Transient Increase and Delay of Multifocal Electroretinograms Following Laser Photocoagulations for Diabetic Macular Edema
Abstract
:1. Introduction
2. Experimental Section
2.1. Methods and Patients
2.2. Multifocal Electroretinograms (mfERGs)
3. Results
4. Discussion
4.1. Rationale for Recording mfERGs Immediately after PCs
4.2. Transiently Large and Delayed mfERGs after PC
4.3. Limitations, Clinical Application and Suggestions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stefánsson, E. Ocular oxygenation and the treatment of diabetic retinopathy. Surv. Ophthalmol. 2006, 51, 364–380. [Google Scholar] [CrossRef] [PubMed]
- Budzynski, E.; Smith, J.H.; Bryar, P.; Birol, G.; Linsenmeier, R.A. Effects of photocoagulation on intraretinal PO2 in cat. Invest. Ophthalmol. Vis. Sci. 2008, 49, 380–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frank, R.N. Visual fields and electroretinography following extensive photocoagulation. Arch. Ophthalmol. 1975, 93, 591–598. [Google Scholar] [CrossRef] [PubMed]
- Ogden, T.E.; Callahan, F.; Riekhof, F.T. The electroretinogram after peripheral retinal ablation in diabetic retinopathy. Am. J. Ophthalmol. 1976, 81, 397–402. [Google Scholar] [CrossRef]
- Moschos, M. ERG and VER findings after laser photocoagulation of the retina. Metab. Pediatr. Syst. Ophthalmol. 1982, 6, 101–105. [Google Scholar] [PubMed]
- Liang, J.C.; Fishman, G.A.; Huamonte, F.U.; Anderson, R.J. Comparative electroretinograms in argon laser and xenon arc panretinal photocoagulation. Br. J. Ophthalmol. 1983, 67, 520–525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capoferri, C.; Bagini, M.; Chizzoli, A.; Pece, A.; Brancato, R. Electroretinographic findings in panretinal photocoagulation for diabetic retinopathy. A randomized study with blue-green argon and red krypton lasers. Graefe’s Arch. Clin. Exp. Ophthalmol. 1990, 228, 232–236. [Google Scholar] [CrossRef] [PubMed]
- Kratz, K.E.; Newsome, D.A.; May, J.G. Changes in ERG amplitude following laser induced damage to the primate retina. Curr. Eye Res. 1990, 9, 435–444. [Google Scholar] [CrossRef]
- Seiberth, V.; Alexandridis, E. Function of the diabetic retina after panretinal argon laser photocoagulation. Influence of the intensity of the coagulation spots. Ophthalmologica 1991, 202, 10–17. [Google Scholar] [CrossRef]
- Chuang, H.C.; Kawano, S.; Arai, M.; Tsukada, T.; Kita, M.; Negi, A.; Honda, Y. The influence of argon laser panretinal photocoagulation on the rabbit ERG c-wave. Acta Ophthalmol. 1992, 70, 303–307. [Google Scholar] [CrossRef]
- Hammer, R.M.; Yinon, U.; Rosner, M.; Solomon, A. Time course of electroretinographic recovery following argon laser photocoagulation in cats. Metab. Pediatr. Syst. Ophthalmol. 1996, 19, 1–5. [Google Scholar]
- Leibu, R.; Davila, E.; Zemel, E.; Bitterman, N.; Miller, B.; Perlman, I. Development of laser-induced retinal damage in the rabbit. Graefes Arch. Clin. Exp. Ophthalmol. 1999, 237, 991–1000. [Google Scholar] [CrossRef] [PubMed]
- Greenstein, V.C.; Chen, H.; Hood, D.C.; Holopigian, K.; Seiple, W.; Carr, R.E. Retinal function in diabetic macular edema after focal laser photocoagulation. Investig. Ophthalmol. Vis. Sci. 2000, 41, 3655–3664. [Google Scholar]
