COPD Diagnosis: Time for Disruption
Abstract
:1. Introduction
2. The Airflow Tunnel View
3. Imaging of the Lungs: A New Perspective to Redefine Copd
4. Defining COPD in the 21st Century
Author Contributions
Funding
Conflicts of Interest
References
- Collaborators GBDCoD. Global, Regional, and National Age-Sex-Specific Mortality for 282 Causes of Death in 195 Countries and Territories, 1980–2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1736–1788. [Google Scholar] [CrossRef] [Green Version]
- Lopez, A.D.; Shibuya, K.; Rao, C.; Mathers, C.D.; Hansell, A.; Held, L.S.; Schmid, V.; Buist, S. Chronic Obstructive Pulmonary Disease: Current Burden and Future Projections. Eur. Respir. J. 2006, 27, 397–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Global Strategy for the Diagnosis, Management and Prevention of Chronic Obstructive Pulmonary Disease. Available online: https://goldcopd.org/wp-content/uploads/2018/11/GOLD-2019-v1.7-FINAL-14Nov2018-WMS.pdf (accessed on 11 October 2021).
- Buist, A.S.; McBurnie, M.A.; Vollmer, W.M.; Gillespie, S.; Burney, P.; Mannino, D.; Menezes, A.M.; Sullivan, S.D.; Lee, T.; Weiss, K.B.; et al. International Variation in the Prevalence of COPD (The BOLD Study): A Population-Based Prevalence Study. Lancet 2007, 370, 741–750. [Google Scholar] [CrossRef]
- Murray, C.J.L.; Vos, T.; Lozano, R.; Naghavi, M.; Flaxman, A.D.; Michaud, C.; Ezzati, M.; Shibuya, K.; Salomon, J.A.; Abdalla, S.; et al. Disability-Adjusted Life Years (DALYs) for 291 Diseases and Injuries in 21 Regions, 1990–2010: A Systematic Analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2197–2223. [Google Scholar] [CrossRef]
- Kirsch, F.; Schramm, A.; Schwarzkopf, L.; Lutter, J.I.; Szentes, B.; Huber, M.; Leidl, R. Direct and Indirect Costs of COPD Progression and Its Comorbidities in a Structured Disease Management Program: Results from the LQ-DMP Study. Respir. Res. 2019, 20, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Ray, S.M.; Guarascio, A.J.; Finch, C.K.; Self, T.H. The Clinical and Economic Burden of Chronic Obstructive Pulmonary Disease in the USA. Clin. Outcomes Res. 2013, 5, 235–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wacker, M.; Jörres, R.; Schulz, H.; Heinrich, J.; Karrasch, S.; Karch, A.; Koch, A.; Peters, A.; Leidl, R.; Vogelmeier, C.; et al. Direct and Indirect Costs of COPD and Its Comorbidities: Results from the German COSYCONET Study. Respir. Med. 2016, 111, 39–46. [Google Scholar] [CrossRef] [Green Version]
- Termininology, Definitions and Classification of Chronic Pulmonary Emphysema and Related Conditions. Thorax 1959, 14, 286. Available online: https://thorax.bmj.com/content/thoraxjnl/214/284/286.full.pdf (accessed on 11 October 2021). [CrossRef] [Green Version]
- Snider, G.L. Nosology for Our Day: Its Application to Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2003, 167, 678–683. [Google Scholar] [CrossRef]
- Scadding, J.G. Health and Disease: What Can Medicine Do for Philosophy? J. Med. Ethic. 1988, 14, 118–124. [Google Scholar] [CrossRef] [Green Version]
