Whole Blood, Fixed Ratio, or Goal-Directed Blood Component Therapy for the Initial Resuscitation of Severely Hemorrhaging Trauma Patients: A Narrative Review
Abstract
:1. Introduction: Rationale for the Adoption of Whole Blood and Fixed Ratio Resuscitation
1.1. History of the United States’ Swift Adoption of Cold-Stored Whole Blood for Civilian Urban Trauma Resuscitation
1.2. PROPPR Trial as Mechanistic Rationale for Justification of CSWB
1.3. Historical Justification for CSWB in Civilian Urban Trauma
2. VET-Guided Goal-Directed Resuscitation
2.1. History of VET and Trauma Resuscitation
2.2. History of VET Goal-Directed Therapy with Coagulation Factor Concentrate
2.3. Recent Challenge to VET-Guided Trauma Resuscitation: The iTACTIC Trial
3. Geographic Variations
4. Future Direction—RCTs in Progress
4.1. PPOWER
4.2. STORHM
4.3. SWAT
5. Conclusion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AABB | American Association of Blood Banks |
BCT | blood component therapy |
CFC | coagulation factor concentrates |
CSWB | cold-stored whole blood |
E-FIT1 | Early-Fibrinogen In Trauma 1 |
FEISTY | Fibrinogen Early In Severe Trauma study |
FiiRST | Fibrinogen in the initial Resuscitation of Severe Trauma |
FinTIC | European prehospital Fibrinogen in Trauma-Induced Coagulopathy |
GD BCT | goal-directed blood component therapy |
ISS | injury severity score |
iTACTIC | Treatment Algorithms for the Correction of Trauma-Induced Coagulopathy |
LTLR | low-titer, leukocyte-reduced |
LTOWB | low-titer group O whole blood |
MT | massive transfusion |
MTP | massive transfusion protocol |
PCC | prothrombin complex concentrate |
PLT | platelet |
PPH | potentially preventable hemorrhage |
PPOWER | Pragmatic, Prehospital, Type O, Whole Blood Early Resuscitation |
PRBC | packed red blood cells |
PROPPR | Pragmatic, Randomized Optimal Platelet and Plasma Ratios |
RCT | Randomized control trial |
RETIC | Reversal of Trauma-Induced Coagulopathy |
ROTEM | rotational thromboelastometry |
STORHM | Sang Total pour la Reanimation des Hemorragies Massives |
SWAT | Shock, Whole Blood, and Assessment of TBI |
TBI | traumatic brain injury |
TEG | thromboelastography |
THOR | Trauma Hemostasis and Oxygenation Research |
TIC | trauma-induced coagulopathy |
VET | viscoelastic test |
WB | whole blood |
WFWB | warm fresh whole blood |
References
- Stubbs:, J.R.; Zielinski, M.D.; Jenkins, D. The state of the science of whole blood: Lessons learned at Mayo Clinic. Transfusion 2016, 56 (Suppl. 2), S173–S181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zielinski, M.D.; Stubbs, J.R.; Berns, K.S.; Glassberg, E.; Murdock, A.D.; Shinar, E.; Sunde, G.A.; Williams, S.; Yazer, M.H.; Zietlow, S.; et al. Prehospital blood transfusion programs: Capabilities and lessons learned. J. Trauma Acute Care Surg. 2017, 82, S70–S78. [Google Scholar] [CrossRef] [PubMed]
- Cap, A.P.; Beckett, A.; Benov, A.; Borgman, M.; Chen, J.; Corley, J.B.; Doughty, H.; Fisher, A.; Glassberg, E.; Gonzales, R.; et al. Whole Blood Transfusion. Mil. Med. 2018, 183 (Suppl. 2), 44–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holcomb, J.B.; Jenkins, D.H. Get ready: Whole blood is back and it’s good for patients. Transfusion 2018, 58, 1821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pivalizza, E.G.; Stephens, C.T.; Sridhar, S.; Gumbert, S.D.; Rossmann, S.; Bertholf, M.F.; Bai, Y.; Cotton, B.A. Whole Blood for Resuscitation in Adult Civilian Trauma in 2017: A Narrative Review. Anesth. Analg. 2018, 127, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Yazer, M.H.; Cap, A.P.; Spinella, P.C.; Alarcon, L.; Triulzi, D.J. How do I implement a whole blood program for massively bleeding patients? Transfusion 2018, 58, 622–628. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, D.; Stubbs, J.; Williams, S.; Berns, K.; Zielinski, M.; Strandenes, G.; Zietlow, S. Implementation and execution of civilian remote damage control resuscitation programs. Shock 2014, 41, 84–89. [Google Scholar] [CrossRef]
- Jenkins, D.H.; Rappold, J.F.; Badloe, J.F.; Berseus, O.; Blackbourne, L.; Brohi, K.H.; Butler, F.K.; Cap, A.P.; Cohen, M.J.; Davenport, R. Trauma hemostasis and oxygenation research position paper on remote damage control resuscitation: Definitions, current practice, and knowledge gaps. Shock 2014, 41, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Sperry, J.L.; Early, B.; Buck, M.; Silfies, L. Shock, Whole blood and Assessment of TBI (SWAT); University of Pittsburgh: Pittsburgh, PA, USA, 2018. [Google Scholar]
- Yazer, M.H.; Seheult, J.; Kleinman, S.; Sloan, S.R.; Spinella, P.C. Who’s afraid of incompatible plasma? A balanced approach to the safe transfusion of blood products containing ABO-incompatible plasma. Transfusion 2018, 58, 532–538. [Google Scholar] [CrossRef]
- Holcomb, J.B.; Tilley, B.C.; Baraniuk, S.; Fox, E.E.; Wade, C.E.; Podbielski, J.M.; del Junco, D.J.; Brasel, K.J.; Bulger, E.M.; Callcut, R.A. Transfusion of plasma, platelets, and red blood cells in a 1:1:1 vs a 1:1:2 ratio and mortality in patients with severe trauma: The PROPPR randomized clinical trial. JAMA 2015, 313, 471–482. [Google Scholar] [CrossRef]
