Inflammatory Markers and Thromboembolic Risk in Patients with Non-Muscle-Invasive Bladder Cancer
Abstract
:1. Introduction
2. Material and Methods
3. Results
4. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Artoni, A.; Abbattista, M.; Bucciarelli, P.; Gianniello, F.; Scalambrino, E.; Pappalardo, E.; Peyvandi, F.; Martinelli, I. Platelet to Lymphocyte Ratio and Neutrophil to Lymphocyte Ratio as Risk Factors for Venous Thrombosis. Clin. Appl. Thromb. 2018, 24, 808–814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stefaniuk, P.; Szymczyk, A.; Podhorecka, M. The Neutrophil to Lymphocyte and Lymphocyte to Monocyte Ratios as New Prognostic Factors in Hematological Malignancies—A Narrative Review. Cancer Manag. Res. 2020, 12, 2961–2977. [Google Scholar] [CrossRef] [PubMed]
- Templeton, A.J.; McNamara, M.G.; Šeruga, B.; Vera-Badillo, F.E.; Aneja, P.; Ocaña, A.; Leibowitz-Amit, R.; Sonpavde, G.; Knox, J.J.; Tran, B.; et al. Prognostic role of neutrophil-to-lymphocyte ratio in solid tumors: A systematic review and meta-analysis. J. Natl. Cancer Inst. 2014, 106, dju124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Cheng, Y.; Ji, Z. Prognostic value of pretreatment lymphocyte-to-monocyte ratio in patients with urologic tumors: A PRISMA-compliant meta-analysis. Medicine 2019, 98, e14091. [Google Scholar] [CrossRef]
- Zhu, X.; Yao, Y.; Yao, C.; Jiang, Q. Predictive value of lymphocyte to monocyte ratio and monocyte to high-density lipoprotein ratio for acute deep vein thrombosis after total joint arthroplasty: A retrospective study. J. Orthop. Surg. Res. 2018, 13, 211. [Google Scholar] [CrossRef]
- Saand, A.R.; Yu, F.; Chen, J.; Chou, S.H.-Y. Systemic inflammation in hemorrhagic strokes—A novel neurological sign and therapeutic target? J. Cereb. Blood Flow Metab. 2019, 39, 959–988. [Google Scholar] [CrossRef] [PubMed]
- Hostler, D.C.; Marx, E.S.; Moores, L.K.; Petteys, S.K.; Hostler, J.M.; Mitchell, J.D.; Holley, P.R.; Collen, J.F.; Foster, B.E.; Holley, A.B. Validation of the International Medical Prevention Registry on Venous Thromboembolism Bleeding Risk Score. Chest 2016, 149, 372–379. [Google Scholar] [CrossRef] [Green Version]
- Spyropoulos, A.C.; Lipardi, C.; Xu, J.; Peluso, C.; Spiro, T.E.; De Sanctis, Y.; Barnathan, E.S.; Raskob, G.E. Modified IMPROVE VTE Risk Score and Elevated D-Dimer Identify a High Venous Thromboembolism Risk in Acutely Ill Medical Population for Extended Thromboprophylaxis. TH Open 2020, 4, e59–e65. [Google Scholar] [CrossRef] [Green Version]
- Vartolomei, M.D.; Porav-Hodade, D.; Ferro, M.; Mathieu, R.; Abufaraj, M.; Foerster, B.; Kimura, S.; Shariat, S.F. Prognostic role of pretreatment neutrophil-to-lymphocyte ratio (NLR) in patients with non-muscle-invasive bladder cancer (NMIBC): A systematic review and meta-analysis. Urol. Oncol. 2018, 36, 389–399. [Google Scholar] [CrossRef]
- Mártha, O.; Balan, D.; Porav-Hodade, D.; Drágus, E.; Vartolomei, M.D.; Chibelean, C.B.; Borda, A.; Pytel, Á.; Vida, O.Á. The role of neutrophil to lymphocyte ratio in patients with pTa non-muscle invasive bladder cancer. Rev. Romana Med. Lab. 2020, 28, 29–38. [Google Scholar] [CrossRef] [Green Version]
- Zareba, P.; Duivenvoorden, W.C.M.; Pinthus, J.H. Thromboembolism in Patients with Bladder Cancer: Incidence, Risk Factors and Prevention. Bladder Cancer 2018, 4, 139–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Andrea, D.; Moschini, M.; Gust, K.; Abufaraj, M.; Özsoy, M.; Mathieu, R.; Soria, F.; Briganti, A.; Rouprêt, M.; Karakiewicz, P.I.; et al. Prognostic Role of Neutrophil-to-Lymphocyte Ratio in Primary Non-muscle-invasive Bladder Cancer. Clin. Genitourin. Cancer 2017, 15, e755–e764. [Google Scholar] [CrossRef] [PubMed]
- Schünemann, H.J.; Cushman, M.; Burnett, A.E.; Kahn, S.R.; Beyer-Westendorf, J.; Spencer, F.A.; Rezende, S.M.; Zakai, N.A.; Bauer, K.A.; Dentali, F.; et al. American Society of Hematology 2018 guidelines for management of venous thromboembolism: Prophylaxis for hospitalized and nonhospitalized medical patients. Blood Adv. 2018, 2, 3198–3225. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Z.; Kan, Q.; Li, W.; Qin, X.; Qu, J.; Shi, Y.; Xu, R.; Xu, Y.; Zhang, Z.; Wang, C.; et al. VTE Risk Profiles and Prophylaxis in Medical and Surgical Inpatients: The Identification of Chinese Hospitalized Patients’ Risk Profile for Venous Thromboembolism (DissolVE-2)-A Cross-sectional Study. Chest 2019, 155, 114–122. [Google Scholar] [CrossRef] [Green Version]