- Seidlein, A.-H.; Salloch, S. Illness and Disease: An Empirical-Ethical Viewpoint. BMC Med. Ethic. 2019, 20, 5. [Google Scholar] [CrossRef] [PubMed]
- Twaddle, A. Influence and Illness: Definitions and Definers of Illness Behavior Among Older Males in Providence, Rhode Island. Master’s Thesis, Brown University, Providence, RI, USA, 1968. [Google Scholar]
- Pauwels, R.A.; Buist, A.S.; Calverley, P.M.A.; Jenkins, C.; Hurd, S.S. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2001, 163, 1256–1276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kerstjens, H.A.M. The GOLD Classification has not Advanced Understanding of COPD. Am. J. Respir. Crit. Care Med. 2004, 170, 212–213. [Google Scholar] [CrossRef] [PubMed]
- Temple, L.K.F.; McLeod, R.S.; Gallinger, S.; Wright, J.G. Essays on Science And Society: Defining Disease in the Genomics Era. Science 2001, 293, 807–808. [Google Scholar] [CrossRef] [Green Version]
- Hutchinson, J. On the Capacity of the Lungs, and on the Respiratory Functions, with a View of Establishing a Precise and Easy Method of Detecting Disease by the Spirometer. Med. Chir. Trans. 1846, 29, 137–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiffenau, R.; Pinelli, A. Air Curlant et Air Captive dans L’exploration de la Function Ventilatrice Pulmonaire. Paris Med. 1947, 133, 624–628. [Google Scholar]
- Gaensler, E.A. Air Velocity Index: A Numerical Expression of the Functionally Effective Portion of Ventilation. Am. Rev. Tuberc. 1950, 62, 17–28. [Google Scholar]
- Gaensler, E.A. Analysis of the Ventilatory Defect by Timed Capacity Measurements. Am. Rev. Tuberc. 1951, 64, 256–278. [Google Scholar]
- Briscoe, W.A.; Nash, E.S. The Slow Space in Chronic Obstructive Pulmonary Disease. Ann. N. Y. Acad. Sci. 1965, 121, 706–722. [Google Scholar] [CrossRef]
- Bates, D. Respiratory Function in Disease, 3rd ed.; WB Saunders: Philadelphia, PA, USA, 1989. [Google Scholar]
- Smith, T.F. Pulmonary Function Testing: Indications and Interpretations; Archie, F., Wilson, M.D., Eds.; Grune & Stratton: New York, NY, USA, 1985. [Google Scholar]
- Pride, N.; Macklem, P. The Respiratory System. Mechanics of Breathing. In Handbook of Physiology; Macklem, P., Mead, J., Eds.; American Physiological Society: Bethesda, MD, USA, 1986; Volume 3, pp. 659–692. [Google Scholar]
- Pellegrino, R.; Viegi, G.; Brusasco, V.; Crapo, R.O.; Burgos, F.; Casaburi, R.; Coates, A.; Van Der Grinten, C.P.M.; Gustafsson, P.; Hankinson, J.; et al. Interpretative Strategies for Lung Function Tests. Eur. Respir. J. 2005, 26, 948–968. [Google Scholar] [CrossRef]
- Griner, P.F.; Mayewski, R.J.; Mushlin, A.I.; Greenland, P. Selection and Interpretation of Diagnostic Tests and Procedures. Principles and Applications. Ann. Intern. Med. 1981, 94, 557–592. [Google Scholar]
- Hankinson, J.L.; Odencrantz, J.R.; Fedan, K.B. Spirometric Reference Values from a Sample of the General U.S. Population. Am. J. Respir. Crit. Care Med. 1999, 159, 179–187. [Google Scholar] [CrossRef]