- Dzik, W. Misunderstanding the PROPPR trial. Transfusion 2017, 57, 2056. [Google Scholar] [CrossRef] [PubMed]
- Holcomb, J.B.; Donathan, D.P.; Cotton, B.A.; Del Junco, D.J.; Brown, G.; Wenckstern, T.V.; Podbielski, J.M.; Camp, E.A.; Hobbs, R.; Bai, Y. Prehospital Transfusion of Plasma and Red Blood Cells in Trauma Patients. Prehosp. Emerg. Care 2015, 19, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Holcomb, J.B.; Hess, J.R.; Group, P.S. Response to: “Misunderstanding the PROPPR trial”. Transfusion 2017, 57, 2057–2058. [Google Scholar] [CrossRef] [PubMed]
- Rijnhout, T.W.H.; Wever, K.E.; Marinus, R.; Hoogerwerf, N.; Geeraedts, L.M.G., Jr.; Tan, E.C. Is prehospital blood transfusion effective and safe in haemorrhagic trauma patients? A systematic review and meta-analysis. Injury 2019, 50, 1017–1027. [Google Scholar] [CrossRef] [PubMed]
- Thies, K.-C.; Truhlář, A.; Keene, D.; Hinkelbein, J.; Rützler, K.; Brazzi, L.; Vivien, B. Pre-hospital blood transfusion–a survey on European practice. Scand. J. Trauma Resusc. Emerg. Med. 2020, 28, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Vanderspurt, C.K.; Spinella, P.C.; Cap, A.P.; Hill, R.; Matthews, S.A.; Corley, J.B.; Gurney, J.M. The use of whole blood in US military operations in Iraq, Syria, and Afghanistan since the introduction of low-titer Type O whole blood: Feasibility, acceptability, challenges. Transfusion 2019, 59, 965–970. [Google Scholar] [CrossRef]
- Seheult, J.N.; Bahr, M.P.; Spinella, P.C.; Triulzi, D.J.; Yazer, M.H. The Dead Sea needs salt water… massively bleeding patients need whole blood: The evolution of blood product resuscitation. Transfus. Clin. Biol. 2019, 26, 174–179. [Google Scholar] [CrossRef]
- Zhu, C.S.; Pokorny, D.M.; Eastridge, B.J.; Nicholson, S.E.; Epley, E.; Forcum, J.; Long, T.; Miramontes, D.; Schaefer, R.; Shiels, M. Give the trauma patient what they bleed, when and where they need it: Establishing a comprehensive regional system of resuscitation based on patient need utilizing cold-stored, low-titer O+ whole blood. Transfusion 2019, 59, 1429–1438. [Google Scholar] [CrossRef] [Green Version]
- Leeper, C.M.; Yazer, M.H.; Cladis, F.P.; Saladino, R.; Triulzi, D.J.; Gaines, B.A. Use of Uncrossmatched Cold-Stored Whole Blood in Injured Children With Hemorrhagic Shock. JAMA Pediatrics 2018, 172, 491–492. [Google Scholar] [CrossRef] [Green Version]
- McGinity, A.C.; Zhu, C.S.; Greebon, L.; Xenakis, E.; Waltman, E.; Epley, E.; Cobb, D.; Jonas, R.; Nicholson, S.E.; Eastridge, B.J. Prehospital low-titer cold-stored whole blood: Philosophy for ubiquitous utilization of O-positive product for emergency use in hemorrhage due to injury. J. Trauma Acute Care Surg. 2018, 84, S115–S119. [Google Scholar] [CrossRef]
- Seheult, J.N.; Anto, V.; Alarcon, L.H.; Sperry, J.L.; Triulzi, D.J.; Yazer, M.H. Clinical outcomes among low-titer group O whole blood recipients compared to recipients of conventional components in civilian trauma resuscitation. Transfusion 2018, 58, 1838–1845. [Google Scholar] [CrossRef] [PubMed]
- Strandenes, G.; Berseus, O.; Cap, A.P.; Hervig, T.; Reade, M.; Prat, N.; Sailliol, A.; Gonzales, R.; Simon, C.D.; Ness, P.; et al. Low titer group O whole blood in emergency situations. Shock 2014, 41, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Spinella, P.C. Warm fresh whole blood transfusion for severe hemorrhage: U.S. military and potential civilian applications. Crit. Care Med. 2008, 36, S340–345. [Google Scholar] [CrossRef] [PubMed]
- Seheult, J.N.; Triulzi, D.J.; Alarcon, L.H.; Sperry, J.L.; Murdock, A.; Yazer, M.H. Measurement of haemolysis markers following transfusion of uncrossmatched, low-titre, group O+ whole blood in civilian trauma patients: Initial experience at a level 1 trauma centre. Transfus. Med. 2017, 27, 30–35. [Google Scholar] [CrossRef]
- Spinella, P.C. Zero preventable deaths after traumatic injury: An achievable goal. J. Trauma Acute Care Surg. 2017, 82, S2–S8. [Google Scholar] [CrossRef]
- Condron, M.; Scanlan, M.; Schreiber, M. Massive transfusion of low-titer cold-stored O-positive whole blood in a civilian trauma setting. Transfusion 2019, 59, 927–930. [Google Scholar] [CrossRef]
- Cotton, B.A.; Podbielski, J.; Camp, E.; Welch, T.; del Junco, D.; Bai, Y.; Hobbs, R.; Scroggins, J.; Hartwell, B.; Kozar, R.A. A randomized controlled pilot trial of modified whole blood versus component therapy in severely injured patients requiring large volume transfusions. Ann. Surg. 2013, 258, 527–532; discussion 532–523. [Google Scholar] [CrossRef]
- Gallaher, J.R.; Dixon, A.; Cockcroft, A.; Grey, M.; Dewey, E.; Goodman, A.; Schreiber, M. Large volume transfusion with whole blood is safe compared with component therapy. J. Trauma Acute Care Surg. 2020, 89, 238–245. [Google Scholar] [CrossRef]
- Hazelton, J.P.; Cannon, J.W.; Zatorski, C.; Roman, J.S.; Moore, S.A.; Young, A.J.; Subramanian, M.; Guzman, J.F.; Fogt, F.; Moran, A.; et al. Cold-stored whole blood: A better method of trauma resuscitation? J. Trauma Acute Care Surg. 2019, 87, 1035–1041. [Google Scholar] [CrossRef]
