Association between Bone Mineral Density and Metabolic Syndrome among Reproductive, Menopausal Transition, and Postmenopausal Women
Abstract
:1. Introduction
2. Methods
2.1. Design
2.2. Clinical History
2.3. Metabolic Syndrome Definition
2.4. Anthropometric Measurements
2.5. Blood Pressure Measurements
2.6. Biochemical Assays
2.7. Bone Mineral Density
2.8. Statistical Analysis
3. Results
4. Discussion
5. Strengths and Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- American Heart Association (AHA). Symptoms and Diagnosis of Metabolic Syndrome. 2021. Available online: https://www.heart.org/en/health-topics/metabolic-syndrome/symptoms-and-diagnosis-of-metabolic-syndrome (accessed on 5 July 2021).
- Gurka, M.; Vishnu, A.; Santen, R.; Deboer, M. Progress on of metabolic syndrome severity during the menopausal transition. J Am. Heart Assoc. 2016, 5, e003609. [Google Scholar] [CrossRef] [Green Version]
- Alberti, K.G.M.M.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.T.; Loria, C.M.; Smith, S.C., Jr.; et al. Harmonizing the metabolic syndrome: A joint interim statement of the international diabetes federation task force on epidemiology and prevention; National heart, lung, and blood institute; American heart association; World heart federation; International atherosclerosis society; And international association for the study of obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [PubMed] [Green Version]
- Moreira, G.C.; Cipullo, J.P.; Ciorlia, L.A.S.; Cesarino, C.B.; Vilela-Martin, J.F. Prevalence of metabolic syndrome: Association with risk factors and cardiovascular complications in an urban population. PLoS ONE 2014, 9, e105056. [Google Scholar] [CrossRef]
- Stachowiak, G.; Pertynski, T.; Pertinska-Marczewska, M. Metabolic disorders in menopause. Prz. Menopauzalny 2015, 14, 59–64. [Google Scholar] [CrossRef]
- Zhu, J.; Ji, M.; Xing, L.; Yu, Z.; Guo, X.; Chen, X.; Shu, J. Ovarian Hormonal Change-Related Energy Metabolism and Obesity in Menopausal Women. In Hormone Therapy and Replacement in Cancer and Aging-Related Diseases; Rangel, L.B.A., Kirubamani, H., Silva, I.V., Lyra, P.C.M., Jr., Eds.; IntechOpen: London, UK, 2019; Available online: https://www.intechopen.com/books/hormone-therapy-and-replacement-in-cancer-and-aging-related-diseases/ovarian-hormonal-change-related-energy-metabolism-and-obesity-in-menopausal-women (accessed on 1 July 2021).
- Pepe, J.; Cipriani, C.; Cilli, M.; Colangelo, L.; Minisola, S. Adipokines and bone metabolism: An interplay to untangle. J. Endocrinol. Investig. 2016, 39, 1359–1361. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Ma, R.; Ding, Y.; Guo, H.; Zhang, J.; Mu, L.; Zhang, M.; Liu, J.M.; Rui, D.S.; He, J.; et al. Association of Inflammation with metabolic syndrome among low-income rural kazakh and uyghur adults in far Western China. Mediat. Inflamm. 2015, 2015, 706768. [Google Scholar] [CrossRef]
- Papachristou, N.; Blair, H.; Kypreos, K.; Papachristou, D. High-density lipoprotein (HDL) metabolism and bone mass. J. Endocr. 2017, 233, R95–R107. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhou, J.; Wang, Q.; Lu, C.; Xu, Y.; Cao, H.; Xie, X.; Wu, X.; Li, J.; Chen, D. Association Between Bone Mineral Density and Lipid Profile in Chinese Women. Clin. Int. Aging 2020, 15, 1649–1664. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.; Lu, H.; Liu, P. Association between essential hypertension and bone mineral density: A systematic review and meta-analysis. Oncotarget 2017, 8, 68916–68927. [Google Scholar] [CrossRef]
- Instituto Nacional de Salud Pública (INSP). “Encuesta Nacional de Salud y Nutrición 2018–2019”. 2020. Available online: https://ensanut.insp.mx/encuestas/ensanut2018/doctos/informes/-ensanut_2018_informe_final.pdf. (accessed on 28 February 2021).