- Mannino, D.M.; Buist, S.A.; Vollmer, W.M. Chronic Obstructive Pulmonary Disease in the Older Adult: What Defines Ab-Normal Lung Function? Thorax 2007, 62, 237–241. [Google Scholar] [CrossRef] [Green Version]
- van Dijk, W.; Tan, W.; Li, P.; Guo, B.; Li, S.; Benedetti, A.; Bourbeau, J.; CanCOLD Study Group. Clinical Relevance of Fixed Ratio vs Lower Limit of Normal of FEV1/FVC in COPD: Patient-Reported Outcomes from the CanCOLD Cohort. Ann Fam Med. 2015, 13, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Bhatt, S.P.; Balte, P.P.; Schwartz, J.E.; Cassano, P.A.; Couper, D.; Jacobs, D.R.; Kalhan, R.; O’Connor, G.T.; Yende, S.; Sanders, J.L.; et al. Discriminative Accuracy of FEV1:FVC Thresholds for COPD-Related Hospitalization and Mortality. JAMA 2019, 321, 2438–2447. [Google Scholar] [CrossRef] [Green Version]
- Celli, B.R.; Cote, C.G.; Marin, J.M.; Casanova, C.; Montes de Oca, M.; Mendez, R.A.; Plata, V.P.; Cabral, H.J. The Body-Mass Index, Airflow Obstruction, Dyspnea, and Exercise Capacity Index in Chronic Obstructive Pulmonary Disease. N. Engl. J. Med. 2004, 350, 1005–1012. [Google Scholar] [CrossRef] [Green Version]
- Hurst, J.R.; Anzueto, A.; Vestbo, J. Susceptibility to Exacerbation in COPD. Lancet Respir Med. 2017, 5, e29. [Google Scholar] [CrossRef] [Green Version]
- Mohamed Hoesein, F.A.; Zanen, P.; Lammers, J.W. Lower Limit of Normal or FEV1/FVC <0.70 in Diagnosing COPD: An EvidenceBased Review. Respir. Med. 2011, 105, 907–915. [Google Scholar] [PubMed] [Green Version]
- Wollmer, P.; Engström, G. Fixed Ratio or Lower Limit of Normal as Cut-Off Value for FEV1/VC: An Outcome Study. Respir. Med. 2013, 107, 1460–1462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lowe, K.E.; Regan, E.A.; Anzueto, A.; Austin, E.; Austin, J.H.; Beaty, T.H.; Benos, P.V.; Benway, C.J.; Bhatt, S.P.; Bleecker, E.R.; et al. COPDGene® 2019: Redefining the Diagnosis of Chronic Obstructive Pulmonary Disease. Chronic Obs. Pulm Dis. 2019, 6, 384–399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valenstein, P.N. Evaluating Diagnostic Tests with Imperfect Standards. Am. J. Clin. Pathol. 1990, 93, 252–258. [Google Scholar] [CrossRef] [PubMed]
- Tager, I.B.; Segal, M.R.; Speizer, F.E.; Weiss, S.T. The Natural History of Forced Expiratory Volumes: Effect of Cigarette Smoking and Respiratory Symptoms. Am. Rev. Respir. Dis. 1988, 138, 837–849. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, C.; Peto, R. The Natural History of Chronic Airflow Obstruction. BMJ 1977, 1, 1645–1648. [Google Scholar] [CrossRef] [Green Version]
- Lange, P.; Celli, B.R.; Agustí, A.; Jensen, G.B.; Divo, M.; Faner, R.; Guerra, S.; Marott, J.L.; Martinez, F.D.; Camblor, P.M.; et al. Lung-Function Trajectories Leading to Chronic Obstructive Pulmonary Disease. N. Engl. J. Med. 2015, 373, 111–122. [Google Scholar] [CrossRef] [Green Version]
- Burrows, B.; Knudson, R.J.; Cline, M.G.; Lebowitz, M.D. Quantitative Relationships between Cigarette Smoking and Ventilatory Function. Am. Rev. Respir. Dis. 1977, 115, 195–205. [Google Scholar] [CrossRef] [PubMed]