- Ho, K.M.; Leonard, A.D. Lack of effect of unrefrigerated young whole blood transfusion on patient outcomes after massive transfusion in a civilian setting. Transfusion 2011, 51, 1669–1675. [Google Scholar] [CrossRef]
- Spinella, P.C.; Pidcoke, H.F.; Strandenes, G.; Hervig, T.; Fisher, A.; Jenkins, D.; Yazer, M.; Stubbs, J.; Murdock, A.; Sailliol, A. Whole blood for hemostatic resuscitation of major bleeding. Transfusion 2016, 56, S190–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, J.; Merutka, N.; Meyer, D.; Bai, Y.; Prater, S.; Cabrera, R.; Holcomb, J.B.; Wade, C.E.; Love, J.D.; Cotton, B.A. Safety profile and impact of low-titer group O whole blood for emergency use in trauma. J. Trauma Acute Care Surg. 2020, 88, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Yazer, M.H.; Spinella, P.C. Review of low titre group O whole blood use for massively bleeding patients around the world in 2019. ISBT Sci. Ser. 2019, 14, 276–281. [Google Scholar] [CrossRef]
- Fadeyi, E.A.; Saha, A.K.; Naal, T.; Martin, H.; Fenu, E.; Simmons, J.H.; Jones, M.R.; Pomper, G.J. A comparison between leukocyte reduced low titer whole blood vs non-leukocyte reduced low titer whole blood for massive transfusion activation. Transfusion 2020. [Google Scholar] [CrossRef] [PubMed]
- Hanna, K.; Bible, L.; Chehab, M.; Asmar, S.; Douglas, M.; Ditillo, M.; Castanon, L.; Tang, A.; Joseph, B. Nationwide analysis of whole blood hemostatic resuscitation in civilian trauma. J. Trauma Acute Care Surg. 2020, 89, 329–335. [Google Scholar] [CrossRef]
- Shea, S.M.; Staudt, A.M.; Thomas, K.A.; Schuerer, D.; Mielke, J.E.; Folkerts, D.; Lowder, E.; Martin, C.; Bochicchio, G.V.; Spinella, P.C. The use of low-titer group O whole blood is independently associated with improved survival compared to component therapy in adults with severe traumatic hemorrhage. Transfusion 2020, 60, S2–S9. [Google Scholar] [CrossRef]
- Leeper, C.M.; Yazer, M.H.; Triulzi, D.J.; Neal, M.D.; Gaines, B.A. Whole Blood is Superior to Component Transfusion for Injured Children: A Propensity Matched Analysis. Ann. Surg. 2020, 272, 590–594. [Google Scholar] [CrossRef]
- Armand, R.; Hess, J.R. Treating coagulopathy in trauma patients. Transfus. Med. Rev. 2003, 17, 223–231. [Google Scholar] [CrossRef]
- Moore, E.E.; Moore, H.B.; Chapman, M.P.; Gonzalez, E.; Sauaia, A. Goal-directed hemostatic resuscitation for trauma induced coagulopathy: Maintaining homeostasis. J. Trauma Acute Care Surg. 2018, 84 (Suppl. 1), S35–S40. [Google Scholar] [CrossRef]
- Chang, R.; Eastridge, B.J.; Holcomb, J.B. Remote Damage Control Resuscitation in Austere Environments. Wilderness Environ. Med. 2017, 28, S124–S134. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, E.; Moore, E.E.; Moore, H.B.; Chapman, M.P.; Chin, T.L.; Ghasabyan, A.; Wohlauer, M.V.; Barnett, C.C.; Bensard, D.D.; Biffl, W.L.; et al. Goal-directed Hemostatic Resuscitation of Trauma-induced Coagulopathy: A Pragmatic Randomized Clinical Trial Comparing a Viscoelastic Assay to Conventional Coagulation Assays. Ann. Surg. 2016, 263, 1051–1059. [Google Scholar] [CrossRef] [PubMed]
- Tapia, N.M.; Chang, A.; Norman, M.; Welsh, F.; Scott, B.; Wall, M.J., Jr.; Mattox, K.L.; Suliburk, J. TEG-guided resuscitation is superior to standardized MTP resuscitation in massively transfused penetrating trauma patients. J. Trauma Acute Care Surg. 2013, 74, 378–385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howley, I.W.; Haut, E.R.; Jacobs, L.; Morrison, J.J.; Scalea, T.M. Is thromboelastography (TEG)-based resuscitation better than empirical 1:1 transfusion? Trauma Surg. Acute Care Open 2018, 3, e000140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffman, M.; Monroe III, D.M. A cell-based model of hemostasis. Thrombosis and Haemostasis 2001, 85, 958–965. [Google Scholar] [PubMed]
- Walsh, M.; Thomas, S.; Kwaan, H.; Aversa, J.; Anderson, S.; Sundararajan, R.; Zimmer, D.; Bunch, C.; Stillson, J.; Draxler, D.; et al. Modern methods for monitoring hemorrhagic resuscitation in the United States: Why the delay? J. Trauma Acute Care Surg. 2020, 89, 1018–1022. [Google Scholar] [CrossRef] [PubMed]
- Schochl, H.; Maegele, M.; Voelckel, W. Fixed ratio versus goal-directed therapy in trauma. Curr. Opin. Anaesthesiol. 2016, 29, 234–244. [Google Scholar] [CrossRef] [PubMed]
- Kornblith, L.Z.; Moore, H.B.; Cohen, M.J. Trauma-induced coagulopathy: The past, present, and future. J. Thromb. Haemost. 2019, 17, 852–862. [Google Scholar] [CrossRef]
- Maegele, M.; Lefering, R.; Yucel, N.; Tjardes, T.; Rixen, D.; Paffrath, T.; Simanski, C.; Neugebauer, E.; Bouillon, B.; AG Polytrauma of the German Trauma Society (DGU). Early coagulopathy in multiple injury: An analysis from the German Trauma Registry on 8724 patients. Injury 2007, 38, 298–304. [Google Scholar] [CrossRef]
- Brohi, K.; Singh, J.; Heron, M.; Coats, T. Acute traumatic coagulopathy. J. Trauma 2003, 54, 1127–1130. [Google Scholar] [CrossRef] [Green Version]
- Chang, R.; Cardenas, J.C.; Wade, C.E.; Holcomb, J.B. Advances in the understanding of trauma-induced coagulopathy. Blood 2016, 128, 1043–1049. [Google Scholar] [CrossRef] [Green Version]