- Salas, R.; Bibiloni, M.M.; Ramos, E.; Villarreal, J.Z.; Pons, A.; Tur, J.A.; Sureda, A. Metabolic Syndrome Prevalence Among Northern Mexican Adult Population. PLoS ONE 2014, 9, e105581. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez-Solis, A.L.; Datta Banik, S.; Méndez-González, R.M. Prevalence of Metabolic Syndrome in Mexico: A Systematic Review and Meta-Analysis. Metabol. Synd. Relat. Disord. 2018, 16, 395–405. [Google Scholar] [CrossRef]
- Rosales-Aujang, E.; Muñoz-Enciso, J.M.; Arias-Ulloa, R. Prevalencia de osteopenia y osteoporosis en mujeres posmenopáusicas y su relación con factores de riesgo. Ginecol. Obstet. Mex. 2014, 82, 223–228. [Google Scholar] [PubMed]
- Gonzáles-Arellano, J.A.; Milla Villeda, R.H.; Hernández Vera, G.E.; Cisneros Pérez, V.; Lazalde, B.; Reyes, M.R. Prevalencia de osteoporosis y osteopenia en mujeres oriundas de la ciudad de Durango, México, de 50 y más años de edad diagnosticadas por DEXA de antebrazo. Gac. Méd. México 2007, 143, 365–369. [Google Scholar]
- Muka, T.; Trajanoska, K.; Kiefte-de Jong, J.C.; Oei, L.; Uitterlinden, A.G.; Hofman, A.; Dehghan, A.; Zillikens, M.C.; Franco, O.H.; Rivadeneira, F. The Association between Metabolic Syndrome, Bone Mineral Density, Hip Bone Geometry and Fracture Risk: The Rotterdam Study. PLoS ONE 2015, 10, e0129116. [Google Scholar] [CrossRef]
- Solomon, D.; Ruppert, K.; Zhao, Z.; Lian, Y.; Kuo, I.; Greendale, G.; Finkelstein, J. Bone mineral density changes among women initiating blood pressure lowering drugs: A SWAN cohort study. Osteoporosis Int. 2016, 27, 1181–1189. [Google Scholar] [CrossRef] [Green Version]
- El Maghraoui, A.; Rezqui, A.; Mrahi, S.; Sadni, S.; Ghozlani, I.; Mounach, A. Osteoporosis, vertebral fractures, and metabolic syndrome in postmenopausal women. BMC Endoc. Disord. 2014, 14, 93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esposito, K.; Chiodini, P.; Capuano, A.; Colao, A.; Giugliano, D. Fracture risk and bone mineral density in metabolic syndrome: A meta-analysis. J. Clin. Endocrinol. Metab. 2013, 98, 3306–3314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varenna, M.; Manara, M.; Binelli, L.; Zucchi, F.; Sinigaglia, L. The association between osteoporosis and hypertension: The role of a low dairy intake. Calcif. Tissue Int. 2013, 93, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Mohsin, S.; Kaimala, S.; Sunny, J.J.; Adeghate, E.; Brown, E.M. Type 2 Diabetes Mellitus Increases the Risk to Hip Fracture in Postmenopausal Osteoporosis by Deteriorating the Trabecular Bone Microarchitecture and Bone Mass. J. Diabetes Res. 2019, 2019, 3876957. [Google Scholar] [CrossRef] [PubMed]
- Romero-Díaz, C.; Duarte-Montero, D.; Gutiérrez-Romero, S.A.; Mendivil, C.O. Diabetes and Bone Fragility. Diabetes Ther. Res. Treat. Educ. Diabetes Relat. Disord. 2020, 12, 71–86. [Google Scholar] [CrossRef]
- Oei, L.; Zillikens, M.C.; Dehghan, A.; Castaño-Betancourt, M.C.; Estrada, K.; Stolk, L.; Oei, E.H.G.; van Meurs, J.B.J.; Janssen, J.A.M.J.L. High bone mineral density and fracture risk in type 2 diabetes as skeletal complications of inadequate glucose control The Rotterdam Study. Diabetes Care 2013, 36, 1619–1628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacobson, J.A.; Jamadar, D.A.; Hayes, C.W. Dual X-Ray Absorptiometry Recognizing Image Artifacts and Pathology. Am. J. Roentgenol. 2000, 174, 1699–1705. [Google Scholar] [CrossRef]
- Harlow, S.D.; Gass, M.; Hall, J.E.; Lobo, R.; Mak Pi Rebar, R.W.; Sherman, S.; Sluss, P.M.; de Villiers, T.J.; For the STRAW+10 Collaborative Group. Executive summary of the Stages of Reproductive Aging Workshop + 10: Addressing the unfinished agenda of staging reproductive aging. Menopause 2012, 19, 387–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive Summary of the Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA 2001, 285, 2486–2497. [Google Scholar] [CrossRef]
- NORMA Oficial Mexicana NOM-008-SSA3-2017, Para el Tratamiento Integral del Sobrepeso y la Obesidad. Diario Oficial, 18 May 2018. Available online: http://www.comego.org.mx/normatividad/NORMA%20Oficial%20Mexicana%20NOM-008-SSA3-2017,%20Para%20el%20tratamiento%20integral%20del%20sobrepeso%20y%20la%20obesidad.pdf (accessed on 1 March 2021).