- Agustí, A.; Noell, G.; Brugada, J.; Faner, R. Lung Function in Early Adulthood and Health in Later Life: A Transgenerational Cohort Analysis. Lancet Respir. Med. 2017, 5, 935–945. [Google Scholar] [CrossRef]
- Ross, J.C.; Castaldi, P.J.; Cho, M.H.; Hersh, C.P.; Rahaghi, F.N.; Sanchez-Ferrero, G.V.; Parker, M.M.; Litonjua, A.A.; Sparrow, D.; Dy, J.G.; et al. Longitudinal Modeling of Lung Function Trajectories in Smokers with and without Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2018, 198, 1033–1042. [Google Scholar] [CrossRef] [PubMed]
- Doyle, L.W.; Andersson, S.; Bush, A.; Cheong, J.L.Y.; Clemm, H.; Evensen, K.A.I.; Gough, A.; Halvorsen, T.; Hovi, P.; Kajantie, E.; et al. Expiratory Airflow in Late Adolescence and Early Adulthood in Individuals Born Very Preterm or with very Low Birthweight Compared with Controls Born at Term or with Normal Birthweight: A Meta-Analysis of Individual Participant Data. Lancet Respir. Med. 2019, 7, 677–686. [Google Scholar] [CrossRef] [Green Version]
- Boucherat, O.; Morissette, M.C.; Provencher, S.; Bonnet, S.; Maltais, F. Bridging Lung Development with Chronic Obstructive Pulmonary Disease. Relevance of Developmental Pathways in Chronic Obstructive Pulmonary Disease Pathogenesis. Am. J. Respir. Crit. Care Med. 2016, 193, 362–375. [Google Scholar] [CrossRef]
- Wong, P.M.; Lees, A.N.; Louw, J.; Lee, F.Y.; French, N.; Gain, K.; Murray, C.P.; Wilson, A.; Chambers, D.C. Emphysema in Young Adult Survivors of Moderate-to-Severe Bronchopulmonary Dysplasia. Eur. Respir. J. 2008, 32, 321–328. [Google Scholar] [CrossRef] [Green Version]
- Tan, W.C.; Bourbeau, J.; Hernandez, P.; Chapman, K.R.; Cowie, R.; FitzGerald, J.M.; Marciniuk, D.D.; Maltais, F.; Buist, A.S.; O’Donnell, E.D.; et al. Exacerbation-Like Respiratory Symptoms in Individuals without Chronic Obstructive Pulmonary Disease: Results from a Population-Based Study. Thorax 2014, 69, 709–717. [Google Scholar] [CrossRef] [Green Version]
- Bowler, R.P.; Kim, V.; Regan, E.; Williams, A.A.; Santorico, S.A.; Make, B.J.; Lynch, D.A.; Hokanson, J.E.; Washko, G.R.; Bercz, P.; et al. Prediction of Acute Respiratory Disease in Current and Former Smokers with and Without COPD. Chest 2014, 146, 941–950. [Google Scholar] [CrossRef] [Green Version]
- Regan, E.A.; Lynch, D.A.; Curran-Everett, D.; Curtis, J.; Austin, J.H.M.; Grenier, P.A.; Kauczor, H.-U.; Bailey, W.C.; DeMeo, D.L.; Casaburi, R.H.; et al. Clinical and Radiologic Disease in Smokers with Normal Spirometry. JAMA Intern. Med. 2015, 175, 1539–1549. [Google Scholar] [CrossRef]
- Woodruff, P.G.; Barr, R.G.; Bleecker, E.; Christenson, S.A.; Couper, D.; Curtis, J.; Gouskova, N.A.; Hansel, N.N.; Hoffman, E.; Kanner, R.E.; et al. Clinical Significance of Symptoms in Smokers with Preserved Pulmonary Function. N. Engl. J. Med. 2016, 374, 1811–1821. [Google Scholar] [CrossRef]
- Rodriguez-Roisin, R.; Han, M.K.; Vestbo, J.; Wedzicha, J.A.; Woodruff, P.G.; Martinez, F.J. Chronic Respiratory Symptoms with Normal Spirometry. A Reliable Clinical Entity? Am. J. Respir. Crit. Care Med. 2017, 195, 17–22. [Google Scholar] [CrossRef] [Green Version]
