One Session Effects of Knee Motion Visualization Using Immersive Virtual Reality in Patients with Hemophilic Arthropathy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Local Approvals
2.3. Participants
2.4. Outcome Measures
2.5. sEMG Analysis
2.6. Intervention
2.7. Statistical Analysis
3. Results
3.1. Descriptive Analysis
3.2. Changes after Intervention
3.3. Correlation Analysis
4. Discussion
4.1. Limitations of the Study
4.2. Relevance to Clinical Practice
4.3. Recommendations for Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rosendaal, F.; Aledort, L.M.; Lusher, J.M.; Rothschild, C.; Ingerslev, J.; White, G.C.I. Definitions in Hemophilia. Thromb. Haemost. 2001, 85, 560. [Google Scholar] [CrossRef]
- Srivastava, A.; Brewer, A.K.; Mauser-Bunschoten, E.P.; Key, N.S.; Kitchen, S.; Llinas, A.; Ludlam, C.A.; Mahlangu, J.N.; Mulder, K.; Poon, M.C.; et al. Guidelines for the management of hemophilia. Haemophilia 2012, 19, e1–e47. [Google Scholar] [CrossRef]
- Hilberg, T.; Herbsleb, M.; Gabriel, H.H.W.; Jeschke, D.; Schramm, W. Proprioception and isometric muscular strength in haemophilic subjects. Haemophilia 2001, 7, 582–588. [Google Scholar] [CrossRef] [Green Version]
- Soucie, J.M.; Cianfrini, C.; Janco, R.L.; Kulkarni, R.; Hambleton, J.; Evatt, B.; Forsyth, A.; Geraghty, S.; Hoots, K.; Abshire, T.; et al. Joint range-of-motion limitations among young males with hemophilia: Prevalence and risk factors. Blood 2004, 103, 2467–2473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manco-Johnson, M.J.; Abshire, T.C.; Shapiro, A.D.; Riske, B.; Hacker, M.; Kilcoyne, R.; Ingram, J.D.; Manco-Johnson, M.L.; Funk, S.; Jacobson, L.J.; et al. Prophylaxis versus Episodic Treatment to Prevent Joint Disease in Boys with Severe Hemophilia. N. Engl. J. Med. 2007, 357, 535–544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trakymiene, S.S.; Clausen, N.; Poulsen, L.H.; Ingerslev, J.; Rageliene, L. Progression of haemophilic arthropathy in children: A Lithuanian—Danish comparative study. Haemophilia 2012, 19, 212–218. [Google Scholar] [CrossRef] [PubMed]
- Rice, D.A.; McNair, P.J.; Lewis, G.N.; Dalbeth, N. Quadriceps arthrogenic muscle inhibition: The effects of experimental knee joint effusion on motor cortex excitability. Arthritis Res. Ther. 2014, 16, 502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wood, L.; Ferrell, W.R.; Baxendale, R.H. Pressures in normal and acutely distended human knee joints and effects on quadriceps maximal voluntary contractions. Q. J. Exp. Physiol. 1988, 73, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Rice, D.A.; McNair, P.J. Quadriceps Arthrogenic Muscle Inhibition: Neural Mechanisms and Treatment Perspectives. Semin. Arthritis Rheum. 2010, 40, 250–266. [Google Scholar] [CrossRef]
- Öztürk, Ö.; Bombacı, H.; Keçeci, T.; Algun, Z.C. Effects of additional action observation to an exercise program in patients with chronic pain due to knee osteoarthritis: A randomized-controlled trial. Musculoskelet. Sci. Pract. 2021, 52, 102334. [Google Scholar] [CrossRef]
- Buccino, G. Action observation treatment: A novel tool in neurorehabilitation. Philos. Trans. R. Soc. B Biol. Sci. 2014, 369, 20130185. [Google Scholar] [CrossRef] [PubMed]
- Villafañe, J.H.; Pirali, C.; Isgrò, M.; Vanti, C.; Buraschi, R.; Negrini, S. Effects of Action Observation Therapy in Patients Recovering From Total Hip Arthroplasty Arthroplasty: A Prospective Clinical Trial. J. Chiropr. Med. 2016, 15, 229–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nobusako, S.; Matsuo, A.; Morioka, S. Effectiveness of the Gaze Direction Recognition Task for Chronic Neck Pain and Cervical Range of Motion: A Randomized Controlled Pilot Study. Rehabil. Res. Pract. 2012, 2012, 570387. [Google Scholar] [CrossRef]
