Self-Collection of Saliva Specimens as a Suitable Alternative to Nasopharyngeal Swabs for the Diagnosis of SARS-CoV-2 by RT-qPCR
Abstract
:1. Introduction
2. Experimental Section
2.1. Patients and Clinical Specimens
2.2. SARS-CoV-2 Detection by RT-PCR Assay
2.3. Statistical Analysis
2.4. Ethical Issues
3. Results
3.1. Patients’ Description
3.2. Comparison of RT-qPCR Results between Saliva and NP Samples
3.3. Sensitivity and Specificity of Saliva Samples
3.4. Results under Different Conditions
3.4.1. Age Groups and Chronic Conditions
3.4.2. COVID-19 Symptoms
3.4.3. Processing with/without Lysis Buffer
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lahner, E.; Dilaghi, E.; Prestigiacomo, C.; Alessio, G.; Marcellini, L.; Simmaco, M.; Santino, I.; Orsi, G.B.; Anibaldi, P.; Marcolongo, A.; et al. Prevalence of Sars-Cov-2 Infection in Health Workers (HWs) and Diagnostic Test Performance: The Experience of a Teaching Hospital in Central Italy. Int. J. Environ. Res. Public Health. 2020, 17, 4417. [Google Scholar] [CrossRef] [PubMed]
- Słomka, A.; Kowalewski, M.; Żekanowska, E. Coronavirus Disease 2019 (COVID–19): A Short Review on Hematological Manifestations. Pathogens 2020, 9, 493. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.K.; Mishra, A.; Singh, S.; Kumar, P.; Singh, M.; Jagannath, C.; Khan, A. Emerging Prevention and Treatment Strategies to Control COVID-19. Pathogens 2020, 9, 501. [Google Scholar] [CrossRef] [PubMed]
- Azzi, L.; Carcano, G.; Gianfagna, F.; Grossi, P.; Gasperina, D.D.; Genoni, A.; Fasano, M.; Sessa, F.; Tettamanti, L.; Carinci, F.; et al. Saliva is a Reliable Tool to Detect SARS-CoV-2. J. Infection 2020, 81, e45–e50. [Google Scholar] [CrossRef]
- Rao, M.; Rashid, F.A.; Sabri, F.S.A.H.; Jamil, N.N.; Zain, R.; Hashim, R.; Amran, F.; Kok, H.T.; Samad, A.A.; Ahmad, N. Comparing Nasopharyngeal Swab and Early Morning Saliva for the Identification of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Clin. Infect. Dis. 2020, 1156. [Google Scholar] [CrossRef]
- World Health Organization. Clinical Management of Severe Acute Respiratory Infection (SARI) when COVID-19 Disease is Suspected. Interim guidance. Pediatr. I Med. Rodz. 2020, 16, 9–26. [Google Scholar] [CrossRef]
- Cerón, J.; Lamy, E.; Martínez-Subiela, S.; López-Jornet, P.; Eckersall, P.D.; Eckersall, P.D.; Asta, T. Use of Saliva for Diagnosis and Monitoring the SARS-CoV-2: A General Perspective. J. Clin. Med. 2020, 9, 1491. [Google Scholar] [CrossRef]
- To, K.K.; Yip, C.C.; Lai, C.Y.; Wong, C.K.; Ho, D.T.; Pang, P.K.; Ng, A.C.; Leung, K.-H.; Poon, R.W.; Chan, K.-H.; et al. Saliva as a Diagnostic Specimen for Testing Respiratory Virus by a Point-of-Care Molecular Assay: A Diagnostic Validity Study. Clin. Microbiol. Infect. 2019, 25, 372–378. [Google Scholar] [CrossRef] [Green Version]
