- Xue, K.; Oldani, M.; Jolly, J.K.; Edwards, T.L.; Groppe, M.; Downes, S.M.; MacLaren, R.E. Correlation of Optical Coherence Tomography and Autofluorescence in the Outer Retina and Choroid of Patients With Choroideremia. Investig. Ophthalmol. Vis. Sci. 2016, 57, 3674–3684. [Google Scholar] [CrossRef]
- Cideciyan, A.V.; Swider, M.; Jacobson, S.G. Autofluorescence imaging with near-infrared excitation:normalization by reflectance to reduce signal from choroidal fluorophores. Investig. Ophthalmol. Vis. Sci. 2015, 56, 3393–3406. [Google Scholar] [CrossRef] [Green Version]
- MacLaren, R.E.; Groppe, M.; Barnard, A.R.; Cottriall, C.L.; Tolmachova, T.; Seymour, L.; Clark, K.R.; During, M.J.; Cremers, F.P.; Black, G.C.; et al. Retinal gene therapy in patients with choroideremia: Initial findings from a phase 1/2 clinical trial. Lancet 2014, 383, 1129–1137. [Google Scholar] [CrossRef] [Green Version]
- Hariri, A.H.; Velaga, S.B.; Girach, A.; Ip, M.S.; Le, P.V.; Lam, B.L.; Fischer, M.D.; Sankila, E.M.; Pennesi, M.E.; Holz, F.G.; et al. Measurement and Reproducibility of Preserved Ellipsoid Zone Area and Preserved Retinal Pigment Epithelium Area in Eyes With Choroideremia. Am. J. Ophthalmol. 2017, 179, 110–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, L.L.; Ahluwalia, A.; Sun, M.; Young, B.K.; Grossetta Nardini, H.K.; Del Priore, L.V. Long-term natural history of visual acuity in eyes with choroideremia: A systematic review and meta-analysis of data from 1004 individual eyes. Br. J. Ophthalmol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.L.; Ahluwalia, A.; Sun, M.; Young, B.K.; Grossetta Nardini, H.K.; Del Priore, L.V. Long-term Natural History of Atrophy in Eyes with Choroideremia-A Systematic Review and Meta-analysis of Individual-Level Data. Ophthalmol. Retina 2020, 4, 840–852. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, I.M.; Mah, D.Y.; Ho, Y.K.; Lewis, R.A.; Seabra, M.C. A practical diagnostic test for choroideremia. Ophthalmology 1998, 105, 1637–1640. [Google Scholar] [CrossRef]
- Robson, A.G.; Tufail, A.; Fitzke, F.; Bird, A.C.; Moore, A.T.; Holder, G.E.; Webster, A.R. Serial imaging and structure-function correlates of high-density rings of fundus autofluorescence in retinitis pigmentosa. Retina 2011, 31, 1670–1679. [Google Scholar] [CrossRef]
- Fujinami, K.; Lois, N.; Mukherjee, R.; McBain, V.A.; Tsunoda, K.; Tsubota, K.; Stone, E.M.; Fitzke, F.W.; Bunce, C.; Moore, A.T.; et al. A longitudinal study of Stargardt disease: Quantitative assessment of fundus autofluorescence, progression, and genotype correlations. Investig. Ophthalmol. Vis. Sci. 2013, 54, 8181–8190. [Google Scholar] [CrossRef] [Green Version]
- Hayakawa, M.; Fujiki, K.; Hotta, Y.; Ito, R.; Ohki, J.; Ono, J.; Saito, A.; Nakayasu, K.; Kanai, A.; Ishidoh, K.; et al. Visual impairment and REP-1 gene mutations in Japanese choroideremia patients. Ophthalmic Genet. 1999, 20, 107–115. [Google Scholar] [CrossRef]
- Morgan, J.I.; Han, G.; Klinman, E.; Maguire, W.M.; Chung, D.C.; Maguire, A.M.; Bennett, J. High-resolution adaptive optics retinal imaging of cellular structure in choroideremia. Investig. Ophthalmol. Vis. Sci. 2014, 55, 6381–6397. [Google Scholar] [CrossRef] [Green Version]
- Syed, R.; Sundquist, S.M.; Ratnam, K.; Zayit-Soudry, S.; Zhang, Y.; Crawford, J.B.; MacDonald, I.M.; Godara, P.; Rha, J.; Carroll, J.; et al. High-resolution images of retinal structure in patients with choroideremia. Investig. Ophthalmol. Vis. Sci. 2013, 54, 950–961. [Google Scholar] [CrossRef] [Green Version]
- Jacobson, S.G.; Cideciyan, A.V.; Sumaroka, A.; Aleman, T.S.; Schwartz, S.B.; Windsor, E.A.; Roman, A.J.; Stone, E.M.; MacDonald, I.M. Remodeling of the human retina in choroideremia: Rab escort protein 1 (REP-1) mutations. Investig. Ophthalmol. Vis. Sci. 2006, 47, 4113–4120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McBain, V.A.; Townend, J.; Lois, N. Progression of retinal pigment epithelial atrophy in stargardt disease. Am. J. Ophthalmol. 2012, 154, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Edwards, T.L.; Groppe, M.; Jolly, J.K.; Downes, S.M.; MacLaren, R.E. Correlation of retinal structure and function in choroideremia carriers. Ophthalmology 2015, 122, 1274–1276. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dubis, A.M.; Lim, W.S.; Jolly, J.K.; Toms, M.; MacLaren, R.E.; Webster, A.R.; Moosajee, M. Longitudinal Study to Assess the Quantitative Use of Fundus Autofluorescence for Monitoring Disease Progression in Choroideremia. J. Clin. Med. 2021, 10, 232. https://doi.org/10.3390/jcm10020232
Dubis AM, Lim WS, Jolly JK, Toms M, MacLaren RE, Webster AR, Moosajee M. Longitudinal Study to Assess the Quantitative Use of Fundus Autofluorescence for Monitoring Disease Progression in Choroideremia. Journal of Clinical Medicine. 2021; 10(2):232. https://doi.org/10.3390/jcm10020232
Chicago/Turabian StyleDubis, Adam M, Wei S Lim, Jasleen K Jolly, Maria Toms, Robert E MacLaren, Andrew R Webster, and Mariya Moosajee. 2021. "Longitudinal Study to Assess the Quantitative Use of Fundus Autofluorescence for Monitoring Disease Progression in Choroideremia" Journal of Clinical Medicine 10, no. 2: 232. https://doi.org/10.3390/jcm10020232
APA StyleDubis, A. M., Lim, W. S., Jolly, J. K., Toms, M., MacLaren, R. E., Webster, A. R., & Moosajee, M. (2021). Longitudinal Study to Assess the Quantitative Use of Fundus Autofluorescence for Monitoring Disease Progression in Choroideremia. Journal of Clinical Medicine, 10(2), 232. https://doi.org/10.3390/jcm10020232