- Onozu, H.; Yamamoto, S. Oscillatory potentials of multifocal electroretinogram retinopathy. Doc. Ophthalmol. 2003, 106, 327–332. [Google Scholar] [CrossRef]
- Lovestam, A.M.; Andreasson, S.; Ponjavic, V. Macular function assessed with mfERG before and after panretinal photocoagulation in patients with proliferative diabetic retinopathy. Doc. Ophthalmol. 2004, 109, 115–121. [Google Scholar] [CrossRef] [Green Version]
- Ben, S.G.; Belokopytov, M.; Rosner, M.; Dubinsky, G.; Belkin, M.; Epstein, Y.; Ofri, R. Functional deficits resulting from laser-induced damage in the rat retina. Lasers Surg. Med. 2006, 38, 689–694. [Google Scholar]
- Wallentén, K.G.; Malmsjö, M.; Andréasson, S.; Wackenfors, A.; Johansson, K.; Ghosh, F. Retinal function and PKC alpha expression after focal laser photocoagulation. Graefe’s Arch. Clin. Exp. Ophthalmol. 2007, 245, 1815–1824. [Google Scholar] [CrossRef] [Green Version]
- Kyhn, M.V.; Kiilgaard, J.F.; Scherfig, E.; Prause, J.U.; Cour, M. The spatial resolution of the porcine multifocal electroretinogram for detection of laser-induced retinal lesions. Acta Ophthalmol. 2008, 86, 786–793. [Google Scholar] [CrossRef]
- Lövestam, A.M.; Holm, K. Multifocal electroretinography amplitudes increase after photocoagulation in areas with increased retinal thickness and hard exudates. Acta Ophthalmol. 2010, 88, 188–192. [Google Scholar] [CrossRef]
- Hejcmanová, D.; Machácková, M.; Rencová, E.; Kyprianou, G.; Langrová, H. Visual functions after laser photocoagulation in central serous chorioretinopathy. Acta Medica 2010, 53, 139–145. [Google Scholar] [CrossRef] [Green Version]
- Du, B.; Zhang, H.; Chan, H.H.; Wang, J.T.; Ho, P.W.; Xu, Y.S. Retinal function and morphology of severe non-proliferative diabetic retinopathy before and after retinal photocoagulation. Clin. Exp. Optom. 2011, 94, 284–290. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.W.; Kang, S.W.; Kim, Y.T.; Chung, S.E.; Lee, S.W. Comparative study of patients with central serous chorioretinopathy undergoing focal laser photocoagulation or photodynamic therapy. Br. J. Ophthalmol. 2011, 95, 514–517. [Google Scholar] [CrossRef] [PubMed]
- Venkatesh, P.; Ramanjulu, R.; Azad, R.; Vohra, R.; Garg, S. Subthreshold micropulse diode laser and double frequency neodymium: YAG laser in treatment of diabetic macular edema: A prospective, randomized study using multifocal electroretinography. Photomed. Laser Surg. 2011, 29, 727–733. [Google Scholar] [CrossRef] [PubMed]
- Mitne, S.; Teixeira, S.H.; Schwartz, M.; Belkin, M.; Farah, M.E.; Moraes, N.S.; Cruz, N.L.; Paes, A.T.; Lottenberg, C.L.; Paranhos, J.A. The potential neuroprotective effects of weekly treatment with glatiramer acetate in diabetic patients after panretinal photocoagulation. Clin. Ophthalmol. 2011, 5, 991–997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Messias, A.; Ramos, F.J.A.; Messias, K.; Almeida, F.P.; Costa, R.A.; Scott, I.U.; Gekeler, F.; Jorge, R. Electroretinographic findings associated with panretinal photocoagulation (PRP) versus PRP plus intravitreal ranibizumab treatment for high-risk proliferative diabetic retinopathy. Doc. Ophthalmol. 2012, 124, 225–236. [Google Scholar] [CrossRef]