- Wyllie, A.; Fournier, J.; Casanovas-Massana, A.; Campbell, M.; Tokuyama, M.; Vijayakumar, P.; Warren, J.L.; Geng, B.; Muenker, M.C.; Moore, A.J.; et al. Saliva or Nasopharyngeal Swab Specimens for Detection of SARS-CoV-2. N. Engl. J. Med. 2020, 383, 1283–1286. [Google Scholar] [CrossRef]
- Hung, D.L.-L.; Li, X.; Chiu, K.H.-Y.; Yip, C.C.-Y.; To, K.K.-W.; Chan, J.F.-W.; Sridhar, S.; Chung, T.W.-H.; Lung, K.-C.; Liu, R.W.-T.; et al. Early-Morning vs Spot Posterior Oropharyngeal Saliva for Diagnosis of SARS-CoV-2 Infection: Implication of Timing of Specimen Collection for Community-Wide Screening. Open Forum Infect. Dis. 2020, 7, ofaa210. [Google Scholar] [CrossRef]
- Vogels, C.B.; Brackney, D.; Wang, J.; Kalinich, C.C.; Ott, I.M.; Kudo, E.; Lu, P.; Venkataraman, A.; Tokuyama, M.; Moore, A.J.; et al. SalivaDirect: Simple and Sensitive Molecular Diagnostic Test for SARS-CoV-2 Surveillance. MedRxiv 2020. [Google Scholar] [CrossRef]
- Jaafar, R.; Aherfi, S.; Wurtz, N.; Grimaldier, C.; Van Hoang, T.; Colson, P.; Raoult, D.; La Scola, B. Correlation Between 3790 Quantitative Polymerase Chain Reaction–Positives Samples and Positive Cell Cultures, Including 1941 Severe Acute Respiratory Syndrome Coronavirus 2 Isolates. Clin. Infect. Dis. 2020, 1491. [Google Scholar] [CrossRef] [PubMed]
- Singanayagam, A.; Patel, M.; Charlett, A.; Bernal, J.L.; Saliba, V.; Ellis, J.; Ladhani, S.; Zambon, M.; Gopal, R. Duration of infectiousness and correlation with RT-PCR cycle threshold values in cases of COVID-19, England, January to May 2020. Eurosurveillance 2020, 25, 2001483. [Google Scholar] [CrossRef] [PubMed]
- First Saliva Test for COVID-19 Approveed for Emergency use by FDA|The Scientist Magazine®. Available online: https://www.the-scientist.com/news-opinion/first-saliva-test-for-covid-19-approved-for-emergency-use-by-fda-67416 (accessed on 6 August 2020).
- Iwasaki, S.; Fujisawa, S.; Nakakubo, S.; Kamada, K.; Yamashita, Y.; Fukumoto, T.; Sato, K.; Oguri, S.; Taki, K.; Senjo, H.; et al. Comparison of SARS-CoV-2 Detection in Nasopharyngeal Swab and Saliva. J. Infect. 2020, 81, e145–e147. [Google Scholar] [CrossRef]
- Landis, J.R.; Koch, G.G. The Measurement of Observer Agreement for Categorical Data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [Green Version]
- Jamal, A.J.; Mozafarihashjin, M.; Coomes, E.; Powis, J.; Li, A.X.; Paterson, A.; Anceva-Sami, S.; Barati, S.; Crowl, G.; Faheem, A.; et al. Sensitivity of Nasopharyngeal Swabs and Saliva for the Detection of Severe Acute Respiratory Syndrome Coronavirus 2. Clin. Infect. Dis. 2020, 25, ciaa848. [Google Scholar] [CrossRef]