- NORMA Oficial Mexicana NOM-030-SSA2-2009, Para la Prevención, Detección, Diagnóstico, Tratamiento y Control de la Hipertensión Arterial Sistémica. Diario Oficial, 31 May 2010. Available online: https://www.cndh.org.mx/DocTR/2016/JUR/A70/01/JUR-20170331-NOR21.pdf (accessed on 1 March 2021).
- NORMA Oficial Mexicana NOM-253-SSA1-2012, Para la Disposición de Sangre Humana y sus Componentes con Fines Terapéuticos. Diario Oficial, 26 October 2012. Available online: https://www.gob.mx/cnts/documentos/norma-oficial-mexicana-nom-253-ssa1-2012-para-la-disposicion-de-sangre-humana-y-sus-componentes-con-fines-terapeuticos (accessed on 1 March 2021).
- World Health Organization. Prevention and Management of Osteoporosis; WHO: Geneva, Switzerland, 2003; Volume 921, 192p. [Google Scholar]
- Guthrie, J.R.; Dennerstein, L.; Wark, J.D. Risk factors for osteoporosis: A review. Medscape Womens Health 2000, 5, E1. [Google Scholar]
- Bijelic, R.; Milicevic, S.; Balaban, J. Risk Factors for Osteoporosis in Postmenopausal Women. Med. Arch. 2017, 71, 25–28. [Google Scholar] [CrossRef] [Green Version]
- Pouresmaeili, F.; Kamalidehghan, B.; Kamarehei, M.; Goh, Y.M. A comprehensive overview on osteoporosis and its risk factors. Ther. Clin. Risk Manag. 2018, 14, 2029–2049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saklayen, M.G. The Global Epidemic of the Metabolic Syndrome. Curr. Hypertens. Rep. 2018, 20, 12. [Google Scholar] [CrossRef] [Green Version]
- Aguilar, M.; Bhuket, T.; Torres, S. Prevalence of the metabolic syndrome in the United States, 2003–2012. JAMA 2015, 313, 1973–1974. [Google Scholar] [CrossRef]
- Raposo, L.; Severo, M.; Barros, H.; Santos, A.C. The prevalence of the metabolic syndrome in Portugal: The PORMETS study. BMC Public Health 2017, 17, 555. [Google Scholar] [CrossRef]
- Dalvand, S.; Niksima, S.H.; Meshkani, R.; Ghanei-Geshlagh, R.; Sadegh-Nejadi, S.; Kooti, W.; Parizad, N.; Zahednezhad, H.; Afrisham, R. Prevalence of metabolic syndrome among Iranian population: A systematic review and meta-analysis. Iran J. Public Health 2017, 16, 456–467. [Google Scholar]
- Mumusoglu, S.; Yildiz, B.O. Metabolic Syndrome during Menopause. Curr. Vasc. Pharmacol. 2019, 17, 595–603. [Google Scholar] [CrossRef] [PubMed]
- Ilic, K.; Obradovic, N.; Vujasinovic, N. The relationship among hypertension, antihypertensive medications, and osteoporosis: A narrative review. Calcif. Tissue Int. 2013, 92, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Sealand, R.; Razavi, C.; Adler, R.A. Diabetes mellitus and osteoporosis. Curr. Diabetes Rep. 2013, 13, 411–418. [Google Scholar] [CrossRef] [PubMed]
