Comparison of Lateral Lumbar Interbody Fusion and Posterior Lumbar Interbody Fusion as Corrective Surgery for Patients with Adult Spinal Deformity—A Propensity Score Matching Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Surgical Procedures
2.2. Statistics Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Youssef, J.A.; Orndorff, D.O.; Patty, C.A.; Scott, M.A.; Price, H.L.; Hamlin, L.F.; Williams, T.L.; Uribe, J.S.; Deviren, V. Current status of adult spinal deformity. Glob. Spine J. 2013, 3, 051–062. [Google Scholar] [CrossRef] [Green Version]
- Aebi, M. The adult scoliosis. Eur. Spine J. 2005, 14, 925–948. [Google Scholar] [CrossRef]
- Smith, J.S.; Shaffrey, C.I.; Bess, S.; Shamji, M.F.; Brodke, D.; Lenke, L.G.; Fehlings, M.G.; Lafage, V.; Schwab, F.; Vaccaro, A.R.; et al. Recent and emerging advances in spinal deformity. Clin. Neurosurg. 2017, 80, S77–S85. [Google Scholar] [CrossRef]
- Schwab, F.J.; Blondel, B.; Bess, S.; Hostin, R.; Shaffrey, C.I.; Smith, J.S.; Boachie-Adjei, O.; Burton, D.C.; Akbarnia, B.A.; Mundis, G.M.; et al. Radiographical spinopelvic parameters and disability in the setting of adult spinal deformity: A prospective multicenter analysis. Spine 2013, 38, 803–812. [Google Scholar] [CrossRef] [Green Version]
- Scheer, J.K.; Hostin, R.; Robinson, C.; Schwab, F.; Lafage, V.; Burton, D.C.; Hart, R.A.; Kelly, M.P.; Keefe, M.; Polly, D.; et al. Operative management of adult spinal deformity results in significant increases in QALYs gained compared to nonoperative management. Spine 2018, 43, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Daubs, M.D.; Lenke, L.G.; Bridwell, K.H.; Kim, Y.J.; Hung, M.; Cheh, G.; Koester, L.A. Does correction of preoperative coronal imbalance make a difference in outcomes of adult patients with deformity? Spine 2013, 38, 476–483. [Google Scholar] [CrossRef] [PubMed]
- Glassman, S.D.; Bridwell, K.; Dimar, J.R.; Horton, W.; Berven, S.; Schwab, F. The impact of positive sagittal balance in adult spinal deformity. Spine 2005, 30, 2024–2029. [Google Scholar] [CrossRef]
- Charosky, S.; Guigui, P.; Blamoutier, A.; Roussouly, P.; Chopin, D. Complications and risk factors of primary adult scoliosis surgery: A multicenter study of 306 patients. Spine 2012, 37, 693–700. [Google Scholar] [CrossRef] [PubMed]
- Soroceanu, A.; Burton, D.C.; Oren, J.H.; Smith, J.S.; Hostin, R.; Shaffrey, C.I.; Akbarnia, B.A.; Ames, C.P.; Errico, T.J.; Bess, S.; et al. Medical complications after adult spinal deformity surgery incidence, risk factors, and clinical impact. Spine 2016, 41, 1718–1723. [Google Scholar] [CrossRef]
- Zanirato, A.; Damilano, M.; Formica, M.; Piazzolla, A.; Lovi, A.; Villafañe, J.H.; Berjano, P. Complications in adult spine deformity surgery: A systematic review of the recent literature with reporting of aggregated incidences. Eur. Spine J. 2018, 27, 2272–2284. [Google Scholar] [CrossRef]