- Pasomsub, E.; Watcharananan, S.; Boonyawat, K.; Janchompoo, P.; Wongtabtim, G.; Suksuwan, W.; Sungkanuparph, S.; Phuphuakrat, A. Saliva Sample as a Non-invasive Specimen for the Diagnosis of Coronavirus Disease 2019: A Cross-Sectional Study. Clin. Microbiol. Infect. 2020, 15, 1198. [Google Scholar] [CrossRef]
- Williams, E.; Bond, K.; Zhang, B.; Putland, M.; Williamson, D.A. Saliva as a Noninvasive Specimen for Detection of SARS-CoV-2. J. Clin. Microbiol. 2020, 58. [Google Scholar] [CrossRef] [Green Version]
- Ye, G.; Li, Y.; Lu, M.; Chen, S.; Luo, Y.; Wang, S.; Wang, Y.; Wang, X. Experience of Different Upper Respiratory Tract Sampling Strategies for Detection of COVID-19. J. Hosp. Infect. 2020, 105, 1–2. [Google Scholar] [CrossRef]
- Zhu, J.; Guo, J.; Xu, Y.; Chen, X. Viral Dynamics of SARS-CoV-2 in Saliva from Infected Patients. J. Infect. 2020, 81, e48–e50. [Google Scholar] [CrossRef]
- To, K.K.; Tsang, O.T.-Y.; Yip, C.C.-Y.; Chan, K.-H.; Wu, T.-C.; Chan, J.M.-C.; Leung, W.-S.; Chik, T.S.-H.; Choi, C.Y.-C.; Kandamby, D.H.; et al. Consistent Detection of 2019 Novel Coronavirus in Saliva. Clin. Infect. Dis. 2020, 71, 841–843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, R.; Cui, B.; Duan, X.; Zhang, P.; Zhou, X.; Yuan, Q. Saliva: Potential Diagnostic Value and Transmission of 2019-nCoV. Int. J. Oral Sci. 2020, 12, 11. [Google Scholar] [CrossRef] [PubMed]
Total n (%) | Positive n (%) | Negative n (%) | p-Value | Ct ≤ 30 n (%) | Ct > 30 n (%) | p-Value | |
---|---|---|---|---|---|---|---|
Sex | 0.438 | 0.786 | |||||
Female | 374 (55.5) | 182 (54.0) | 192 (57.0) | 79 (54.9) | 103 (53.4) | ||
Male | 300 (44.5) | 155 (46.0) | 145 (43.0) | 65 (45.1) | 90 (46.6) | ||
Age group | 0.705 | 0.749 | |||||
0–14 years | 103 (15.3) | 48 (14.2) | 55 (16.3) | 20 (13.9) | 28 (14.5) | ||
15–49 years | 405 (60.1) | 207 (61.4) | 198 (58.8) | 86 (59.7) | 121 (62.7) | ||
≥50 years | 166 (24.6) | 82 (24.3) | 84 (24.9) | 38 (26.4) | 44 (22.8) | ||
Chronic conditions | 0.095 | 0.729 | |||||
No | 499 (74.0) | 259 (76.9) | 240 (71.2) | 32 (22.2) | 46 (23.8) | ||
Yes | 175 (26.0) | 78 (23.1) | 97 (28.8) | 112 (77.8) | 147 (76.2) | ||
COVID-19 symptoms | <0.001 | 0.001 | |||||
Yes | 333 (49.4) | 190 (56.4) | 143 (42.4) | 96 (66.7) | 94 (48.7) | ||
No | 341 (50.6) | 147 (43.6) | 194 (57.6) | 48 (33.3) | 99 (51.3) | ||
Lysis buffer processing | 0.479 | 0.119 | |||||
Yes | 407 (60.4) | 208 (61.7) | 199 (59.1) | 82 (56.9) | 126 (65.3) | ||
No | 267 (39.6) | 129 (38.3) | 138 (40.9) | 62 (43.1) | 67 (34.7) | ||
RT-qPCR manufacturer | <0.001 | 0.598 | |||||
Roche | 122 (18.1) | 121 (35.9) | 1 (0.3) | 54 (37.5) | 67 (34.7) | ||
Seegene | 552 (81.9) | 216 (64.1) | 336 (99.7) | 90 (62.5) | 126 (65.3) | ||
Total | 674 (100) | 337 (100) | 337 (100) | 144 (100) | 193 (100) |
Sensitivity, % (95% CI) | Specificity, % | Kappa Index | ||||