- Cochrane, C.; Chinna, S.; Um, J.Y.; Dias, J.D.; Hartmann, J.; Bradley, J.; Brooks, A. Site-Of-Care Viscoelastic Assay in Major Trauma Improves Outcomes and Is Cost Neutral Compared with Standard Coagulation Tests. Diagnostics 2020, 10, 248652. [Google Scholar] [CrossRef] [PubMed]
- Dobson, G.P.; Letson, H.L.; Sharma, R.; Sheppard, F.R.; Cap, A.P. Mechanisms of early trauma-induced coagulopathy: The clot thickens or not? J. Trauma Acute Care Surg. 2015, 79, 301–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johansson, P.I.; Stensballe, J.; Oliveri, R.; Wade, C.E.; Ostrowski, S.R.; Holcomb, J.B. How I treat patients with massive hemorrhage. Blood 2014, 124, 3052–3058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johansson, P.I.; Stissing, T.; Bochsen, L.; Ostrowski, S.R. Thrombelastography and tromboelastometry in assessing coagulopathy in trauma. Scand. J. Trauma Resusc. Emerg. Med. 2009, 17, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacLeod, J.B.; Lynn, M.; McKenney, M.G.; Cohn, S.M.; Murtha, M. Early coagulopathy predicts mortality in trauma. J. Trauma Acute Care Surg. 2003, 55, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, C.R.; Dwyer, K.M.; Crews, J.D.; Dols, S.J.; Trask, A.L. Usefulness of thrombelastography in assessment of trauma patient coagulation. J. Trauma 1997, 42, 716–720; discussion 720–722. [Google Scholar] [CrossRef] [PubMed]
- Collins, P.W.; Cannings-John, R.; Bruynseels, D.; Mallaiah, S.; Dick, J.; Elton, C.; Weeks, A.D.; Sanders, J.; Aawar, N.; Townson, J. Viscoelastometric-guided early fibrinogen concentrate replacement during postpartum haemorrhage: OBS2, a double-blind randomized controlled trial. BJA Br. J. Anaesth. 2017, 119, 411–421. [Google Scholar] [CrossRef] [Green Version]
- Holcomb, J.B.; Minei, K.M.; Scerbo, M.L.; Radwan, Z.A.; Wade, C.E.; Kozar, R.A.; Gill, B.S.; Albarado, R.; McNutt, M.K.; Khan, S. Admission rapid thrombelastography can replace conventional coagulation tests in the emergency department: Experience with 1974 consecutive trauma patients. Ann. Surg. 2012, 256, 476–486. [Google Scholar] [CrossRef]
- Hunt, B.J.; Lyons, G. Thromboelastography should be available in every labour ward. Int. J. Obstet. Anesth. 2005, 14, 324–325. [Google Scholar] [CrossRef]
- Subramanian, M.; Kaplan, L.J.; Cannon, J.W. Thromboelastography-Guided Resuscitation of the Trauma Patient. JAMA Surg. 2019, 154, 1152–1153. [Google Scholar] [CrossRef]
- Etchill, E.; Sperry, J.; Zuckerbraun, B.; Alarcon, L.; Brown, J.; Schuster, K.; Kaplan, L.; Piper, G.; Peitzman, A.; Neal, M.D. The confusion continues: Results from an American Association for the Surgery of Trauma survey on massive transfusion practices among United States trauma centers. Transfusion 2016, 56, 2478–2486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorlinger, K.; Fries, D.; Dirkmann, D.; Weber, C.F.; Hanke, A.A.; Schochl, H. Reduction of Fresh Frozen Plasma Requirements by Perioperative Point-of-Care Coagulation Management with Early Calculated Goal-Directed Therapy. Transfus. Med. Hemother. 2012, 39, 104–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walsh, M.; Thomas, S.; Moore, E.; Moore, H.; Piscoya, A.; Hake, D.; Son, M.; Pohlman, T.; Wegner, J.; Bryant, J.; et al. Tranexamic Acid for Trauma Resuscitation in the United States of America. Semin. Thromb. Hemost. 2017, 43, 213–223. [Google Scholar] [PubMed]
- Spahn, D.R.; Bouillon, B.; Cerny, V.; Coats, T.J.; Duranteau, J.; Fernandez-Mondejar, E.; Filipescu, D.; Hunt, B.J.; Komadina, R.; Nardi, G. Management of bleeding and coagulopathy following major trauma: An updated European guideline. Crit. Care 2013, 17, R76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hess, J.R.; Lindell, A.L.; Stansbury, L.G.; Dutton, R.P.; Scalea, T.M. The prevalence of abnormal results of conventional coagulation tests on admission to a trauma center. Transfusion 2009, 49, 34–39. [Google Scholar] [CrossRef]
- Wells, D.; Hess, J.R.; Sabath, D.E. Thromboelastography in Trauma: A 1-Year Institutional Experience. Am. J. Clin. Pathol. 2019, 152, S1–S2. [Google Scholar] [CrossRef]
- Hartmann, J.; Walsh, M.; Grisoli, A.; Thomas, A.V.; Shariff, F.; McCauley, R.; Lune, S.V.; Zackariya, N.; Patel, S.; Farrell, M.S. Diagnosis and Treatment of Trauma-Induced Coagulopathy by Viscoelastography. Semin. Thromb. Hemost. 2020, 46, 134–146. [Google Scholar] [CrossRef]
- Curry, N.S.; Davenport, R.; Pavord, S.; Mallett, S.V.; Kitchen, D.; Klein, A.A.; Maybury, H.; Collins, P.W.; Laffan, M. The use of viscoelastic haemostatic assays in the management of major bleeding: A British Society for Haematology Guideline. Br. J. Haematol. 2018, 182, 789–806. [Google Scholar] [CrossRef] [Green Version]
- Schenk, B.; Gorlinger, K.; Treml, B.; Tauber, H.; Fries, D.; Niederwanger, C.; Oswald, E.; Bachler, M. A comparison of the new ROTEM((R)) sigma with its predecessor, the ROTEMdelta. Anaesthesia 2019, 74, 348–356. [Google Scholar] [CrossRef]
