Predictive Value of the Phase Angle for Analgesic Efficacy in Lumbosacral Transforaminal Block
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Intervention
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Manchikanti, L.; Buenaventura, R.M.; Manchikanti, K.N.; Ruan, X.; Gupta, S.; Smith, H.S.; Christo, P.J.; Ward, S.P. Effectiveness of therapeutic lumbar transforaminal epidural steroid injections in managing lumbar spinal pain. Pain Physician 2012, 15, E199–E245. [Google Scholar] [PubMed]
- Maus, T.P.; El-Yahchouchi, C.A.; Geske, J.R.; Carter, R.E.; Kaufmann, T.J.; Wald, J.T.; Diehn, F.E. Imaging Determinants of Clinical Effectiveness of Lumbar Transforaminal Epidural Steroid Injections. Pain Med. 2016, 17, 2176–2184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rivera, C.E. Lumbar Epidural Steroid Injections. Phys. Med. Rehabil. Clin. N. Am. 2018, 29, 73–92. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.R.; Cardozo, E.; Christolias, G.C. The Clinical Efficacy for Two-Level Transforaminal Epidural Steroid Injections. PM&R 2017, 9, 377–382. [Google Scholar]
- Gupta, R.; Singh, S.; Kaur, S.; Singh, K.; Aujla, K. Correlation between Epidurographic Contrast Flow Patterns and Clinical Effectiveness in Chronic Lumbar Discogenic Radicular Pain Treated with Epidural Steroid Injections Via Different Approaches. Korean J. Pain 2014, 27, 353–359. [Google Scholar] [CrossRef]
- Pauli, J.; Starkweather, A.; Robins, J.L. Screening Tools to Predict the Development of Chronic Low Back Pain: An Integrative Review of the Literature. Pain Med. 2019, 20, 1651–1677. [Google Scholar] [CrossRef]
- Hwang, S.; Choi, Y.J.; Jung, J.Y.; Choi, Y.; Ham, E.M.; Park, J.W.; Kwon, H.; Kim, D.K.; Kwak, Y.H. Pain Passport as a tool to improve analgesic use in children with suspected fractures in emergency departments. Korean J. Pain 2020, 33, 386–394. [Google Scholar] [CrossRef]
- Cho, S.H.; Ko, S.H.; Lee, M.S.; Koo, B.S.; Lee, J.H.; Kim, S.H.; Chae, W.S.; Jin, H.C.; Lee, J.S.; Kim, Y.I. Development of the Geop-Pain questionnaire for multidisciplinary assessment of pain sensitivity. Korean J. Anesthesiol. 2016, 69, 492–505. [Google Scholar] [CrossRef] [Green Version]
- Ledowski, T. Objective monitoring of nociception: A review of current commercial solutions. Br. J. Anaesth. 2019, 123, e312. [Google Scholar] [CrossRef]
- Lee, J.Y.; Kim, E.D.; Kim, Y.N.; Kim, J.S.; Sim, W.S.; Lee, H.J.; Park, H.J.; Park, H.J. Correlation of Perfusion Index Change and Analgesic Efficacy in Transforaminal Block for Lumbosacral Radicular Pain. J. Clin. Med. 2019, 8, 51. [Google Scholar] [CrossRef] [Green Version]
- Meijer, F.; Honing, M.; Roor, T.; Toet, S.; Calis, P.; Olofsen, E.; Martini, C.; van Velzen, M.; Aarts, L.; Niesters, M.; et al. Reduced postoperative pain using Nociception Level-guided fentanyl dosing during sevoflurane anaesthesia: A randomised controlled trial. Br. J. Anaesth. 2020, 125, 1070–1078. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.W.; Hong, N.; Kim, C.O.; Kim, H.C.; Youm, Y.; Choi, J.; Rhee, Y. The diagnostic value of phase angle, an integrative bioelectrical marker, for identifying individuals with dysmobility syndrome: The Korean Urban-Rural Elderly study. Osteoporos. Int. 2020. [Google Scholar] [CrossRef] [PubMed]