- Heard, B.E. Further Observations on the Pathology of Pulmonary Emphysema in Chronic Bronchitics. Thorax 1959, 14, 58–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morice, A.H.; Millqvist, E.; Bieksiene, K.; Birring, S.S.; Dicpinigaitis, P.; Ribas, C.D.; Boon, M.H.; Kantar, A.; Lai, K.; McGarvey, L.; et al. ERS Guidelines on the Diagnosis and Treatment of Chronic Cough in Adults and Children. Eur. Respir. J. 2020, 55, 1901136. [Google Scholar] [CrossRef] [PubMed]
- Celli, B.R.; Wedzicha, J.A. Update on Clinical Aspects of Chronic Obstructive Pulmonary Disease. N. Engl. J. Med. 2019, 381, 1257–1266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levine, G.; Housley, F.; MacLeod, P.; Macklem, P.T. Gas Exchange Abnormalities in Mild Bronchitis and Asymptomatic Asthma. N. Engl. J. Med. 1970, 282, 1277–1282. [Google Scholar] [CrossRef]
- Cotes, J.E.; Chinn, D.J.; Quanjer, P.H.; Roca, J.; Yernault, J.C. Standardization of the Measurement of Transfer Factor (Diffusing Capacity). Report Working Party Standardization of Lung Function Tests, European Community for Steel and Coal. Official Statement of the European Respiratory Society. Eur. J. Respir. Dis. Suppl. 1993, 16, 41–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welle, I.; Eide, G.E.; Bakke, P.S.; Gulsvik, A. The Single-Breath Transfer Factor for Carbon Monoxide and Respiratory Symptoms in a Norwegian Community Sample. Eur. Respir. J. 1999, 14, 1320–1325. [Google Scholar] [CrossRef] [Green Version]
- Watson, A.; Joyce, H.; Hopper, L.; Pride, N.B. Influence of Smoking Habits on Change in Carbon Monoxide Transfer Factor over 10 Years in Middle Aged Men. Thorax 1993, 48, 119–124. [Google Scholar] [CrossRef] [Green Version]
- Harvey, B.-G.; Strulovici-Barel, Y.; Kaner, R.J.; Sanders, A.; Vincent, T.L.; Mezey, J.G.; Crystal, R.G. Risk of COPD with Obstruction in Active Smokers with Normal Spirometry and Reduced Diffusion Capacity. Eur. Respir. J. 2015, 46, 1589–1597. [Google Scholar] [CrossRef] [Green Version]
- Watson, A.; Joyce, H.; Pride, N. Changes in Carbon Monoxide Transfer over 22 Years in Middle-Aged Men. Respir. Med. 2000, 94, 1103–1108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sherrill, D.L.; Enright, P.L.; Kaltenborn, W.T.; Lebowitz, M.D. Predictors of Longitudinal Change in Diffusing Capacity over 8 Years. Am. J. Respir. Crit. Care Med. 1999, 160, 1883–1887. [Google Scholar] [CrossRef] [PubMed]
- Viegi, G.; Sherrill, D.L.; Carrozzi, L.; Di Pede, F.; Baldacci, S.; Pistelli, F.; Enright, P. An 8-Year Follow-up of Carbon Monoxide Diffusing Capacity in a General Population Sample of Northern Italy. Chest 2001, 120, 74–80. [Google Scholar] [CrossRef] [Green Version]
- Storebø, M.L.; Eagan, T.M.L.; Eide, G.E.; Gulsvik, A.; Thorsen, E.; Bakke, P.S. Change in Pulmonary Diffusion Capacity in a General Population Sample over 9 Years. Eur. Clin. Respir. J. 2016, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Augustin, I.M.L.; Spruit, M.A.; Houben-Wilke, S.; Franssen, F.M.E.; Vanfleteren, L.E.G.W.; Gaffron, S.; Janssen, D.J.A.; Wouters, E.F.M. The Respiratory Physiome: Clustering Based on a Comprehensive Lung Function Assessment in Patients with COPD. PLoS ONE 2018, 13, e0201593. [Google Scholar] [CrossRef] [Green Version]