- Lloyd-Donald, P.; Churilov, L.; Zia, F.; Bellomo, R.; Hart, G.; McCall, P.; Mårtensson, J.; Glassford, N.; Weinberg, L. Assessment of agreement and interchangeability between the TEG5000 and TEG6S thromboelastography haemostasis analysers: A prospective validation study. BMC Anesthesiol. 2019, 19, 45. [Google Scholar] [CrossRef]
- Gorlinger, K.; Perez-Ferrer, A.; Dirkmann, D.; Saner, F.; Maegele, M.; Calatayud, A.A.P.; Kim, T.Y. The role of evidence-based algorithms for rotational thromboelastometry-guided bleeding management. Korean J. Anesthesiol. 2019, 72, 297–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veigas, P.V.; Callum, J.; Rizoli, S.; Nascimento, B.; da Luz, L.T. A systematic review on the rotational thrombelastometry (ROTEM(R)) values for the diagnosis of coagulopathy, prediction and guidance of blood transfusion and prediction of mortality in trauma patients. Scand. J. Trauma Resusc. Emerg. Med. 2016, 24, 114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wafaisade, A.; Lefering, R.; Maegele, M.; Lendemans, S.; Flohe, S.; Hussmann, B.; Defosse, J.M.; Probst, C.; Paffrath, T.; Bouillon, B.; et al. Coagulation management of bleeding trauma patients is changing in German trauma centers: An analysis from the trauma registry of the German Society for Trauma Surgery. J. Trauma Acute Care Surg. 2012, 72, 936–942. [Google Scholar] [CrossRef] [PubMed]
- Johansson, P.I. Goal-directed hemostatic resuscitation for massively bleeding patients: The Copenhagen concept. Transfus. Apher. Sci. 2010, 43, 401–405. [Google Scholar] [CrossRef] [PubMed]
- Nardi, G.; Agostini, V.; Rondinelli, B.; Russo, E.; Bastianini, B.; Bini, G.; Bulgarelli, S.; Cingolani, E.; Donato, A.; Gambale, G.; et al. Trauma-induced coagulopathy: Impact of the early coagulation support protocol on blood product consumption, mortality and costs. Crit. Care 2015, 19, 83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fenger-Eriksen, C.; Lindberg-Larsen, M.; Christensen, A.Q.; Ingerslev, J.; Sorensen, B. Fibrinogen concentrate substitution therapy in patients with massive haemorrhage and low plasma fibrinogen concentrations. Br. J. Anaesth. 2008, 101, 769–773. [Google Scholar] [CrossRef] [Green Version]
- Innerhofer, P.; Westermann, I.; Tauber, H.; Breitkopf, R.; Fries, D.; Kastenberger, T.; El Attal, R.; Strasak, A.; Mittermayr, M. The exclusive use of coagulation factor concentrates enables reversal of coagulopathy and decreases transfusion rates in patients with major blunt trauma. Injury 2013, 44, 209–216. [Google Scholar] [CrossRef]
- Lim, R., Jr.; Olcott IV, C.; Robinsion, A.; Blaisedale, F. Platelet response and coagulation changes following massive blood replacement. J. Trauma Acute Care Surg. 1973, 13, 577–582. [Google Scholar] [CrossRef]
- Mann, K.G.; Brummel, K.; Butenas, S. What is all that thrombin for? J. Thromb. Haemost. 2003, 1, 1504–1514. [Google Scholar] [CrossRef]
- Martini, W.Z.; Rodriguez, C.M.; Cap, A.P.; Dubick, M.A. Efficacy of resuscitation with fibrinogen concentrate and platelets in traumatic hemorrhage swine model. J. Trauma Acute Care Surg. 2020, 89, S137–S145. [Google Scholar]
- Rahe-Meyer, N.; Solomon, C.; Hanke, A.; Schmidt, D.S.; Knoerzer, D.; Hochleitner, G.; Sorensen, B.; Hagl, C.; Pichlmaier, M. Effects of fibrinogen concentrate as first-line therapy during major aortic replacement surgery: A randomized, placebo-controlled trial. Anesthesiology 2013, 118, 40–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadeghi, M.; Atefyekta, R.; Azimaraghi, O.; Marashi, S.M.; Aghajani, Y.; Ghadimi, F.; Spahn, D.R.; Movafegh, A. A randomized, double blind trial of prophylactic fibrinogen to reduce bleeding in cardiac surgery. Braz. J. Anesthesiol. 2014, 64, 253–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamamoto, K.; Usui, A.; Takamatsu, J. Fibrinogen concentrate administration attributes to significant reductions of blood loss and transfusion requirements in thoracic aneurysm repair. J. Cardiothorac. Surg. 2014, 9, 90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marsden, M.; Benger, J.; Brohi, K.; Curry, N.; Foley, C.; Green, L.; Lucas, J.; Rossetto, A.; Stanworth, S.; Thomas, H.; et al. Coagulopathy, cryoprecipitate and CRYOSTAT-2: Realising the potential of a nationwide trauma system for a national clinical trial. Br. J. Anaesth. 2019, 122, 164–169. [Google Scholar] [CrossRef] [Green Version]
- Fries, D. The early use of fibrinogen, prothrombin complex concentrate, and recombinant-activated factor VIIa in massive bleeding. Transfusion 2013, 53, 91S–95S. [Google Scholar] [CrossRef]
- Innerhofer, P.; Fries, D.; Mittermayr, M.; Innerhofer, N.; von Langen, D.; Hell, T.; Gruber, G.; Schmid, S.; Friesenecker, B.; Lorenz, I.H. Reversal of trauma-induced coagulopathy using first-line coagulation factor concentrates or fresh frozen plasma (RETIC): A single-centre, parallel-group, open-label, randomised trial. Lancet Haematol. 2017, 4, e258–e271. [Google Scholar] [CrossRef]
- Mengoli, C.; Franchini, M.; Marano, G.; Pupella, S.; Vaglio, S.; Marietta, M.; Liumbruno, G.M. The use of fibrinogen concentrate for the management of trauma-related bleeding: A systematic review and meta-analysis. Blood Transfus. 2017, 15, 318–324. [Google Scholar]