- Bae, J.; Theologis, A.A.; Strom, R.; Tay, B.; Burch, S.; Berven, S.; Mummaneni, P.V.; Chou, D.; Ames, C.P.; Deviren, V. Comparative analysis of 3 surgical strategies for adult spinal deformity with mild to moderate sagittal imbalance. J. Neurosurg. Spine 2018, 28, 40–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozgur, B.M.; Aryan, H.E.; Pimenta, L.; Taylor, W.R. Extreme Lateral Interbody Fusion (XLIF): A novel surgical technique for anterior lumbar interbody fusion. Spine J. 2006, 6, 435–443. [Google Scholar] [CrossRef]
- Acosta, F.L.; Liu, J.; Slimack, N.; Moller, D.; Fessler, R.; Koski, T. Changes in coronal and sagittal plane alignment following minimally invasive direct lateral interbody fusion for the treatment of degenerative lumbar disease in adults: A radiographic study-Clinical article. J. Neurosurg. Spine 2011, 15, 92–96. [Google Scholar] [CrossRef] [PubMed]
- Iwamae, M.; Matsumura, A.; Namikawa, T.; Kato, M.; Hori, Y.; Yabu, A.; Sawada, Y.; Hidaka, N.; Nakamura, H. Surgical outcomes of multilevel posterior lumbar interbody fusion versus lateral lumbar interbody fusion for the correction of adult spinal deformity: A comparative clinical study. Asian Spine J. 2020, 14, 421–429. [Google Scholar] [CrossRef] [PubMed]
- Schwab, F.; Blondel, B.; Chay, E.; Demakakos, J.; Lenke, L.; Tropiano, P.; Ames, C.; Smith, J.S.; Shaffrey, C.I.; Glassman, S.; et al. The comprehensive anatomical spinal osteotomy classification. Neurosurgery 2014, 74, 112–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenbaum, P.R.; Rubin, D.B. The central role of the propensity score in observational studies for causal effects. Matched Sampl. Causal Eff. 2006, 170–184. [Google Scholar] [CrossRef] [Green Version]
- Chikuda, H.; Yasunaga, H.; Takeshita, K.; Horiguchi, H.; Kawaguchi, H.; Ohe, K.; Fushimi, K.; Tanaka, S. Mortality and morbidity after high-dose methylprednisolone treatment in patients with acute cervical spinal cord injury: A propensity-matched analysis using a nationwide administrative database. Emerg. Med. J. 2014, 31, 201–206. [Google Scholar] [CrossRef]
- Kato, S.; Chikuda, H.; Ohya, J.; Oichi, T.; Matsui, H.; Fushimi, K.; Takeshita, K.; Tanaka, S.; Yasunaga, H. Risk of infectious complications associated with blood transfusion in elective spinal surgery-a propensity score matched analysis. Spine J. 2016, 16, 55–60. [Google Scholar] [CrossRef]
- Silvestre, C.; Mac-Thiong, J.M.; Hilmi, R.; Roussouly, P. Complications and morbidities of mini-open anterior retroperitoneal lumbar interbody fusion: Oblique lumbar interbody fusion in 179 patients. Asian Spine J. 2012, 6, 89–97. [Google Scholar] [CrossRef]
- Fujibayashi, S.; Hynes, R.A.; Otsuki, B.; Kimura, H.; Takemoto, M.; Matsuda, S. Effect of indirect neural decompression through oblique lateral interbody fusion for degenerative lumbar disease. Spine 2015, 40, E175–E182. [Google Scholar] [CrossRef]