- Dutescu, R.M.; Skosyrski, S.; Kociok, N.; Semkova, I.; Mergler, S.; Atorf, J.; Joussen, A.M.; Strauß, O.; Kremers, J. Multifocal ERG recordings under visual control of the stimulated fundus in mice. Investig. Ophthalmol. Vis. Sci. 2013, 54, 2582–2589. [Google Scholar] [CrossRef] [Green Version]
- Comyn, O.; Sivaprasad, S.; Peto, T.; Neveu, M.M.; Holder, G.E.; Xing, W.; Bunce, C.V.; Patel, P.J.; Egan, C.A.; Bainbridge, J.W.; et al. A randomized trial to assess functional and structural effects of ranibizumab versus laser in diabetic macular edema (the LUCIDATE study). Am. J. Ophthalmol. 2014, 157, 960–970. [Google Scholar] [CrossRef]
- Kim, H.D.; Han, J.W.; Ohn, Y.H.; Brinkmann, R.; Park, T.K. Functional evaluation using multifocal electroretinogram after selective retina therapy with a microsecond–pulsed laser. Investig. Ophthalmol. Vis. Sci. 2014, 56, 122–131. [Google Scholar] [CrossRef]
- Jhingan, M.; Goud, A.; Peguda, H.K.; Khodani, M.; Luttrull, J.K.; Chhablani, J. Subthreshold microsecond laser for proliferative diabetic retinopathy: A randomized pilot study. Clin. Ophthalmol. 2018, 12, 141–145. [Google Scholar] [CrossRef] [Green Version]
- Ye, H.; Yu, M.; Lu, L.; Jin, C.; Luo, G. Electroretinogram evaluation for the treatment of proliferative diabetic retinopathy by short-pulse pattern scanning laser panretinal photocoagulation. Lasers Med. Sci. 2018, 33, 1095–1102. [Google Scholar] [CrossRef]
- Messias, K.; Barroso, R.M.; Jorge, R.; Messias, A. Retinal function in eyes with proliferative diabetic retinopathy treated with intravitreal ranibizumab and multispot laser panretinal photocoagulation. Doc. Ophthalmol. 2018, 137, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Falsini, B.; Focosi, F.; Molle, F.; Mnganelli, C.; Iarossi, G.; Fadda, A.; Dorin, G.; Mainster, M.A. Monitering retinal function during transpuppilary thermotherapy for occult choroidal neovascularization in age-related macular degeneration. Investig. Ophthalmol. Vis. Sci. 2003, 44, 2133–2140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimada, Y.; Horiguchi, M. Changes in multifocal electroretinogram induced by transpupillary thermotherapy. Arch. Ophthalmol. 2005, 123, 1066–1072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimada, Y.; Horiguchi, M. Stray light-induced multifocal electroretinograms. Investig. Ophthalmol. Vis. Sci. 2003, 44, 1245–1251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hood, D.C.; Seiple, W.; Holopigian, K.; Greenstein, V. A comparison of the components of the multi-focal and full-field ERGs. Visual Neurosci. 1997, 14, 533–544. [Google Scholar] [CrossRef]
- Fortune, B.; Schneck, M.E.; Adams, A.J. Multifocal electroretinogram delays reveal local retinal dysfunction in early diabetic retinopathy. Investig. Ophthalmol. Vis. Sci. 1999, 40, 2638–2651. [Google Scholar]
- Greenstein, V.C.; Holopigian, K.; Hood, D.C.; Seiple, W.; Carr, R.E. The nature and extent of retinal dysfunction associated with diabetic macular edema. Investig. Ophthalmol. Vis. Sci. 2000, 41, 3643–3654. [Google Scholar]