- Nascimento, B.; Callum, J.; Tien, H.; Peng, H.; Rizoli, S.; Karanicolas, P.; Alam, A.; Xiong, W.; Selby, R.; Garzon, A.M. Fibrinogen in the initial resuscitation of severe trauma (FiiRST): A randomized feasibility trial. Br. J. Anaesth. 2016, 117, 775–782. [Google Scholar] [CrossRef] [Green Version]
- Schochl, H.; Nienaber, U.; Maegele, M.; Hochleitner, G.; Primavesi, F.; Steitz, B.; Arndt, C.; Hanke, A.; Voelckel, W.; Solomon, C. Transfusion in trauma: Thromboelastometry-guided coagulation factor concentrate-based therapy versus standard fresh frozen plasma-based therapy. Crit. Care 2011, 15, R83. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, K.; Yamaguchi, A.; Sawano, M.; Matsuda, M.; Anan, M.; Inokuchi, K.; Sugiyama, S. Pre-emptive administration of fibrinogen concentrate contributes to improved prognosis in patients with severe trauma. Trauma Surg. Acute Care Open 2016, 1, e000037. [Google Scholar] [CrossRef] [Green Version]
- Curry, N.; Foley, C.; Wong, H.; Mora, A.; Curnow, E.; Zarankaite, A.; Hodge, R.; Hopkins, V.; Deary, A.; Ray, J. Early fibrinogen concentrate therapy for major haemorrhage in trauma (E-FIT 1): Results from a UK multi-centre, randomised, double blind, placebo-controlled pilot trial. Crit. Care 2018, 22, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maegele, M.; Zinser, M.; Schlimp, C.; Schochl, H.; Fries, D. Injectable hemostatic adjuncts in trauma: Fibrinogen and the FIinTIC study. J. Trauma Acute Care Surg. 2015, 78, S76–82. [Google Scholar] [CrossRef] [PubMed]
- Spahn, D.R.; Bouillon, B.; Cerny, V.; Duranteau, J.; Filipescu, D.; Hunt, B.J.; Komadina, R.; Maegele, M.; Nardi, G.; Riddez, L. The European guideline on management of major bleeding and coagulopathy following trauma: Fifth edition. Crit. Care 2019, 23, 98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ziegler, B.; Bachler, M.; Haberfellner, H.; Niederwanger, C.; Innerhofer, P.; Hell, T.; Kaufmann, M.; Maegele, M.; Martinowitz, U.; Nebl, C.; et al. Efficacy of prehospital administration of fibrinogen concentrate in trauma patients bleeding or presumed to bleed (FIinTIC): A multicentre, double-blind, placebo-controlled, randomised pilot study. Eur. J. Anaesthesiol. EJA 2019, 37, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Kaserer, A.; Casutt, M.; Sprengel, K.; Seifert, B.; Spahn, D.R.; Stein, P. Comparison of two different coagulation algorithms on the use of allogenic blood products and coagulation factors in severely injured trauma patients: A retrospective, multicentre, observational study. Scand. J. Trauma Resusc. Emerg. Med. 2018, 26, 4. [Google Scholar] [CrossRef] [Green Version]
- Winearls, J.; Wullschleger, M.; Wake, E.; Hurn, C.; Furyk, J.; Ryan, G.; Trout, M.; Walsham, J.; Holley, A.; Cohen, J. Fibrinogen Early In Severe Trauma studY (FEISTY): Study protocol for a randomised controlled trial. Trials 2017, 18, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Chipman, A.M.; Jenne, C.; Wu, F.; Kozar, R.A. Contemporary resuscitation of hemorrhagic shock: What will the future hold? Am. J. Surg. 2020, 220, 580–588. [Google Scholar] [CrossRef]
- Baksaas-Aasen, K.; Gall, L.S.; Stensballe, J.; Juffermans, N.P.; Curry, N.; Maegele, M.; Brooks, A.; Rourke, C.; Gillespie, S.; Murphy, J. Viscoelastic haemostatic assay augmented protocols for major trauma haemorrhage (ITACTIC): A randomized, controlled trial. SSRN Electron. J. 2020, 47. [Google Scholar] [CrossRef]
- Stettler, G.R.; Moore, E.E.; Moore, H.B.; Nunns, G.R.; Silliman, C.C.; Banerjee, A.; Sauaia, A. Redefining postinjury fibrinolysis phenotypes using two viscoelastic assays. J. Trauma Acute Care Surg. 2019, 86, 679–685. [Google Scholar] [CrossRef]
- Stettler, G.R.; Moore, E.E.; Nunns, G.R.; Chandler, J.; Peltz, E.; Silliman, C.C.; Banerjee, A.; Sauaia, A. Rotational thromboelastometry thresholds for patients at risk for massive transfusion. J. Surg. Res. 2018, 228, 154–159. [Google Scholar] [CrossRef]
- Mitra, B.; Cameron, P.A.; Gruen, R.L.; Mori, A.; Fitzgerald, M.; Street, A. The definition of massive transfusion in trauma: A critical variable in examining evidence for resuscitation. Eur. J. Emerg. Med. 2011, 18, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Nunns, G.R.; Moore, E.E.; Chapman, M.P.; Moore, H.B.; Stettler, G.R.; Peltz, E.; Burlew, C.C.; Silliman, C.C.; Banerjee, A.; Sauaia, A. The hypercoagulability paradox of chronic kidney disease: The role of fibrinogen. Am. J. Surg. 2017, 214, 1215–1218. [Google Scholar] [CrossRef] [PubMed]
- Kalkwarf, K.J.; Drake, S.A.; Yang, Y.; Thetford, C.; Myers, L.; Brock, M.; Wolf, D.A.; Persse, D.; Wade, C.E.; Holcomb, J.B. Bleeding to death in a big city: An analysis of all trauma deaths from hemorrhage in a metropolitan area during 1 year. J. Trauma Acute Care Surg. 2020, 89, 716–722. [Google Scholar] [PubMed]
- Bieler, D.; Franke, A.F.; Hentsch, S.; Paffrath, T.; Willms, A.; Lefering, R.; Kollig, E.W.; TraumaRegister, D.G.U. Gunshot and stab wounds in Germany—Epidemiology and outcome: Analysis from the TraumaRegister DGU(R). Unfallchirurg 2014, 117, 995–1004. [Google Scholar] [CrossRef] [PubMed]