- Thieme, H.; Morkisch, N.; Rietz, C.; Dohle, C.; Borgetto, B. The Efficacy of Movement Representation Techniques for Treatment of Limb Pain—A Systematic Review and Meta-Analysis. J. Pain 2016, 17, 167–180. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, M.; Kurumadani, H.; Hirata, J.; Osaka, H.; Senoo, K.; Date, S.; Ueda, A.; Ishii, Y.; Kinoshita, S.; Hanayama, K.; et al. Virtual reality-based action observation facilitates the acquisition of body-powered prosthetic control skills. J. Neuroeng. Rehabil. 2020, 17, 113. [Google Scholar] [CrossRef]
- Choi, J.W.; Kim, B.H.; Huh, S.; Jo, S. Observing Actions Through Immersive Virtual Reality Enhances Motor Imagery Training. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 1614–1622. [Google Scholar] [CrossRef]
- Hsieh, Y.-W.; Lee, M.-T.; Lin, Y.-H.; Chuang, L.-L.; Chen, C.-C.; Cheng, C.-H. Motor Cortical Activity during Observing a Video of Real Hand Movements versus Computer Graphic Hand Movements: An MEG Study. Brain Sci. 2020, 11, 6. [Google Scholar] [CrossRef]
- Dai, T.H.; Liu, J.Z.; Sahgal, V.; Brown, R.W.; Yue, G.H. Relationship between muscle output and functional MRI-measured brain activation. Exp. Brain Res. 2001, 140, 290–300. [Google Scholar] [CrossRef]
- Hilliard, P.; Funk, S.; Zourikian, N.; Bergstrom, B.-M.; Bradley, C.S.; McLimont, M.; Manco-Johnson, M.; Petrini, P.; Berg, M.V.D.; Feldman, B.M. Hemophilia joint health score reliability study. Haemophilia 2006, 12, 518–525. [Google Scholar] [CrossRef] [PubMed]
- Hermens, H.J.; Freriks, B.; Disselhorst-Klug, C.; Rau, G. Development of recommendations for SEMG sensors and sensor placement procedures. J. Electromyogr. Kinesiol. 2000, 10, 361–374. [Google Scholar] [CrossRef]
- Calatayud, J.; Martín-Cuesta, J.; Carrasco, J.; Pérez-Alenda, S.; Cruz-Montecinos, C.; Andersen, L.; Querol-Giner, F.; Casaña, J. Safety, Fear and Neuromuscular Responses after a Resisted Knee Extension Performed to Failure in Patients with Severe Haemophilia. J. Clin. Med. 2021, 10, 2587. [Google Scholar] [CrossRef] [PubMed]
- Skou, S.T.; Simonsen, O.; Rasmussen, S. Examination of Muscle Strength and Pressure Pain Thresholds in Knee Osteoarthritis. J. Geriatr. Phys. Ther. 2015, 38, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Molina-Molina, A.; Ruiz-Malagón, E.J.; Carrillo-Pérez, F.; Roche-Seruendo, L.E.; Damas, M.; Banos, O.; García-Pinillos, F. Validation of mDurance, A Wearable Surface Electromyography System for Muscle Activity Assessment. Front. Physiol. 2020, 11, 606287. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; L. Erlbaum Associates: Hillsdale, NJ, USA, 1988; ISBN 978-0-8058-0283-2. [Google Scholar]
- Duffell, L.D.; Dharni, H.; Strutton, P.H.; McGregor, A.H. Electromyographic activity of the quadriceps components during the final degrees of knee extension. J. Back Musculoskelet. Rehabil. 2011, 24, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Poortvliet, P.C.; Tucker, K.J.; Finnigan, S.; Scott, D.; Sowman, P.; Hodges, P.W. Cortical activity differs between position- and force-control knee extension tasks. Exp. Brain Res. 2015, 233, 3447–3457. [Google Scholar] [CrossRef] [PubMed]
- Ashby, P.; Lang, A.; Lozano, A.; Dostrovsky, J.O. Motor effects of stimulating the human cerebellar thalamus. J. Physiol. 1995, 489, 287–298. [Google Scholar] [CrossRef]
- Krishnan, C.; Ranganathan, R.; Kantak, S.S.; Dhaher, Y.Y.; Rymer, W.Z. Anodal Transcranial Direct Current Stimulation Alters Elbow Flexor Muscle Recruitment Strategies. Brain Stimul. 2014, 7, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Biology for Biological Engineering. Available online: http://www.soe.uoguelph.ca/webfiles/mleuniss/Biomechanics/EMG.html (accessed on 27 July 2021).