- Bearse, M.A., Jr.; Adams, A.J.; Han, Y.; Schneck, M.E.; Ng, J.; Bronson, C.K.; Barez, S. A multifocal electroretinogram model predicting the development of diabetic retinopathy. Prog. Retin. Eye Res. 2006, 25, 425–448. [Google Scholar] [CrossRef] [Green Version]
- Lorenz, B. Morphological changes of chorioretinal argon laser burns during the first hour post exposure. Lasers. Life Sci. 1988, 2, 207–226. [Google Scholar]
- Steinberg, R.H.; Linsenmeier, R.A.; Griff, E.R. Retinal pigment epithelial cell contributions to the electroretinogram and electrooculogram. Prog. Retin. Eye Res. 1985, 4, 33–66. [Google Scholar] [CrossRef]
- Weinreb, R.N.; Weaver, D.; Mitchell, M.D. Prostanoids in Rabbit Aqueous Humor: Effect of Laser Photocoagulation of the Iris. Investig. Ophthalmol. Vis. Sci. 1985, 26, 1087–1092. [Google Scholar]
- Joo, C.K.; Kim, J.H. Prostaglandin E in rabbit aqueous humor after Nd-YAG laser photodisruption of iris and the effect of topical indomethacin pretreatment. Investig. Ophthalmol. Vis. Sci. 1992, 33, 1685–1689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaji, Y.; Hiraki, S.; Hirata, H.; Hayasaka, S. Nicardipine inhibits acute rise of aqueous flare and intraocular pressure induced by argon laser photocoagulation. Ocul. Immunol. Inflamm. 1996, 4, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, T.; Kawakami, H.; Sawada, A.; Iwaki, M.; Tsuji, A.; Sugiyama, K.; Kitazawa, Y. Effects of nitric oxide synthase inhibitor on intraocular pressure and ocular inflammation following laser irradiation in rabbits. Curr. Eye Res. 1998, 17, 308–315. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.Y.; Hiraki, S.; Kadoi, C.; Hayasaka, S. Effects of nilvadipine, nicardipine and verapamil on acute rise of aqueous flare induced by iris photocoagulation or intravenous lipopolysaccharides in pigmented rabbits. Ophthalmic. Res. 2000, 32, 205–209. [Google Scholar] [CrossRef] [PubMed]
- Nonaka, A.; Kiryu, J.; Tsujikawa, A.; Yamashiro, K.; Nishijima, K.; Kamizuru, H.; Ieki, Y.; Miyamoto, K.; Nishiwaki, H.; Honda, Y.; et al. Inflammatory response after scatter laser photocoagulation in nonphotocoagulated retina. Invest. Ophthalmol. Vis. Sci. 2000, 43, 1204–1209. [Google Scholar]
- Yamasaki, A.; Ito, H.; Yusa, J.; Sakurai, Y.; Okuyama, N.; Ozawa, R. Expression of heat shock proteins, Hsp70 and Hsp25, in the rat gingiva after irradiation with a CO2 laser in coagulation mode. J. Periodontal. Res. 2010, 45, 323–330. [Google Scholar] [CrossRef]
- Sramek, C.; Mackanos, M.; Spitler, R.; Leung, L.S.; Nomoto, H.; Contag, C.H.; Palanker, D. Non-damaging retinal phototherapy: Dynamic range of heat shock protein expression. Investig. Ophthalmol. Vis. Sci. 2011, 52, 1780–1787. [Google Scholar] [CrossRef] [Green Version]
- Chidlow, G.; Shibeeb, O.; Plunkett, M.; Casson, R.J.; Wood, J.P. Glial cell and inflammatory responses to retinal laser treatment: Comparison of a conventional photocoagulator and a novel, 3-nanosecond pulse laser. Investig. Ophthalmol. Vis. Sci. 2011, 54, 2319–2332. [Google Scholar] [CrossRef] [Green Version]