- Dijkink, S.; Krijnen, P.; Hage, A.; Van der Wilden, G.M.; Kasotakis, G.; Hartog, D.D.; Salim, A.; Goslings, J.C.; Bloemers, F.W.; Rhemrev, S.J.; et al. Differences in Characteristics and Outcome of Patients with Penetrating Injuries in the USA and the Netherlands: A Multi-institutional Comparison. World J. Surg. 2018, 42, 3608–3615. [Google Scholar] [CrossRef] [Green Version]
- Al-Shaqsi, S. Models of International Emergency Medical Service (EMS) Systems. Oman Med. J. 2010, 25, 320. [Google Scholar] [CrossRef]
- Oakeshott, J.E.; Griggs, J.E.; Wareham, G.M.; Lyon, R.M. Feasibility of prehospital freeze-dried plasma administration in a UK Helicopter Emergency Medical Service. Eur J. Emerg. Med. 2019, 26, 373–378. [Google Scholar] [CrossRef]
- Curry, N.S.; Davenport, R. Transfusion strategies for major haemorrhage in trauma. Br. J. Haematol. 2019, 184, 508–523. [Google Scholar] [CrossRef] [Green Version]
- Rourke, C.; Curry, N.; Khan, S.; Taylor, R.; Raza, I.; Davenport, R.; Stanworth, S.; Brohi, K. Fibrinogen levels during trauma hemorrhage, response to replacement therapy, and association with patient outcomes. J. Thromb. Haemost. 2012, 10, 1342–1351. [Google Scholar] [CrossRef]
- Fries, D.; Krismer, A.; Klingler, A.; Streif, W.; Klima, G.; Wenzel, V.; Haas, T.; Innerhofer, P. Effect of fibrinogen on reversal of dilutional coagulopathy: A porcine model. Br. J. Anaesth. 2005, 95, 172–177. [Google Scholar] [CrossRef] [Green Version]
- Gorlinger, K.; Dirkmann, D.; Hanke, A.A. Potential value of transfusion protocols in cardiac surgery. Curr. Opin. Anaesthesiol. 2013, 26, 230–243. [Google Scholar] [CrossRef] [PubMed]
- Görlinger, K.; Dirkmann, D.; Hanke, A.A.; Kamler, M.; Kottenberg, E.; Thielmann, M.; Jakob, H.; Peters, J. First-Line Therapy With Coagulation Factor Concentrates Combined With Point-of-Care Coagulation Testing is Associated With Decreased Allogeneic Blood Transfusion in Cardiovascular Surgery. Surv. Anesthesiol. 2012, 56, 163–164. [Google Scholar] [CrossRef]
- Lier, H.; Vorweg, M.; Hanke, A.; Gorlinger, K. Thromboelastometry guided therapy of severe bleeding. Essener Runde algorithm. Hamostaseologie 2013, 33, 51–61. [Google Scholar] [PubMed]
- Schöchl, H.; Voelckel, W.; Schlimp, C. Management of traumatic haemorrhage—The European perspective. Anaesthesia 2015, 70, 102–107, e135–e137. [Google Scholar] [CrossRef] [PubMed]
- Trzebicki, J.; Flakiewicz, E.; Kosieradzki, M.; Blaszczyk, B.; Kołacz, M.; Jureczko, L.; Pacholczyk, M.; Chmura, A.; Lagiewska, B.; Lisik, W. The use of thromboelastometry in the assessment of hemostasis during orthotopic liver transplantation reduces the demand for blood products. Ann. Transplant. 2010, 15, 19–24. [Google Scholar] [PubMed]
- Wang, S.-C.; Shieh, J.-F.; Chang, K.-Y.; Chu, Y.-C.; Liu, C.-S.; Loong, C.-C.; Chan, K.-H.; Mandell, S.; Tsou, M.-Y. Thromboelastography-Guided Transfusion Decreases Intraoperative Blood Transfusion during Orthotopic Liver Transplantation: Randomized Clinical Trial. Transplant. Proc. 2010, 42, 2590–2593. [Google Scholar] [CrossRef] [PubMed]
- Fenger-Eriksen, C.; Fries, D.; David, J.-S.; Bouzat, P.; Lance, M.D.; Grottke, O.; Spahn, D.R.; Schoechl, H.; Maegele, M. Pre-hospital plasma transfusion: A valuable coagulation support or an expensive fluid therapy? BioMed Central 2019, 23, 238. [Google Scholar] [CrossRef] [Green Version]
- Gauss, T.; Lamblin, A.; Bouzat, P. The Twilight Zone: Ten beliefs about viscoelastic tests. Anaesth. Crit. Care Pain Med. 2019, 38, 449–450. [Google Scholar] [CrossRef]
- Schochl, H.; Nienaber, U.; Hofer, G.; Voelckel, W.; Jambor, C.; Scharbert, G.; Kozek-Langenecker, S.; Solomon, C. Goal-directed coagulation management of major trauma patients using thromboelastometry (ROTEM)-guided administration of fibrinogen concentrate and prothrombin complex concentrate. Crit. Care 2010, 14, R55. [Google Scholar] [CrossRef] [Green Version]
- Bugaev, N.; Como, J.J.; Golani, G.; Freeman, J.J.; Sawhney, J.S.; Vatsaas, C.J.; Yorkgitis, B.K.; Kreiner, L.A.; Garcia, N.M.; Aziz, H.A.; et al. Thromboelastography and rotational thromboelastometry in bleeding patients with coagulopathy: Practice management guideline from the Eastern Association for the Surgery of Trauma. J. Trauma Acute Care Surg. 2020, 89, 999–1017. [Google Scholar] [CrossRef]
- Espinosa, A.; Seghatchian, J. What is happening? The evolving role of the blood bank in the management of the bleeding patient: The impact of TEG as an early diagnostic predictor for bleeding. Transfus. Apher. Sci. 2014, 51, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Grottke, O.; Levy, J.H. Prothrombin complex concentrates in trauma and perioperative bleeding. J. Am. Soc. Anthesiol. 2015, 122, 923–931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sperry, J. Pragmatic Prehospital Group O Whole Blood Early Resuscitation (PPOWER) Trial: A Prospective, Interventional, Randomized, 3 Year, Pilot Clinical Trial; National Heart, Lung, and Blood Institute (NHLBI): Bethesda, MD, USA, 2018.