- Tariq, S.; Tariq, S.; Parvez, K. Relationship of anthropometric measures with bone mineral density in postmenopausal non-osteoporotic, osteopenic and osteoporotic woman. J. Pak. Med. Assoc. 2017, 67, 590–594. [Google Scholar]
- Palermo, A.; Tuccinardi, D.; Defeudis, G.; Watanabe, M.; D’Onoforio, L.; Pantano, L.; Napoli, N.; Pozzilli, P.; Manfrini, S. BMI and BMD: The potential interplay between obesity and bone fragility. Int. J. Environ. Res. Publich Health 2016, 13, 544. [Google Scholar] [CrossRef] [Green Version]
- Qiao, D.; Li, Y.; Liu, X.; Zhang, X.; Qian, X.; Zhang, H.; Zhang, G.; Wang, C. Association of obesity with bone mineral density and osteoporosis in adults: A systematic review and meta-analysis. Public Health 2020, 180, 22–28. [Google Scholar] [CrossRef]
- Bilić-Ćurčić, I.; Makarović, S.; Mihaljević, I.; Franceschi, M.; Jukić, T. Bone Mineral Density in Relation to Metabolic Syndrome Components in Postmenopausal Women with Diabetes Mellitus Type 2. Acta Clin. Croat. 2017, 56, 58–63. [Google Scholar] [CrossRef] [Green Version]
- Nelson, L.R.; Bulun, S.E. Estrogen production and action. J. Am. Acad. Dermatol. 2001, 45 (Suppl. 3), S116–S124. [Google Scholar] [CrossRef]
- Hou, J.; He, C.; He, W.; Yang, M.; Luo, X.; Li, C. Obesity and Bone Health: A Complex Link. Front. Cell. Dev. Biol. 2020, 8, 600181. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.Y.; Kim, S.S.; Kim, J.S.; Jung, J.G.; Yoon, S.J.; Jo, Y.H. Association between Abdominal Obesity and Lumbar Bone Mineral Density According to the Postmenopausal Period in Korean Women. J. Obes. Metabol. Syndr. 2017, 26, 210–216. [Google Scholar] [CrossRef] [Green Version]
- Constantinou, C.; Karavia, E.; Xepapadaki, E.; Petropoulou, P.; Papakosta, E.; Karavyraki, M.; Zvintzou, E.; Theodoropoulos, V.; Filou, S.; Hatziri, A.; et al. Advances in high-density lipoprotein physiology. Am. J. Physiol. Endoc. Metabol. 2015, 310, E1–E14. [Google Scholar]
- Papachristou, D.; Blair, H. Bone and high-density lipoprotein: Beginning of a beautiful friendship. World J. Orthop. 2016, 7, 74–77. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Yang, K.; Hu, Z.; Li, M.; Wei, H.; Tang, Z.; Chen, B.; Su, C.; Cai, D.; Xu, J. Determining the association between hypertension and bone metabolism markers in osteoporotic patients. Medicine 2021, 100, e26276. [Google Scholar] [CrossRef]
- Nelson, H.D.; Rizzo, J.; Harris, E.; Cauley, J.; Ensrud, K.; Bauer, D.C.; Orwoll, E. Study of Osteoporotic Fractures Research Group. Osteoporosis and Fractures in Postmenopausal Women Using Estrogen. Arch. Intern. Med. 2002, 162, 2278–2284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variable | No MetS n = 161 | MetS n = 215 | p |
---|---|---|---|