- Inagaki, K.; Shuo, T.; Katakura, K.; Ebihara, N.; Murakami, A.; Ohkoshi, K. Sublethal Photothermal Stimulation with a Micropulse Laser Induces Heat Shock Protein Expression in ARPE-19 Cells. J. Ophthalmol. 2015, 2015, 729792. [Google Scholar] [CrossRef] [Green Version]
- Tababat, K.P.; Torre, C.; Canals, F.; Bennet, H.; Simo, R.; Hernandez, C.; Fex, M.; Agardh, C.D.; Hansson, O.; Agardh, E. Photocoagulation of human retinal pigment epithelium in vitro: Unravelling the effects on ARPE-19 by transcriptomics and proteomics. Acta Ophthalmol. 2015, 93, 348–354. [Google Scholar] [CrossRef] [PubMed]
- Lavinsky, D.; Wang, J.; Huie, P.; Dalal, R.; Lee, S.J.; Lee, D.Y.; Palanker, D. Nondamaging Retinal Laser Therapy: Rationale and Applications to the Macula. Investig. Ophthalmol. Vis. Sci. 2016, 57, 2488–2500. [Google Scholar] [CrossRef] [PubMed]
- Kern, K.; Mertineit, C.L.; Brinkmann, R.; Miura, Y. Expression of heat shock protein 70 and cell death kinetics after different thermal impacts on cultured retinal pigment epithelial cells. Exp. Eye Res. 2018, 170, 117–126. [Google Scholar] [CrossRef] [PubMed]
Case | Age/Gender | Eye | VA * | Photocoagulation † |
---|---|---|---|---|
1 | 65/F | OD | 0.5 | 0.15 w, 0.20 s, 0.15 mm, 22 (11) shots |
2 | 56/F | OS | 0.8 | 0.15 w, 0.20 s, 0.15 mm, 15 (14) shots |
3 | 67/F | OS | 0.6 | 0.15 w, 0.20 s, 0.20 mm, 14 (13) shots |
4 | 72/F | OS | 0.7 | 0.20 w, 0.20 s, 0.20 mm, 20 (13) shots |
5 | 78/F | OS | 0.5 | 0.2 w, 0.2 s, 0.2 mm, 22 (11) shots |
6 | 62/M | OD | 1.0 | 0.15 w, 0.2 s, 0.15 mm, 18 (7) shots |
7 | 61/M | OD | 0.4 | 0.2 w, 0.2 s, 0.2 mm, 25 (19) shots |
8 | 56/M | OS | 1.0 | 0.2 w, 0.2 s, 0.2 mm, 20 (12) shots |
9 | 61/F | OD | 0.9 | 0.2 w, 0.2 s, 0.2 mm, 20 (16) shots |
10 | 59/M | OD | 0.6 | 0.2 w, 0.2 s, 0.2 mm, 29 (17) shots |
11 | 57/M | OD | 0.5 | 0.2 w, 0.2 s, 0.2 mm, 26 (19) shots |
12 | 44/F | OS | 0.7 | 0.2 w, 0.2 s, 0.2 mm, 31 (20) shots |
13 | 54/M | OD | 0.5 | 0.2 w, 0.2 s, 0.2 mm, 22 (18) shots |
14 | 56/F | OS | 0.7 | 0.2 w, 0.2 s, 0.2 mm, 23 (19) shots |
15 | 48/M | OD | 0.8 | 0.2 w, 0.2 s, 0.2 mm, 21 (19) shots |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shimada, Y.; Shibuya, M.; Shinoda, K. Transient Increase and Delay of Multifocal Electroretinograms Following Laser Photocoagulations for Diabetic Macular Edema. J. Clin. Med. 2021, 10, 357. https://doi.org/10.3390/jcm10020357
Shimada Y, Shibuya M, Shinoda K. Transient Increase and Delay of Multifocal Electroretinograms Following Laser Photocoagulations for Diabetic Macular Edema. Journal of Clinical Medicine. 2021; 10(2):357. https://doi.org/10.3390/jcm10020357
Chicago/Turabian StyleShimada, Yoshiaki, Masayuki Shibuya, and Kei Shinoda. 2021. "Transient Increase and Delay of Multifocal Electroretinograms Following Laser Photocoagulations for Diabetic Macular Edema" Journal of Clinical Medicine 10, no. 2: 357. https://doi.org/10.3390/jcm10020357
APA StyleShimada, Y., Shibuya, M., & Shinoda, K. (2021). Transient Increase and Delay of Multifocal Electroretinograms Following Laser Photocoagulations for Diabetic Macular Edema. Journal of Clinical Medicine, 10(2), 357. https://doi.org/10.3390/jcm10020357