- Tarata, M.T. Mechanomyography versus Electromyography, in monitoring the muscular fatigue. Biomed. Eng. Online 2003, 2, 3. [Google Scholar] [CrossRef] [Green Version]
- Chang, K.-M.; Liu, S.-H.; Wu, X.-H. A Wireless sEMG Recording System and Its Application to Muscle Fatigue Detection. Sensors 2012, 12, 489–499. [Google Scholar] [CrossRef] [Green Version]
- Conson, M.; Sarà, M.; Pistoia, F.; Trojano, L. Action observation improves motor imagery: Specific interactions between simulative processes. Exp. Brain Res. 2009, 199, 71–81. [Google Scholar] [CrossRef]
- Sartori, L.; Begliomini, C.; Castiello, U. Motor resonance in left- and right-handers: Evidence for effector-independent motor representations. Front. Hum. Neurosci. 2013, 7, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agosta, F.; Gatti, R.; Sarasso, E.; Volonté, M.A.; Canu, E.; Meani, A.G.M.; Sarro, L.; Copetti, M.; Cattrysse, E.; Kerckhofs, E.; et al. Brain plasticity in Parkinson’s disease with freezing of gait induced by action observation training. J. Neurol. 2017, 264, 88–101. [Google Scholar] [CrossRef] [PubMed]
- Obhi, S.S.; Hogeveen, J. Incidental action observation modulates muscle activity. Exp. Brain Res. 2010, 203, 427–435. [Google Scholar] [CrossRef] [PubMed]
Variables | Md (IR) |
---|---|
Age (years) | 37 (10) |
Weight (kg) | 84.30 (14.65) |
Height (cm) | 173.00 (8.5) |
Knee joint damage (0–20) | 12.00 (5.5) |
n (%) | |
Type of treatment (On demand/Prophylactic) | 2/11 (15.4/84.6) |
Development of inhibitor (No/Yes) | 9/4 (69.2/30.8) |
Muscle | T0 | T1 | Sig. | CI95% | ES |
---|---|---|---|---|---|
Vastus lateralis | 157.49 (66.25) | 157.51 (73.87) | 0.99 | −12.14; 12.10 | −0.01 |
Vastus medialis | 130.98 (49.73) | 130.54 (48.53) | 0.27 | −5.58; 18.69 | 0.01 |
Rectus femoris | 145.80 (72.52) | 152.36 (74.78) | 0.91 | −8.31; 9.19 | 0.89 |
Muscle | MD (SD) | Sig. | CI95% |
---|---|---|---|
Vastus lateralis | −0.25 (9.67) | 0.89 | −4.15; 3.65 |
Vastus medialis | 1.98 (3.86) | 0.01 | 0.42; 3.54 |
Rectus femoris | 0.03 (7.69) | 0.98 | −3.07; 3.14 |
Variables | Muscle | t (Sig.) | 95%CI |
---|---|---|---|
Type of treatment | Vastus lateralis | 0.58 (0.56) | −24.42 to 43.82 |
Vastus medialis | 1.73 (0.09) | −3.72 to 43.05 | |
Rectus femoris | 1.10 (0.27) | −15.55 to 51.57 | |
Dominance | Vastus lateralis | −1.21 (0.23) | (−27.64; 7.11) |
Vastus medialis | −0.55 (0.58) | (−31.25; 18.03) | |
Rectus femoris | 0.60 (0.55) | (−17.39; 31.88) | |
Development of inhibitors | Vastus lateralis | 0.42 (0.67) | −21.23; 32.30 |
Vastus medialis | 1.02 (0.31) | −9.56; 28.40 | |
Rectus femoris | 0.20 (0.84) | −24.23; 29.51 |
Muscle | Age | Knee Joint Damage | ||
---|---|---|---|---|
r | Sig. | r | Sig. | |
Vastus lateralis | 0.11 | 0.57 | −0.04 | 0.81 |
Vastus medialis | 0.083 | 0.68 | −0.177 | 0.38 |
Rectus femoris | 0.14 | 0.49 | 0.07 | 0.73 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ucero-Lozano, R.; Pérez-Llanes, R.; López-Pina, J.A.; Cuesta-Barriuso, R. One Session Effects of Knee Motion Visualization Using Immersive Virtual Reality in Patients with Hemophilic Arthropathy. J. Clin. Med. 2021, 10, 4725. https://doi.org/10.3390/jcm10204725
Ucero-Lozano R, Pérez-Llanes R, López-Pina JA, Cuesta-Barriuso R. One Session Effects of Knee Motion Visualization Using Immersive Virtual Reality in Patients with Hemophilic Arthropathy. Journal of Clinical Medicine. 2021; 10(20):4725. https://doi.org/10.3390/jcm10204725
Chicago/Turabian StyleUcero-Lozano, Roberto, Raúl Pérez-Llanes, José Antonio López-Pina, and Rubén Cuesta-Barriuso. 2021. "One Session Effects of Knee Motion Visualization Using Immersive Virtual Reality in Patients with Hemophilic Arthropathy" Journal of Clinical Medicine 10, no. 20: 4725. https://doi.org/10.3390/jcm10204725
APA StyleUcero-Lozano, R., Pérez-Llanes, R., López-Pina, J. A., & Cuesta-Barriuso, R. (2021). One Session Effects of Knee Motion Visualization Using Immersive Virtual Reality in Patients with Hemophilic Arthropathy. Journal of Clinical Medicine, 10(20), 4725. https://doi.org/10.3390/jcm10204725