Age (years) | 49.6 ± 5.4 | 50.7 ± 5.4 | 0.035 |
Stage | |||
Group 1: Reproductive/Menopausal transition (%) | 45.3 | 34.0 | 1.00 |
Group 2: Postmenopausal (%) | 54.7 | 66.0 | <0.001 |
BMI (kg/m2) | 26.8 ± 4.7 | 31.5 ± 5.8 | <0.001 |
Normal (%) | 41.6 | 9.3 | |
Overweight (%) | 37.9 | 34.0 | |
Obesity (%) | 20.5 | 56.7 | |
BMD dual femur (g/cm2) | 0.97 ± 0.13 | 1.02 ± 0.13 | <0.001 |
Normal (%) | 79.5 | 85.1 | |
Osteopenia (%) | 18.6 | 14.4 | |
Osteoporosis (%) | 1.8 | 0.5 | |
BMD lumbar spine (g/cm2) | 1.12 ± 0.15 | 1.13 ± 0.16 | 0.66 |
Normal (%) | 65.8 | 59.5 | |
Osteopenia (%) | 27.3 | 35.8 | |
Osteoporosis (%) | 6.8 | 4.7 | |
Waist circumference (cm) | 85.0 ± 11.9 | 98.1 ± 12.0 | <0.001 |
Fasting glycaemia level (mg/dL) | 90.1 ± 10.9 | 110.8 ± 46.6 | <0.001 |
Triglyceride level (mg/dL) | 110.5 ± 46.3 | 178.9 ± 91.7 | <0.001 |
HDL cholesterol (mg/dL) | 40.5 ± 13.7 | 34.5 ± 9.2 | <0.001 |
Systolic blood pressure (mmHg) | 109.3 ± 10.5 | 123.8 ± 15.5 | <0.001 |
Diastolic blood pressure (mmHg) | 68.8 ± 9.2 | 77.6 ± 11.5 | <0.001 |
Medical Treatment | |||
Diabetes (%) | 0.6 | 14.9 | <0.001 |
Hypertension (%) | 1.9 | 20.9 | <0.001 |
Hypertriglyceridemia (%) | 0.0 | 2.3 | <0.001 |
Hypoalphalipoproteinemia (%) | 1.9 | 9.8 | <0.001 |
Smoking habit (%) | 6.8 | 6.5 | 0.55 |
Number of children | 2.4 ± 1.1 | 2.7 ± 1.3 | 0.05 |
No MetS (n = 161) | MetS (n = 215) | |||||
---|---|---|---|---|---|---|
OR | 95% CI | p | OR | 95% CI | p | |
Group 1: Reproductive/Menopausal transition | ||||||
WC (cm) | 0.975 | 0.878–1.083 | 0.640 | 0.978 | 0.681–1.404 | 0.903 |
Glucose (mg/dL) | 1.040 | 0.971–1.115 | 0.259 | 0.990 | 0.855–1.145 | 0.889 |
Triglycerides (mg/dL) | 1.004 | 0.990–1.019 | 0.556 | 0.993 | 0.965–1.022 | 0.655 |
HDL (mg/dL) | 0.996 | 0.941–1.054 | 0.891 | 1.121 | 0.810–1.550 | 0.491 |
Systolic blood pressure (mmHg) | 1.027 | 0.937–1.126 | 0.566 | 1.150 | 0.842–1.571 | 0.380 |
Diastolic blood pressure (mmHg) | 1.023 | 0.912–1.148 | 0.697 | 0.965 | 0.695–1.340 | 0.833 |
Age (years) | 1.090 | 0.882–1.342 | 0.426 | 1.851 | 0.579–5.923 | 0.299 |
BMI normal (kg/m2) | 3.292 | 0.142–76.073 | 0.457 | 4.887 | 0.319–57.035 | 0.563 |
BMI ≥ 25 kg/m2 | 1.308 | 0.076–22.574 | 0.854 | 0.284 | 0.009–15.777 | 0.509 |
Smoking habit (yes/no) | 1.144 | 0.090–14.570 | 0.917 | 1.890 | 0.109–10.222 | 0.999 |
Number of children | 0.789 | 0.341–1.825 | 0.580 | 0.475 | 0.030–7.597 | 0.599 |
Group 2: Postmenopause | ||||||
WC (cm) | 0.947 | 0.867–1.036 | 0.235 | 0.925 | 0.857–0.999 | 0.047 |
Glucose (mg/dL) | 1.005 | 0.939–1.076 | 0.884 | 1.000 | 0.990–1.011 | 0.989 |
Triglycerides (mg/dL) | 0.998 | 0.983–1.012 | 0.772 | 1.001 | 0.996–1.007 | 0.616 |