- Ohtori, S.; Mannoji, C.; Orita, S.; Yamauchi, K.; Eguchi, Y.; Ochiai, N.; Kishida, S.; Kuniyoshi, K.; Aoki, Y.; Nakamura, J.; et al. Mini-open anterior retroperitoneal lumbar interbody fusion: Oblique lateral interbody fusion for degenerated lumbar spinal kyphoscoliosis. Asian Spine J. 2015, 9, 565–572. [Google Scholar] [CrossRef]
- Kato, S.; Nouri, A.; Wu, D.; Nori, S.; Tetreault, L.; Fehlings, M.G. Comparison of anterior and posterior surgery for degenerative cervical myelopathy. J. Bone Jt. Surg. 2017, 99, 1013–1021. [Google Scholar] [CrossRef]
- Park, H.Y.; Ha, K.Y.; Kim, Y.H.; Chang, D.G.; Kim, S., II; Lee, J.W.; Ahn, J.H.; Kim, J.B. Minimally invasive lateral lumbar interbody fusion for adult spinal deformity. Spine 2018, 43, E813–E821. [Google Scholar] [CrossRef] [PubMed]
- Strom, R.G.; Bae, J.; Mizutani, J.; Valone, F.; Ames, C.P.; Deviren, V. Lateral interbody fusion combined with open posterior surgery for adult spinal deformity. J. Neurosurg. Spine 2016, 25, 697–705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wewel, J.T.; Godzik, J.; Uribe, J.S. The utilization of minimally invasive surgery techniques for the treatment of spinal deformity. J. Spine Surg. 2019, 5, S84–S90. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, P.; Mundis, G.M.; Eastlack, R.K.; Bagheri, R.; Vargas, E.; Tran, S.; Akbarnia, B.A. Preliminary results of anterior lumbar interbody fusion, anterior column realignment for the treatment of sagittal malalignment. Neurosurg. Focus 2017, 43, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Bianco, K.; Norton, R.; Schwab, F.; Smith, J.S.; Klineberg, E.; Obeid, I.; Mundis, G., Jr.; Shaffrey, C.I.; Kebaish, K.; Hostin, R.; et al. Complications and intercenter variability of three-column osteotomies for spinal deformity surgery: A retrospective review of 423 patients. Neurosurg. Focus 2014, 36. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.J.; Suk, S., II; Park, S.R.; Kim, J.H.; Kim, S.S.; Choi, W.K.; Lee, K.Y.; Lee, S.R. Complications in posterior fusion and instrumentation for degenerative lumbar scoliosis. Spine 2007, 32, 2232–2237. [Google Scholar] [CrossRef] [PubMed]
- Olsen, M.A.; Nepple, J.J.; Riew, K.D.; Lenke, L.G.; Bridwell, K.H.; Mayfield, J.; Fraser, V.J. Risk factors for surgical site infection following orthopaedic spinal operations. J. Bone Jt. Surg. Ser. A 2008, 90, 62–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medici, A.; Meccariello, L.; Falzarano, G. Non-operative vs. percutaneous stabilization in magerl’s A1 or A2 thoracolumbar spine fracture in adults: Is it really advantageous for A good alignment of the spine? preliminary data from a prospective study. Eur. Spine J. 2014, 23, S677–S683. [Google Scholar] [CrossRef]