- Kushner, R.F. Bioelectrical impedance analysis: A review of principles and applications. J. Am. Coll. Nutr. 1992, 11, 199–209. [Google Scholar] [CrossRef] [PubMed]
- Jensen, B.; Braun, W.; Both, M.; Gallagher, D.; Clark, P.; González, D.L.; Klückmann, K.; Bosy-Westphal, A. Configuration of bioelectrical impedance measurements affects results for phase angle. Med. Eng. Phys. 2020, 84, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Norman, K.; Stobäus, N.; Pirlich, M.; Bosy-Westphal, A. Bioelectrical phase angle and impedance vector analysis—Clinical relevance and applicability of impedance parameters. Clin. Nutr. 2012, 31, 854–861. [Google Scholar] [CrossRef]
- Baumgartner, R.N.; Chumlea, W.C.; Roche, A.F. Bioelectric impedance phase angle and body composition. Am. J. Clin. Nutr. 1988, 48, 16–23. [Google Scholar] [CrossRef] [Green Version]
- Yates, S.J.; Lyerly, S.; Manuel, M.; Tooze, J.A.; Klepin, H.D.; Powell, B.L.; Dralle, S.; Uprety, A.; Pardee, T.S. The prognostic value of standardized phase angle in adults with acute leukemia: A prospective study. Cancer Med. 2020, 9, 2403–2413. [Google Scholar] [CrossRef] [Green Version]
- Hui, D.; Dev, R.; Pimental, L.; Park, M.; Cerana, M.A.; Liu, D.; Bruera, E. Association Between Multi-frequency Phase Angle and Survival in Patients With Advanced Cancer. J. Pain Symptom. Manag. 2017, 53, 571–577. [Google Scholar] [CrossRef] [Green Version]
- Hasvik, E.; Schjølberg, T.; Jacobsen, D.P.; Haugen, A.J.; Grøvle, L.; Schistad, E.I.; Gjerstad, J. Up-regulation of circulating microRNA-17 is associated with lumbar radicular pain following disc herniation. Arthritis Res. Ther. 2019, 21, 186. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.K. Lumbar foraminal neuropathy: An update on non-surgical management. Korean J. Pain 2019, 32, 147–159. [Google Scholar] [CrossRef]
- Seol, T.K.; Lee, W.; Park, S.; Kim, K.N.; Kim, T.Y.; Oh, Y.N.; Jun, J.H. Effect of palmitoylethanolamide on inflammatory and neuropathic pain in rats. Korean J. Anesthesiol. 2017, 70, 561–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, Y.; Cai, F.; Chen, L.; Gu, Y.; Geng, D.C.; Yang, H.L.; Tang, T.S. Excessive swelling of nerve roots: Important factor for recurring sciatica after lumbar surgery. Orthopade 2020, 49, 502–509. [Google Scholar] [CrossRef] [PubMed]
- Van Boxem, K.; Cheng, J.; Patijn, J.; van Kleef, M.; Lataster, A.; Mekhail, N.; Van Zundert, J. Lumbosacral radicular pain. Pain Pract. 2010, 10, 339–358. [Google Scholar] [CrossRef] [PubMed]
- Valat, J.P.; Genevay, S.; Marty, M.; Rozenberg, S.; Koes, B. Sciatica. Best Pract. Res. Clin. Rheumatol. 2010, 24, 241–252. [Google Scholar] [CrossRef]
- Attal, N.; Perrot, S.; Fermanian, J.; Bouhassira, D. The neuropathic components of chronic low back pain: A prospective multicenter study using the DN4 Questionnaire. J. Pain 2011, 12, 1080–1087. [Google Scholar] [CrossRef]
- Wang, C.; Xu, K.; Wang, Y.; Mao, Y.; Huang, Y.; Liang, Y.; Liu, Y.; Hao, J.; Gu, X.; Ma, Z.; et al. Spinal cannabinoid receptor 2 activation reduces hypersensitivity associated with bone cancer pain and improves the integrity of the blood-spinal cord barrier. Reg. Anesth. Pain Med. 2020, 45, 783–791. [Google Scholar] [CrossRef]