HDL (mg/dL) | 0.993 | 0.943–1.047 | 0.807 | 1.000 | 0.944–1.059 | 0.990 |
Systolic blood pressure (mmHg) | 1.035 | 0.964–1.111 | 0.337 | 0.990 | 0.946–1.036 | 0.990 |
Diastolic blood pressure (mmHg) | 1.012 | 0.940–1.089 | 0.753 | 1.000 | 0.944–1.059 | 0.995 |
Age (years) | 1.113 | 0.962–1.287 | 0.149 | 1.298 | 1.109–1.520 | 0.001 |
BMI normal (kg/m2) | 1.399 | 0.111–17.565 | 0.795 | 2.387 | 0.319–17.855 | 0.397 |
BMI ≥ 25 kg/m2 | 0.083 | 0.007–1.023 | 0.083 | 1.784 | 0.494–6.448 | 0.377 |
Smoking habit (yes/no) | 1.532 | 0.095–12.666 | 0.999 | 0.772 | 0.148–4.020 | 0.759 |
Number of children | 1.619 | 0.953–2.750 | 0.075 | 0.674 | 0.456–0.997 | 0.048 |
No MetS | MetS | |||||
---|---|---|---|---|---|---|
OR | 95% CI | p | OR | 95% CI | p | |
Group 1: Reproductive/Menopausal transition | ||||||
WC (cm) | 0.989 | 0.902–1.084 | 0.811 | 0.790 | 0.635–0.982 | 0.034 |
Glucose (mg/dL) | 1.023 | 0.958–1.093 | 0.490 | 0.988 | 0.930–1.049 | 0.692 |
Triglycerides (mg/dL) | 1.005 | 0.991–1.020 | 0.468 | 0.997 | 0.987–1.006 | 0.505 |
HDL (mg/dL) | 0.981 | 0.931–1.033 | 0.461 | 0.897 | 0.766–1.050 | 0.176 |
Systolic blood pressure (mmHg) | 1.014 | 0.932–1.104 | 0.745 | 1.013 | 0.928–1.107 | 0.765 |
Diastolic blood pressure (mmHg) | 0.952 | 0.854–1.061 | 0.369 | 0.955 | 0.854–1.070 | 0.429 |
Age (years) | 1.246 | 1.016–1.528 | 0.035 | 1.309 | 1.013–1.690 | 0.039 |
BMI normal (kg/m2) | 1.332 | 0.082–21.598 | 0.840 | 0.001 | 0.001–20.633 | 0.999 |
BMI ≥ 25 kg/m2 | 2.381 | 0.210–26.948 | 0.483 | 0.007 | 0.003–0.476 | 0.021 |
Smoking habit (yes/no) | 3.354 | 0.264–42.529 | 0.350 | 0.005 | 0.001–0.509 | 0.025 |
Number of children | 0.878 | 0.396–1.948 | 0.750 | 0.657 | 0.291–1.483 | 0.312 |
Group 2: Postmenopause | ||||||
WC (cm) | 0.990 | 0.932–1.052 | 0.755 | 0.964 | 0.916–1.014 | 0.156 |
Glucose (mg/dL) | 1.038 | 0.990–1.089 | 0.124 | 1.013 | 1.001–1.026 | 0.037 |
Triglycerides (mg/dL) | 0.999 | 0.989–1.009 | 0.831 | 0.997 | 0.992–1.002 | 0.199 |
HDL (mg/dL) | 1.024 | 0.984–1.067 | 0.245 | 1.084 | 1.030–1.140 | 0.002 |
Systolic blood pressure (mmHg) | 1.012 | 0.959–1.067 | 0.667 | 0.981 | 0.947–1.017 | 0.307 |
Diastolic blood pressure (mmHg) | 0.977 | 0.924–1.033 | 0.409 | 1.028 | 0.983–1.075 | 0.232 |
Age (years) | 1.049 | 0.951–1.157 | 0.342 | 1.189 | 1.070–1.322 | 0.001 |
BMI normal (kg/m2) | 1.847 | 0.257–13.262 | 0.542 | 2.037 | 0.298–13.950 | 0.468 |
BMI ≥ 25 kg/m2 | 1.309 | 0.284–6.028 | 0.730 | 1.282 | 0.453–3.632 | 0.640 |
Smoking habit (yes/no) | 4.966 | 0.206–119.912 | 0.324 | 0.305 | 0.064–1.465 | 0.138 |
Number of children | 1.247 | 0.864–1.798 | 0.238 | 0.611 | 0.431–0.867 | 0.006 |
Group 1: Reproductive/Menopausal Transition (n = 146) | Group 2: Postmenopausal (n = 230) | |||||