- Caruso, L.; Bisaccia, M.; Rinonapoli, G.; Caraffa, A.; Pace, V.; Bisaccia, O.; Morante, C.A.; Prada-Cañizares, A.; Pichierri, P.; Pica, G.; et al. Short segment fixation of thoracolumbar fractures with pedicle fixation at the level of the fracture. EuroMediterr. Biomed. J. 2018, 13, 132–136. [Google Scholar] [CrossRef]
- Hussain, I.; Fu, K.M.; Uribe, J.S.; Chou, D.; Mummaneni, P.V. State of the art advances in minimally invasive surgery for adult spinal deformity. Spine Deform. 2020, 8, 1143–1158. [Google Scholar] [CrossRef] [PubMed]
- Ishihara, M.; Taniguchi, S.; Adachi, T.; Kushida, T.; Paku, M.; Ando, M.; Saito, T.; Kotani, Y.; Tani, Y. Rod contour and overcorrection are risk factors of proximal junctional kyphosis after adult spinal deformity correction surgery. Eur. Spine J. 2021, 30, 1208–1214. [Google Scholar] [CrossRef] [PubMed]
- Than, K.D.; Mummaneni, P.V.; Bridges, K.J.; Tran, S.; Park, P.; Chou, D.; La Marca, F.; Uribe, J.S.; Vogel, T.D.; Nunley, P.D.; et al. Complication rates associated with open versus percutaneous pedicle screw instrumentation among patients undergoing minimally invasive interbody fusion for adult spinal deformity. Neurosurg. Focus 2017, 43, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Sembrano, J.N.; Yson, S.C.; Horazdovsky, R.D.; Santos, E.R.G.; Polly, D.W. Radiographic comparison of lateral lumbar interbody fusion versus traditional fusion approaches: Analysis of sagittal contour change. Int. J. Spine Surg. 2015, 9. [Google Scholar] [CrossRef] [Green Version]
- Yee, A.J.; Yoo, J.U.; Marsolais, E.B.; Carlson, G.; Poe-Kochert, C.; Bohlman, H.H.; Emery, S.E. Use of a postoperative lumbar corset after lumbar spinal arthrodesis for degenerative conditions of the spine. A prospective randomized trial. J. Bone Jt. Surg. Ser. A 2008, 90, 2062–2068. [Google Scholar] [CrossRef] [PubMed]
- Lord, E.L.; Ayres, E.; Woo, D.; Vasquez-Montes, D.; Parekh, Y.; Jain, D.; Buckland, A.; Protopsaltis, T. The Impact of Global Alignment and Proportion Score and Bracing on Proximal Junctional Kyphosis in Adult Spinal Deformity. Glob. Spine J. 2021. [Google Scholar] [CrossRef]
- Meccariello, L.; Muzii, V.F.; Falzarano, G.; Medici, A.; Carta, S.; Fortina, M.; Ferrata, P. Dynamic corset versus three-point brace in the treatment of osteoporotic compression fractures of the thoracic and lumbar spine: A prospective, comparative study. Aging Clin. Exp. Res. 2017, 29, 443–449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Irimia, J.C.; Tomé-Bermejo, F.; Piñera-Parrilla, A.R.; Benito Gallo, M.; Bisaccia, M.; Fernández-González, M.; Villar-Pérez, J.; Fernández-Carreira, J.M.; Orovio De Elizaga, J.; Areta-Jiménez, F.J.; et al. Spinal fusion achieves similar two-year improvement in HRQoL as total hip and total knee replacement. A prospective, multicentric and observational study. SICOT J. 2019, 5. [Google Scholar] [CrossRef]