- Mead, J. The Lung’s “Quiet Zone”. N. Engl. J. Med. 1970, 282, 1318–1319. [Google Scholar] [CrossRef] [PubMed]
- Rohrer, F. Physiologie der Atembewegung. In Handbuch der Normalen and Pathologischen Physiologie; Bethe, A., Embden, G., von Bergmann, G., Eds.; Springer: Berlin, Germany, 1925; pp. 70–127. [Google Scholar]
- Weibel, E. Morphometry of the Human Lung; Springer: New York, NY, USA, 1963. [Google Scholar]
- Macklem, P.T.; Mead, J. Resistance of Central and Peripheral Airways Measured by a Retrograde Catheter. J. Appl. Physiol. 1967, 22, 395–401. [Google Scholar] [CrossRef] [Green Version]
- Hogg, J.C.; Macklem, P.T.; Thurlbeck, W.M. Site and Nature of Airway Obstruction in Chronic Obstructive Lung Disease. N. Engl. J. Med. 1968, 278, 1355–1360. [Google Scholar] [CrossRef]
- Yanai, M.; Sekizawa, K.; Ohrui, T.; Sasaki, H.; Takishima, T. Site of Airway Obstruction in Pulmonary Disease: Direct Measurement of Intrabronchial Pressure. J. Appl. Physiol. 1992, 72, 1016–1023. [Google Scholar] [CrossRef] [PubMed]
- Hogg, J.C.; Paré, P.D.; Hackett, T.-L. The Contribution of Small Airway Obstruction to the Pathogenesis of Chronic Obstructive Pulmonary Disease. Physiol. Rev. 2017, 97, 529–552. [Google Scholar] [CrossRef] [PubMed]
- Soares, M.; Richardson, M.; Thorpe, J.; Owers-Bradley, J.; Siddiqui, S. Comparison of Forced and Impulse Oscillometry Meas-urements: A Clinical Population and Printed Airway Model Study. Sci. Rep. 2019, 9, 2130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooxson, H.O.; Leipsic, J.; Parraga, G.; Sin, D.D. Using Pulmonary Imaging to Move Chronic Obstructive Pulmonary Disease Beyond FEV1. Am. J. Respir. Crit. Care Med. 2014, 190, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Labaki, W.; Martinez, C.H.; Martinez, F.J.; Galbán, C.J.; Ross, B.D.; Washko, G.R.; Barr, R.G.; Regan, E.; Coxson, H.O.; Hoffman, E.; et al. The Role of Chest Computed Tomography in the Evaluation and Management of the Patient with Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2017, 196, 1372–1379. [Google Scholar] [CrossRef]
- Remy-Jardin, M.; Remy, J.; Boulenguez, C.; Sobaszek, A.; Edme, J.L.; Furon, D. Morphologic Effects of Cigarette Smoking on Airways and Pulmonary Parenchyma in Healthy Adult Volunteers: CT Evaluation and Correlation with Pulmonary Function Tests. Radiology 1993, 186, 107–115. [Google Scholar] [CrossRef]
- Mohamed Hoesein, F.A.; Zanen, P.; de Jong, P.A.; Firdaus, A.A.; van Ginneken, B.; Boezen, H.M.; Groen, H.J.M.; Oudkerk, M.; de Koning, H.J.; Postma, D.S.; et al. Rate of Progression of CT-Quantified Emphysema in Male Current and Ex-Smokers: A Follow-Up Study. Respir. Res. 2013, 14, 55. [Google Scholar] [CrossRef] [Green Version]
- Regan, E.A.; Hokanson, J.E.; Murphy, J.R.; Make, B.; Lynch, D.A.; Beaty, T.H.; Curran-Everett, D.; Silverman, E.K.; Crapo, J.D. Genetic Epidemiology of COPD (COPDGene) Study Design. COPD: J. Chronic Obstr. Pulm. Dis. 2010, 7, 32–43. [Google Scholar] [CrossRef]