---|---|---|---|---|---|---|
OR | 95% CI | p | OR | 95% CI | p | |
Dual femur | ||||||
WC ≥ 80 cm | 0.650 | 0.157–2.689 | 0.552 | 1.666 | 0.595–4.668 | 0.331 |
WC ≥ 88 cm | 7.638 | 1.607–36.298 | 0.011 | 2.600 | 1.023–6.609 | 0.045 |
Triglycerides ≥ 150 mg/dL | 1.200 | 0.271–5.321 | 0.810 | 0.708 | 0.336–1.494 | 0.365 |
HDL < 50 mg/dL | 3.639 | 1.039–12.743 | 0.043 | 1.489 | 0.595–3.730 | 0.395 |
Blood pressure ≥ 130/85 mmHg or antihypertensive treatment | 0.324 | 0.075–1.408 | 0.133 | 2.634 | 1.150–6.035 | 0.022 |
Fasting blood glucose ≥ 100 mg/dL or antidiabetic treatment | 1.181 | 0.269–5.178 | 0.826 | 0.588 | 0.295–1.175 | 0.133 |
Spine (L1–L4) | ||||||
WC ≥ 80 cm | 0.845 | 0.202–3.531 | 0.818 | 1.405 | 0.496–3.977 | 0.603 |
WC ≥ 88 cm | 1.147 | 0.351–3.745 | 0.820 | 1.251 | 0.538–2.908 | 0.522 |
Triglycerides ≥ 150 mg/dL | 0.946 | 0.289–3.099 | 0.927 | 1.112 | 0.577–2.144 | 0.751 |
HDL < 50 mg/dL | 1.563 | 0.489–5.001 | 0.452 | 2.654 | 1.092–6.447 | 0.031 |
Blood pressure ≥130/85 mmHg or antihypertensive treatment | 0.630 | 0.179–2.212 | 0.471 | 1.304 | 0.683–2.490 | 0.422 |
Fasting blood glucose ≥ 100 mg/dL or antidiabetic treatment | 1.140 | 0.348–3.729 | 0.829 | 0.843 | 0.448–1.589 | 0.598 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salas, R.; Tijerina, A.; Cardona, M.; Bouzas, C.; Ramirez, E.; Martínez, G.; Garza, A.; Pastor, R.; Tur, J.A. Association between Bone Mineral Density and Metabolic Syndrome among Reproductive, Menopausal Transition, and Postmenopausal Women. J. Clin. Med. 2021, 10, 4819. https://doi.org/10.3390/jcm10214819
Salas R, Tijerina A, Cardona M, Bouzas C, Ramirez E, Martínez G, Garza A, Pastor R, Tur JA. Association between Bone Mineral Density and Metabolic Syndrome among Reproductive, Menopausal Transition, and Postmenopausal Women. Journal of Clinical Medicine. 2021; 10(21):4819. https://doi.org/10.3390/jcm10214819
Chicago/Turabian StyleSalas, Rogelio, Alexandra Tijerina, Mariana Cardona, Cristina Bouzas, Erik Ramirez, Gustavo Martínez, Aurora Garza, Rosario Pastor, and Josep A. Tur. 2021. "Association between Bone Mineral Density and Metabolic Syndrome among Reproductive, Menopausal Transition, and Postmenopausal Women" Journal of Clinical Medicine 10, no. 21: 4819. https://doi.org/10.3390/jcm10214819
APA StyleSalas, R., Tijerina, A., Cardona, M., Bouzas, C., Ramirez, E., Martínez, G., Garza, A., Pastor, R., & Tur, J. A. (2021). Association between Bone Mineral Density and Metabolic Syndrome among Reproductive, Menopausal Transition, and Postmenopausal Women. Journal of Clinical Medicine, 10(21), 4819. https://doi.org/10.3390/jcm10214819