- Bridwell, K.H.; Glassman, S.; Horton, W.; Shaffrey, C.; Schwab, F.; Zebala, L.P.; Lenke, L.G.; Hilton, J.F.; Shainline, M.; Baldus, C.; et al. Does treatment (nonoperative and operative) improve the two-year quality of life in patients with adult symptomatic lumbar scoliosis: A prospective multicenter evidence-based medicine study. Spine 2009, 34, 2171–2178. [Google Scholar] [CrossRef]
- Smith, J.S.; Klineberg, E.; Schwab, F.; Shaffrey, C.I.; Moal, B.; Ames, C.P.; Hostin, R.; Fu, K.M.G.; Burton, D.; Akbarnia, B.; et al. Change in classification grade by the srs-schwab adult spinal deformity classification predicts impact on health-related quality of life measures; prospective analysis of operative and nonoperative treatment. Spine 2013, 38, 1663–1671. [Google Scholar] [CrossRef] [PubMed]
Parameter | LLIF (N = 21) | PLIF/TLIF (N = 21) | p-Value |
---|---|---|---|
Age at surgery (years) | 74.0 ± 7.6 | 73.2 ± 7.3 | 0.687 |
Sex (male/female: cases) | 2/19 | 2/19 | 1.000 |
BMI | 21.7 ± 4.0 | 22.1 ± 3.3 | 0.823 |
Medical comorbidity (yes/no) | 8/13 | 5/16 | 0.317 |
SVA (mm) | 153.7 ± 78.9 | 148.3 ± 48.6 | 0.763 |
LL (deg.) | 1.1 ± 12.6 | 1.6 ± 12.1 | 0.930 |
PI (deg.) | 51.6 ± 9.1 | 50.0 ± 9.1 | 0.496 |
PI-LL (deg.) | 50.5 ± 14.5 | 48.4 ± 11.9 | 0.660 |
PT (deg.) | 37.1 ± 15.4 | 32.1 ± 7.7 | 0.162 |
TK (T4-12) (deg.) | 28.4 ± 16.7 | 20.9 ± 16.5 | 0.290 |
No. of fixed levels | 8.4 ± 1.9 | 7.7 ± 1.52 | 0.548 |
Type of anchor for pelvis (iliac screw/S2-ala-iliac screw: cases) | 15/6 | 19/2 | 0.116 |
Parameter | LLIF (N = 21) | PLIF/TLIF (N = 21) | p-Value |
---|---|---|---|
Surgical time (min) | 535.9 ± 123.1 | 426.8 ± 96.2 | <0.001 * |
Estimated blood loss (grams) | 848.7 ± 477.1 | 2358.6 ± 1911.6 | <0.001 * |
Parameter | LLIF (N = 21) | PLIF/TLIF (N = 21) | p-Value |
---|---|---|---|
At 4 weeks after surgery | |||
SVA (mm) | 24.1 ± 41.7 | 33.8 ± 41.4 | 0.279 |
ΔSVA(mm) | −129.6 ± 76.9 | −114.5 ± 51.6 | 0.725 |
LL (deg.) | 45.2 ± 7.8 | 41.0 ± 10.9 | 0.268 |
ΔLL (deg.) | 44.1 ± 15.1 | 39.4 ± 15.5 | 0.473 |
PI-LL (deg.) | 6.4 ± 8.9 | 9.1 ± 13.9 | 0.920 |
ΔPI-LL (deg.) | −44.1 ± 15.1 | −39.0 ± 15.5 | 0.473 |
PT (deg.) | 21.5 ± 15.4 | 21.4 ± 6.1 | 0.890 |
ΔPT (deg.) | −15.6 ± 9.2 | −11.0 ± 5.4 | 0.057 |
TK (T4-12) (deg.) | 36.7 ± 11.8 | 32.3 ± 13.2 | 0.473 |
ΔTK (T4-12) (deg.) | 8.3 ± 13.3 | 11.4 ± 13.1 | 0.562 |
At final follow-up | |||
SVA (mm) | 23.2 ± 37.6 | 52.4 ± 41.4 | 0.044 * |
ΔSVA (mm) | −130.4 ± 84.2 | −95.9 ± 45.0 | 0.097 |
LL (deg.) | 43.9 ± 9.4 | 40.1 ± 10.1 | 0.420 |
ΔLL (deg.) | 42.8 ± 15.6 | 38.5 ± 18.3 | 0.513 |
PI-LL (deg.) | 7.8 ± 9.4 | 9.9 ± 16.3 | 0.753 |
PT (deg.) | 25.1 ± 14.7 | 21.6 ± 7.5 | 0.092 |
ΔPT (deg.) | −12.0 ± 12.3 | −11.0 ± 6.9 | 0.705 |
TK (T4-12) (deg.) | 42.8 ± 15.6 | 36.7 ± 14.9 | 0.273 |
ΔTK (T4-12) (deg.) | 16.7 ± 13.1 | 15.8 ± 15.1 | 0.830 |
Loss of correction from 4 weeks postoperatively at last observation | |||
SVA (mm) | −0.1 ± 49.1 | 18.6 ± 31.0 | 0.326 |