- Tan, W.C.; Hague, C.J.; Leipsic, J.; Bourbeau, J.; Zheng, L.; Li, P.Z.; Sin, D.D.; Coxson, H.O.; Kirby, M.; Hogg, J.C.; et al. Findings on Thoracic Computed Tomography Scans and Respiratory Outcomes in Persons with and without Chronic Obstructive Pulmonary Disease: A Population-Based Cohort Study. PLoS ONE 2016, 11, e0166745. [Google Scholar] [CrossRef]
- Galbán, C.J.; Han, M.K.; Boes, J.L.; Chughtai, K.A.; Meyer, C.R.; Johnson, T.D.; Galbán, S.; Rehemtulla, A.; Kazerooni, E.A.; Martinez, F.J.; et al. Computed Tomography–Based Biomarker Provides Unique Signature for Diagnosis of COPD Phenotypes and Disease Progression. Nat. Med. 2012, 18, 1711–1715. [Google Scholar] [CrossRef]
- Bhatt, S.P.; Soler, X.; Wang, X.; Murray, S.; Anzueto, A.R.; Beaty, T.H.; Boriek, A.M.; Casaburi, R.; Criner, G.J.; Diaz, A.A.; et al. Association between Functional Small Airway Disease and FEV1Decline in Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2016, 194, 178–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Criner, R.N.; Hatt, C.R.; Galbán, C.J.; Kazerooni, E.A.; Lynch, D.A.; McCormack, M.C.; Casaburi, R.; MacIntyre, N.R.; Make, B.J.; Martinez, F.J.; et al. Relationship between Diffusion Capacity and Small Airway Abnormality in COPDGene. Respir. Res. 2019, 20, 1–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, A.L.; Bragman, F.J.S.; Rangelov, B.; Han, M.K.; Galbán, C.J.; Lynch, D.A.; Hawkes, D.J.; Alexander, D.C.; Hurst, J.R.; Crapo, J.D.; et al. Disease Progression Modeling in Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2020, 201, 294–302. [Google Scholar] [CrossRef] [PubMed]
- Smith, B.M.; Kirby, M.; Hoffman, E.; Kronmal, R.A.; Aaron, S.D.; Allen, N.; Bertoni, A.; Coxson, H.O.; Cooper, C.; Couper, D.J.; et al. Association of Dysanapsis with Chronic Obstructive Pulmonary Disease Among Older Adults. JAMA 2020, 323, 2268–2280. [Google Scholar] [CrossRef] [PubMed]
- McDonough, J.; Yuan, R.; Suzuki, M.; Seyednejad, N.; Elliott, W.M.; Sanchez, P.G.; Wright, A.C.; Gefter, W.B.; Litzky, L.; Coxson, H.O.; et al. Small-Airway Obstruction and Emphysema in Chronic Obstructive Pulmonary Disease. N. Engl. J. Med. 2011, 365, 1567–1575. [Google Scholar] [CrossRef] [Green Version]
- Koo, H.-K.; Vasilescu, D.M.; Booth, S.; Hsieh, A.; Katsamenis, O.; Fishbane, N.; Elliott, W.M.; Kirby, M.; Lackie, P.; Sinclair, I.; et al. Small Airways Disease in Mild and Moderate Chronic Obstructive Pulmonary Disease: A Cross-Sectional Study. Lancet Respir. Med. 2018, 6, 591–602. [Google Scholar] [CrossRef] [Green Version]
- Kirby, M.; Tanabe, N.; Tan, W.C.; Zhou, G.; Obeidat, M.; Hague, C.J.; Leipsic, J.; Bourbeau, J.; Sin, D.D.; Hogg, J.C.; et al. Total Airway Count on Computed Tomography and the Risk of Chronic Obstructive Pulmonary Disease Progression. Findings from a Population-based Study. Am. J. Respir. Crit. Care Med. 2018, 197, 56–65. [Google Scholar] [CrossRef] [Green Version]