- Ausset, S.; Pouget, T.; Begué, S.; Gross, S.; Martinaud, C.; Tiberghien, P. La prise en charge transfusionnelle de l’hémorragie massive: étude STORHM. Trans. Clin. Biol. 2019, 26, S24. [Google Scholar] [CrossRef]
- Walsh, M.; Fries, D.; Moore, E.; Moore, H.; Thomas, S.; Kwaan, H.C.; Marsee, M.K.; Grisoli, A.; McCauley, R.; Lune, S.V. Whole blood for civilian urban trauma resuscitation: Historical, present, and future considerations. Semin. Thromb. Hemost. 2020, 46, 221–234. [Google Scholar] [CrossRef] [PubMed]
Study | Number of Patients Receiving WB | Study Design | Description | Results |
---|---|---|---|---|
Cotton et al. [28] | 55 | RCT | Single-center, RCT comparing modified WB and component therapy | No difference in 30 day mortality. Possible transfusion benefit in TBI. |
Williams et al. [33] | 198 | Comparative clinical prospective therapeutic study | Comparison of LTOWB versus BCT in prehospital and ED setting for trauma patients | LTOWB received less post-ED blood products with equivocally mortality benefit. |
Hanna et al. [36] | 280 | Retrospective cohort analysis | Analysis of 2015–2016 ACS TQIP database comparing patients in hemorrhagic shock and given at least one unit of PRBCs or WB (note this likely includes patients from other studies) | WB associated with improved 24 h mortality overall and improved in-hospital mortality in subgroups with penetrating mechanism and those without severe head injury. |
Ho and Leonard [31] | 77 | Retrospective cohort study | Unrefrigerated young WB transfusion for patients requiring massive transfusion in a civilian setting | No benefit (overall survival and transfusion were equivalent) |
Leeper et al. [38] | 28 | Propensity matched cohort | Propensity matched cohort of children over 1 year | No difference in mortality. Improved indices of shock and coagulopathy. |
Seheult et al. [22] | 172 | Retrospective case–control analysis | Safety analysis of LTOWB patients by blood group | No mortality difference, similar clinical outcomes across groups, no increased hemolysis noted at 24 h in nongroup O patients. |
Fadeyi et al. [35] | 167 | Retrospective cohort | Comparison trauma patient receiving LTOWB with leuko-reduced LTOWB | Nonstatistically significant 6% increased mortality in leuko-reduced LTOWB (p = 0.185). |
Hazelton et al. [30] | 107 | Dual-center case-match study | Matching analysis for patients who received CSWB vs. BCT for hemodynamic parameters, hemoglobin and hematocrit at 24 h, trauma bay mortality, and 30 day mortality | CSWB associated with improved trauma bay survival and higher mean hemoglobin value at 24 h. No difference in the amount of blood products transfused at 4 and 24 h periods.No difference in 30 day mortality between the two groups. |
Shea et al. [37] | 44 | Prospective observational | Before-and-after comparison of trauma patient requiring activation of massive transfusion before and after implementation of LTOWB MTP (up to 8 LTOWB unit) | No difference of absolute mortality between groups. Post-hoc multivariate regression showed improved adjusted mortality in LTOWB group. Authors argue for effect mediation based on ROTEM parameters. |
Gallaher et al. [29] | 42 | Retrospective observational | Before-and-after comparison of mortality in trauma patients receiving blood products during implementation of LTOWB program | LTOWB did not alter 30 day mortality, nonstatistically significant increase in total blood products, and no difference in lab values at 48 h. |
Zielinski et al. [2] | 24 Mayo 22 Pittsburgh 73 Royal Caribbean | Retrospective observational | Describes the THOR network prehospital WB programs including Mayo Clinic and Allegheny General Hospital and WFWB transfusion on Royal Caribbean cruise | Observation only. Overall mortality in patients who received WB 31%. |
Seheult et al. [25] | 44 | Observational study | Hemolysis markers in group O and nongroup O recipients of platelet replete, uncrossmatched CSWB | No difference in hemolysis markers across groups. |
Zhu et al. [19] | 30 | Retrospective observational | Descriptive study of prehospital WB transfusion implementation which included transfusion of 25 adults and 5 pediatric patients | Observational. Mortality in adult: 36%; mean ISS: 29. Mortality in pediatric: 20%; mean ISS: 29. Mean transport time, 37 min. |
Leeper et al. [20] | 18 | Retrospective observational | Pediatric uncrossmatched LTOWB transfusion for hemorrhagic shock | ISS: 34. Mortality 44%. |
Condron et al. [27] | 1 | Case report | Case report of massive transfusion using 38 units of LTOWB in addition to MTP with blood components | N/A |
Advantages | Disadvantages | |
---|---|---|
Whole blood |
|
|
Fixed ratio |
|
|
VET-guided BCT |
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Walsh, M.; Moore, E.E.; Moore, H.B.; Thomas, S.; Kwaan, H.C.; Speybroeck, J.; Marsee, M.; Bunch, C.M.; Stillson, J.; Thomas, A.V.; et al. Whole Blood, Fixed Ratio, or Goal-Directed Blood Component Therapy for the Initial Resuscitation of Severely Hemorrhaging Trauma Patients: A Narrative Review. J. Clin. Med. 2021, 10, 320. https://doi.org/10.3390/jcm10020320
Walsh M, Moore EE, Moore HB, Thomas S, Kwaan HC, Speybroeck J, Marsee M, Bunch CM, Stillson J, Thomas AV, et al. Whole Blood, Fixed Ratio, or Goal-Directed Blood Component Therapy for the Initial Resuscitation of Severely Hemorrhaging Trauma Patients: A Narrative Review. Journal of Clinical Medicine. 2021; 10(2):320. https://doi.org/10.3390/jcm10020320
Chicago/Turabian StyleWalsh, Mark, Ernest E. Moore, Hunter B. Moore, Scott Thomas, Hau C. Kwaan, Jacob Speybroeck, Mathew Marsee, Connor M. Bunch, John Stillson, Anthony V. Thomas, and et al. 2021. "Whole Blood, Fixed Ratio, or Goal-Directed Blood Component Therapy for the Initial Resuscitation of Severely Hemorrhaging Trauma Patients: A Narrative Review" Journal of Clinical Medicine 10, no. 2: 320. https://doi.org/10.3390/jcm10020320
APA StyleWalsh, M., Moore, E. E., Moore, H. B., Thomas, S., Kwaan, H. C., Speybroeck, J., Marsee, M., Bunch, C. M., Stillson, J., Thomas, A. V., Grisoli, A., Aversa, J., Fulkerson, D., Vande Lune, S., Sjeklocha, L., & Tran, Q. K. (2021). Whole Blood, Fixed Ratio, or Goal-Directed Blood Component Therapy for the Initial Resuscitation of Severely Hemorrhaging Trauma Patients: A Narrative Review. Journal of Clinical Medicine, 10(2), 320. https://doi.org/10.3390/jcm10020320