LL (deg.) | 1.3 ± 3.1 | 0.9 ± 4.0 | 0.638 |
PT (deg.) | 3.6 ± 11.1 | 0.3 ± 5.9 | 0.289 |
TK (T4-12) (deg.) | 6.0 ± 6.7 | 4.4 ± 7.7 | 0.434 |
Parameter | LLIF (N = 21) | PLIF/TLIF (N = 21) | p-Value |
---|---|---|---|
Perioperative complications | |||
Local complications (yes/no) | 4/17 (19.0%) | 6/15 (28.6%) | 0.454 |
Neurological deficit (yes/no) | 4/17 (19.0%) | 3/18 (14.3%) | 0.679 |
Epidural hematoma (yes/no) | 0/21 (0.0%) | 4/17 (19.0%) | 0.035 * |
Surgical site infection (yes/no) | 1/20 (4.8%) | 0/21 (0.0%) | 0.261 |
Systemic complications (yes/no) | 1/20 (4.8%) | 1/20 (4.8%) | 1.000 |
Cerebrovascular events: 1 | Deep vein thrombosis: 1 | ||
Total (yes/no) | 5/16 (23.8%) | 7/14 (33.3%) | 0.482 |
Late complications | |||
Implant failure (yes/no) | 1/20 (4.8%) | 1/20 (4.8%) | 1.000 |
Proximal junctional kyphosis (yes/no) | 5/16 (31.3%) | 5/16 (31.3%) | 1.000 |
Newly occurred vertebral fracture (yes/no) | 3/18 (14.3%) | 3/18 (14.3%) | 1.000 |
Total (yes/no) | 7/14 (33.3%) | 6/15 (28.6%) | 0.739 |
Revision surgery | 2/19 (9.5%) | 1/20 (4.8%) | 0.549 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsukura, Y.; Yoshii, T.; Morishita, S.; Sakai, K.; Hirai, T.; Yuasa, M.; Inose, H.; Kawabata, A.; Utagawa, K.; Hashimoto, J.; et al. Comparison of Lateral Lumbar Interbody Fusion and Posterior Lumbar Interbody Fusion as Corrective Surgery for Patients with Adult Spinal Deformity—A Propensity Score Matching Analysis. J. Clin. Med. 2021, 10, 4737. https://doi.org/10.3390/jcm10204737
Matsukura Y, Yoshii T, Morishita S, Sakai K, Hirai T, Yuasa M, Inose H, Kawabata A, Utagawa K, Hashimoto J, et al. Comparison of Lateral Lumbar Interbody Fusion and Posterior Lumbar Interbody Fusion as Corrective Surgery for Patients with Adult Spinal Deformity—A Propensity Score Matching Analysis. Journal of Clinical Medicine. 2021; 10(20):4737. https://doi.org/10.3390/jcm10204737
Chicago/Turabian StyleMatsukura, Yu, Toshitaka Yoshii, Shingo Morishita, Kenichiro Sakai, Takashi Hirai, Masato Yuasa, Hiroyuki Inose, Atsuyuki Kawabata, Kurando Utagawa, Jun Hashimoto, and et al. 2021. "Comparison of Lateral Lumbar Interbody Fusion and Posterior Lumbar Interbody Fusion as Corrective Surgery for Patients with Adult Spinal Deformity—A Propensity Score Matching Analysis" Journal of Clinical Medicine 10, no. 20: 4737. https://doi.org/10.3390/jcm10204737
APA StyleMatsukura, Y., Yoshii, T., Morishita, S., Sakai, K., Hirai, T., Yuasa, M., Inose, H., Kawabata, A., Utagawa, K., Hashimoto, J., Tomori, M., Torigoe, I., Yamada, T., Kusano, K., Otani, K., Sumiya, S., Numano, F., Fukushima, K., Tomizawa, S., ... Okawa, A. (2021). Comparison of Lateral Lumbar Interbody Fusion and Posterior Lumbar Interbody Fusion as Corrective Surgery for Patients with Adult Spinal Deformity—A Propensity Score Matching Analysis. Journal of Clinical Medicine, 10(20), 4737. https://doi.org/10.3390/jcm10204737