---|---|---|---|---|---|---|
All Samples | All Valid Results | Ct ≤ 30 | Ct > 30 | (95% CI) | (95% CI) | |
Total | 49.9 (44.4–55.3) | 51.9 (46.3–57.4) | 91.6 (86.7–96.5) | 20.4 (14.3–26.6) | 99.1 (97.4–99.8) | 0.50 (0.45–0.56) |
Age group (years) | ||||||
Children (0–14) | 56.3 (41.2–71.3) | 60.0 (44.6–75.4) | 100 (83.3–100) | 28.0 (8.4–47.6) | 100 (93.5–100) | 0.62 (0.47–0.76) |
Adults (>14) | 48.8 (42.9–54.7) | 50.5 (44.5–56.6) | 90.2 (84.6–95.9) | 19.2 (12.7–25.7) | 98.9 (96.9–99.8) | 0.49 (0.42–0.55) |
Chronic conditions | ||||||
No | 49.8 (43.7–55.9) | 51.8 (45.6–58.0) | 91.9 (85.6–96.0) | 19.6 (13.6–26.8) | 100 (93.7–100) | 0.50 (0.44–0.57) |
Yes | 50.0 (39.0–61.0) | 52.0 (40.7–63.1) | 90.6 (76.6–97.6) | 23.3 (12.5–37.6) | 96.6 (91.0–99.1) | 0.50 (0.38–0.63) |
COVID-19 symptoms | ||||||
Yes | 55.3 (47.9–62.6) | 56.5 (49.1–63.8) | 94.7 (88.1–98.3) | 16.5 (8.3–24.7) | 100 (97.5–100) | 0.52 (0.44–0.60) |
No | 42.9 (34.5–51.2) | 45.7 (37.0–54.3) | 85.4 (74.4–96.4) | 24.4 (15.0–33.9) | 98.5 (95.5–99.7) | 0.47 (0.38–0.56) |
Processing | ||||||
With lysis buffer | 46.2 (39.1–53.2) | 49.2 (42.0–56.5) | 92.6 (86.3–98.9) | 18.4 (10.9–26.0) | 99.0 (96.4–99.9) | 0.47 (0.39–0.54) |
Without lysis buffer | 55.8 (46.9–64.8) | 55.8 (46.9–64.8) | 90.3 (82.2–98.5) | 23.9 (12.9–34.8) | 99.3 (96.0–100) | 0.56 (0.47–0.65) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trobajo-Sanmartín, C.; Adelantado, M.; Navascués, A.; Guembe, M.J.; Rodrigo-Rincón, I.; Castilla, J.; Ezpeleta, C. Self-Collection of Saliva Specimens as a Suitable Alternative to Nasopharyngeal Swabs for the Diagnosis of SARS-CoV-2 by RT-qPCR. J. Clin. Med. 2021, 10, 299. https://doi.org/10.3390/jcm10020299
Trobajo-Sanmartín C, Adelantado M, Navascués A, Guembe MJ, Rodrigo-Rincón I, Castilla J, Ezpeleta C. Self-Collection of Saliva Specimens as a Suitable Alternative to Nasopharyngeal Swabs for the Diagnosis of SARS-CoV-2 by RT-qPCR. Journal of Clinical Medicine. 2021; 10(2):299. https://doi.org/10.3390/jcm10020299
Chicago/Turabian StyleTrobajo-Sanmartín, Camino, Marta Adelantado, Ana Navascués, María J. Guembe, Isabel Rodrigo-Rincón, Jesús Castilla, and Carmen Ezpeleta. 2021. "Self-Collection of Saliva Specimens as a Suitable Alternative to Nasopharyngeal Swabs for the Diagnosis of SARS-CoV-2 by RT-qPCR" Journal of Clinical Medicine 10, no. 2: 299. https://doi.org/10.3390/jcm10020299
APA StyleTrobajo-Sanmartín, C., Adelantado, M., Navascués, A., Guembe, M. J., Rodrigo-Rincón, I., Castilla, J., & Ezpeleta, C. (2021). Self-Collection of Saliva Specimens as a Suitable Alternative to Nasopharyngeal Swabs for the Diagnosis of SARS-CoV-2 by RT-qPCR. Journal of Clinical Medicine, 10(2), 299. https://doi.org/10.3390/jcm10020299