- Kirby, M.; Tanabe, N.; Vasilescu, D.M.; Cooper, J.D.; McDonough, J.E.; Verleden, S.E.; Vanaudenaerde, B.M.; Sin, D.D.; Tan, W.C.; Coxson, H.O.; et al. Computed Tomography Total Airway Count is Associated with Number of Mi-cro-CT Terminal Bronchioles. Am. J. Respir. Crit. Care Med. 2020, 201, 613–615. [Google Scholar] [CrossRef] [PubMed]
- Tanabe, N.; Vasilescu, D.M.; Kirby, M.; Coxson, H.O.; Verleden, S.E.; Vanaudenaerde, B.M.; Kinose, D.; Nakano, Y.; Paré, P.D.; Hogg, J.C. Analysis of Airway Pathology in COPD Using a Combination of Computed Tomography, Micro-Computed Tomography and Histology. Eur. Respir. J. 2018, 51, 1701245. [Google Scholar] [CrossRef]
- Vasilescu, D.M.; Martinez, F.J.; Marchetti, N.; Galbán, C.J.; Hatt, C.; Meldrum, C.A.; Dass, C.; Tanabe, N.; Reddy, R.M.; Lagstein, A.; et al. Noninvasive Imaging Biomarker Identifies Small Airway Damage in Severe Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2019, 200, 575–581. [Google Scholar] [CrossRef]
- Burrowes, K.S.; Doel, T.; Brightling, C. Computational Modeling of the Obstructive Lung Diseases Asthma and COPD. J. Transl. Med. 2014, 12, S5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Backer, J.W.; Vos, W.G.; Vinchurkar, S.C.; Claes, R.; Drollmann, A.; Wulfrank, D.; Parizel, P.M.; Germonpré, P.; De Backer, W. Validation of Computational Fluid Dynamics in CT-Based Airway Models with SPECT/CT. Radiology 2010, 257, 854–862. [Google Scholar] [CrossRef] [PubMed]
- Boorse, C. On the Distiction Between Disease and Illness. In Philosophy Public Affairs; Wiley: New Jersey, NJ, USA, 1975; Volume 5, pp. 49–68. [Google Scholar]
- Boorse, C. Health as a Theoretical Concept. Philos. Sci. 1977, 44, 542–573. [Google Scholar] [CrossRef] [Green Version]
- Campbell, E.J.; Scadding, J.G.; Roberts, R.S. The Concept of Disease. Br. Med. J. 1979, 2, 757–762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agustí, A.; Celli, B. Natural History of COPD: Gaps and Opportunities. ERJ Open Res. 2017, 3, 117–2017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, M.K.; Agusti, A.; Celli, B.R.; Criner, G.J.; Halpin, D.M.G.; Roche, N.; Papi, A.; Stockley, R.A.; Wedzicha, J.; Vogelmeier, C.F. From GOLD 0 to Pre-COPD. Am. J. Respir. Crit. Care Med. 2021, 203, 414–423. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wouters, E.F.M.; Breyer, M.K.; Breyer-Kohansal, R.; Hartl, S. COPD Diagnosis: Time for Disruption. J. Clin. Med. 2021, 10, 4660. https://doi.org/10.3390/jcm10204660
Wouters EFM, Breyer MK, Breyer-Kohansal R, Hartl S. COPD Diagnosis: Time for Disruption. Journal of Clinical Medicine. 2021; 10(20):4660. https://doi.org/10.3390/jcm10204660
Chicago/Turabian StyleWouters, Emiel F. M., Marie K. Breyer, Robab Breyer-Kohansal, and Sylvia Hartl. 2021. "COPD Diagnosis: Time for Disruption" Journal of Clinical Medicine 10, no. 20: 4660. https://doi.org/10.3390/jcm10204660
APA StyleWouters, E. F. M., Breyer, M. K., Breyer-Kohansal, R., & Hartl, S. (2021). COPD Diagnosis: Time for Disruption. Journal of Clinical Medicine, 10(20), 4660. https://doi.org/10.3390/jcm10204660