- Montague-Cardoso, K.; Pitcher, T.; Chisolm, K.; Salera, G.; Lindstrom, E.; Hewitt, E.; Solito, E.; Malcangio, M. Changes in vascular permeability in the spinal cord contribute to chemotherapy-induced neuropathic pain. Brain Behav. Immun. 2020, 83, 248–259. [Google Scholar] [CrossRef]
- Cohnen, J.; Kornstädt, L.; Hahnefeld, L.; Ferreiros, N.; Pierre, S.; Koehl, U.; Deller, T.; Geisslinger, G.; Scholich, K. Tumors Provoke Inflammation and Perineural Microlesions at Adjacent Peripheral Nerves. Cells 2020, 9, 320. [Google Scholar] [CrossRef] [Green Version]
- Van Helvoirt, H.; Apeldoorn, A.T.; Knol, D.L.; Arts, M.P.; Kamper, S.J.; van Tulder, M.W.; Ostelo, R.W. Transforaminal epidural steroid injections influence Mechanical Diagnosis and Therapy (MDT) pain response classification in candidates for lumbar herniated disc surgery. J. Back Musculoskelet. Rehabil. 2016, 29, 351–359. [Google Scholar] [CrossRef] [Green Version]
- Fujiwara, A.; Watanabe, K.; Hashizume, K.; Shinohara, K.; Kawaguchi, M. Transforaminal vs Interlaminar Epidural Steroid Injection for Acute-Phase Shingles: A Randomized, Prospective Trial. Pain Physician 2018, 21, 373–382. [Google Scholar] [CrossRef]
- Mowafi, H.A.; Ismail, S.A.; Shafi, M.A.; Al-Ghamdi, A.A. The efficacy of perfusion index as an indicator for intravascular injection of epinephrine-containing epidural test dose in propofol-anesthetized adults. Anesth. Analg. 2009, 108, 549–553. [Google Scholar] [CrossRef] [PubMed]
- Korhonen, I.; Yli-Hankala, A. Photoplethysmography and nociception. Acta Anaesthesiol. Scand. 2009, 53, 975–985. [Google Scholar] [CrossRef] [PubMed]
- Gigante, A.; Gasperini, M.L.; Rosato, E.; Navarini, L.; Margiotta, D.; Afeltra, A.; Muscaritoli, M. Phase angle could be a marker of microvascular damage in systemic sclerosis. Nutrition 2020, 73, 110730. [Google Scholar] [CrossRef]
- Bosy-Westphal, A.; Danielzik, S.; Dörhöfer, R.P.; Later, W.; Wiese, S.; Müller, M.J. Phase angle from bioelectrical impedance analysis: Population reference values by age, sex, and body mass index. JPEN J. Parenter. Enteral Nutr. 2006, 30, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Albrecht, D.S.; Ahmed, S.U.; Kettner, N.W.; Borra, R.J.H.; Cohen-Adad, J.; Deng, H.; Houle, T.T.; Opalacz, A.; Roth, S.A.; Melo, M.F.V.; et al. Neuroinflammation of the spinal cord and nerve roots in chronic radicular pain patients. Pain 2018, 159, 968–977. [Google Scholar] [CrossRef] [PubMed]
- Barrea, L.; Pugliese, G.; de Alteriis, G.; Colao, A.; Savastano, S.; Muscogiuri, G. Phase Angle: Could Be an Easy Tool to Detect Low-Grade Systemic Inflammation in Adults Affected by Prader-Willi Syndrome? Nutrients 2020, 12, 2065. [Google Scholar] [CrossRef] [PubMed]
Title | All Patients (n = 109) | Group R (n = 50) | Group N (n = 59) | p-Value |
---|---|---|---|---|
Age (year) | 69.3 ± 8.0 | 69.2 ± 8.1 | 69.4 ± 7.9 | 0.895 |
Sex (male/female) | 65/44 | 31/19 | 34/25 | 0.643 |
Body mass index (kg/m2) | 25.8 ± 3.2 | 26.7 ± 3.5 | 25.1 ± 2.8 | 0.014 |
Diagnosis | 1.000 | |||
Spinal stenosis | 98 (89.9%) | 45 (90.0%) | 53 (89.8%) | |
HNP | 11 (10.1%) | 5 (10.0%) | 6 (10.2%) | |
Duration of pain (month) | 0.340 | |||
<3 | 4 (3.7%) | 3 (6.0%) | 1 (1.7%) | |
3–12 | 21 (19.3%) | 11 (22.0%) | 10 (16.9%) | |
>12 | 84 (77.1%) | 36 (72.0%) | 48 (81.4%) | |
Lesion level | 0.639 | |||
L2–3 | 1 (0.9%) | 1 (2.0%) | 0 (0.0%) | |
L3–4 | 23 (21.1%) | 11 (22.0%) | 12 (20.3%) | |
L4–5 | 64 (58.7%) | 27 (54.0%) | 37 (62.7%) | |
L5–S1 | 21 (19.3%) | 11 (22.0%) | 10 (17.0%) | |
Lesion severity | 0.038 | |||
Mild | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | |
Moderate | 66 (60.6%) | 25 (50.0%) | 41 (69.5%) | |
Severe | 43 (39.4%) | 25 (50.0%) | 18 (30.5%) | |
Injection level | 0.181 | |||
L2 | 1 (0.9%) | 0 (0.0%) | 1 (1.7%) | |
L3 | 16 (14.7%) | 10 (20.0%) | 6 (10.2%) | |
L4 | 47 (43.1%) | 17 (34.0%) | 30 (50.8%) | |
L5 | 41 (37.6%) | 20 (40.0%) | 21 (35.6%) | |
S1 | 4 (3.7%) | 3 (6.0%) | 1 (1.7%) | |
Injection side | 0.301 | |||
Left/Right | 56/53 | 23/27 | 33/26 | |
Attempt number | 0.248 | |||
1/2 | 106/3 | 50/0 | 56/3 |
All Patients (n = 109) | Group R (n = 50) | Group N (n = 59) | p-Value | |
---|---|---|---|---|
Phase angle value | ||||
T0 | 6.42 ± 8.3 | 7.63 ± 12.0 | 5.40 ± 1.5 | 0.944 |
T5 | 6.64 ± 9.2 | 8.09 ± 13.4 | 5.42 ± 1.6 | 0.733 |
Phase angle change | 0.22 ± 1.8 | 0.46 ± 2.3 | 0.02 ± 1.3 | 0.594 |
Phase angle change ratio | 0.05 ± 0.4 | 0.09 ± 0.6 | 0.02 ± 0.3 | 0.713 |
Temperature change | −0.08 ± 0.2 | −0.08 ± 0.2 | −0.07 ± 0.2 | 0.933 |
Group N (n = 59) | |
---|---|
AUROC | 0.521 (95% CI 0.408–0.633) |
Cut-off value | 0.087 |
Sensitivity | 32.0% (95% CI 0.208–0.458) |
Specificity | 88.1% (95% CI 0.775–0.941) |
Accuracy | 62.4% (95% CI 0.530–0.709) |
Youden’s index | 0.201 |
All Patients (n = 109) | Group R (n = 50) | Group N (n = 59) | p-Value | |
---|---|---|---|---|
Pain severity (NRS) | ||||
T0 | 6.48 ± 2.0 | 6.72 ± 2.2 | 6.27 ± 1.9 | 0.346 |
T30 | 3.66 ± 2.4 | 1.70 ± 1.7 | 5.32 ± 1.4 | <0.001 |
Cold sensation (NRS) | ||||
T0 | 2.06 ± 3.0 | 1.66 ± 3.0 | 2.39 ± 3.0 | 0.122 |
T30 | 1.26 ± 2.2 | 0.92 ± 2.0 | 1.54 ± 2.3 | 0.094 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Park, H.J.; Sim, W.S.; Lee, S.; Kim, K.; Kim, W.J.; Lee, J.Y. Predictive Value of the Phase Angle for Analgesic Efficacy in Lumbosacral Transforaminal Block. J. Clin. Med. 2021, 10, 240. https://doi.org/10.3390/jcm10020240
Kim J, Park HJ, Sim WS, Lee S, Kim K, Kim WJ, Lee JY. Predictive Value of the Phase Angle for Analgesic Efficacy in Lumbosacral Transforaminal Block. Journal of Clinical Medicine. 2021; 10(2):240. https://doi.org/10.3390/jcm10020240
Chicago/Turabian StyleKim, Jeayoun, Hue Jung Park, Woo Seog Sim, Seungwon Lee, Keoungah Kim, Woo Jin Kim, and Jin Young Lee. 2021. "Predictive Value of the Phase Angle for Analgesic Efficacy in Lumbosacral Transforaminal Block" Journal of Clinical Medicine 10, no. 2: 240. https://doi.org/10.3390/jcm10020240
APA StyleKim, J., Park, H. J., Sim, W. S., Lee, S., Kim, K., Kim, W. J., & Lee, J. Y. (2021). Predictive Value of the Phase Angle for Analgesic Efficacy in Lumbosacral Transforaminal Block. Journal of Clinical Medicine, 10(2), 240. https://doi.org/10.3390/jcm10020240