- Greene, M.T.; Spyropoulos, A.C.; Chopra, V.; Grant, P.J.; Kaatz, S.; Bernstein, S.J.; Flanders, S.A. Validation of Risk Assessment Models of Venous Thromboembolism in Hospitalized Medical Patients. Am. J. Med. 2016, 129, 1001.e9–1001.e18. [Google Scholar] [CrossRef] [Green Version]
- Viers, B.R.; Boorjian, S.A.; Frank, I.; Tarrell, R.F.; Thapa, P.; Karnes, R.J.; Thompson, R.H.; Tollefson, M.K. Pretreatment neutrophil-to-lymphocyte ratio is associated with advanced pathologic tumor stage and increased cancer-specific mortality among patients with urothelial carcinoma of the bladder undergoing radical cystectomy. Eur. Urol. 2014, 66, 1157–1164. [Google Scholar] [CrossRef]
- Köse, N.; Yıldırım, T.; Akın, F.; Yıldırım, S.E.; Altun, İ. Prognostic role of NLR, PLR, and LMR in patients with pulmonary embolism. Bosn. J. Basic Med. Sci. 2020, 20, 248–253. [Google Scholar] [CrossRef]
- Zhang, H.; Li, J.; Chen, X.; Wu, N.; Xie, W.; Tang, H.; Li, C.; Wu, L.; Xiang, Y.; Zhong, L.; et al. Association of Systemic Inflammation Score With Atrial Fibrillation: A Case-Control Study With Propensity Score Matching. Heart Lung Circ. 2018, 27, 489–496. [Google Scholar] [CrossRef]
- Riva, N.; Donadini, M.P.; Ageno, W. Epidemiology and pathophysiology of venous thromboembolism: Similarities with atherothrombosis and the role of inflammation. Thromb. Haemost. 2015, 113, 1176–1183. [Google Scholar] [CrossRef]
- Samad, F.; Ruf, W. Inflammation, obesity, and thrombosis. Blood 2013, 122, 3415–3422. [Google Scholar] [CrossRef]
- Ma, J.-Y.; Hu, G.; Liu, Q. Prognostic Significance of the Lymphocyte-to-Monocyte Ratio in Bladder Cancer Undergoing Radical Cystectomy: A Meta-Analysis of 5638 Individuals. Dis. Markers 2019, 2019, 7593560. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.-M.; Russell, A.; Hellawell, G. Predictive value of pretreatment inflammation-based prognostic scores (neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio, and lymphocyte-to-monocyte ratio) for invasive bladder carcinoma. Korean J. Urol. 2015, 56, 749–755. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, T.; Kinoshita, H.; Yoshida, K.; Mishima, T.; Yanishi, M.; Inui, H.; Komai, Y.; Sugi, M.; Inoue, T.; Murota, T.; et al. Prognostic impact of perioperative lymphocyte-monocyte ratio in patients with bladder cancer undergoing radical cystectomy. Tumour Biol. 2016, 37, 10067–10074. [Google Scholar] [CrossRef]
- Wang, Q.H.; Ji, J.L.; Li, H.; He, P.L.; Song, L.X.; Zhao, Y.; Wang, H.Y.; Huang, T.; Sun, X.X.; Cao, Y.W.; et al. Preoperative Lymphocyte-to-monocyte Ratio Predicts Prognosis in Patients with Stage T1 Non-muscle Invasive Bladder Cancer. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 2019, 41, 622–629. [Google Scholar]
- Li, S.; Liu, K.; Zhang, R.; Gao, Y.; Fang, H.; Liu, X.; Pei, L.; Chou, L.-Y.R.; Guan, S.; Guo, X.; et al. Lower lymphocyte to monocyte ratio is a potential predictor of poor outcome in patients with cerebral venous sinus thrombosis. Stroke Vasc. Neurol. 2018, 4, 148–153. [Google Scholar] [CrossRef] [Green Version]
- Braun, A.; Anders, H.-J.; Gudermann, T.; Mammadova-Bach, E. Platelet-Cancer Interplay: Molecular Mechanisms and New Therapeutic Avenues. Front. Oncol. 2021, 11, 665534. [Google Scholar] [CrossRef]
- Fernandes, C.J.; Morinaga, L.T.K.; Alves, J.L.; Castro, M.A.; Calderaro, D.; Jardim, C.V.P.; Souza, R. Cancer-associated thrombosis: The when, how and why. Eur. Respir. Rev. 2019, 28, 180119. [Google Scholar] [CrossRef] [Green Version]
- Mukai, M.; Oka, T. Mechanism and management of cancer-associated thrombosis. J. Cardiol. 2018, 72, 89–93. [Google Scholar] [CrossRef] [Green Version]
- Ho-Tin-Noé, B.; Boulaftali, Y.; Camerer, E. Platelets and vascular integrity: How platelets prevent bleeding in inflammation. Blood 2018, 131, 277–288. [Google Scholar] [CrossRef]
- Wells, P.S.; Owen, C.; Doucette, S.; Fergusson, D.; Tran, H. Does this patient have deep vein thrombosis? JAMA 2006, 295, 199–207. [Google Scholar] [CrossRef]
- Spyropoulos, A.C.; Anderson, F.A.; FitzGerald, G.; Decousus, H.; Pini, M.; Chong, B.H.; Zotz, R.B.; Bergmann, J.-F.; Tapson, V.; Froehlich, J.B.; et al. Predictive and associative models to identify hospitalized medical patients at risk for VTE. Chest 2011, 140, 706–714. [Google Scholar] [CrossRef]
- Ferro, M.; Del Giudice, F.; Carrieri, G.; Busetto, G.M.; Cormio, L.; Hurle, R.; Contieri, R.; Arcaniolo, D.; Sciarra, A.; Maggi, M.; et al. The Impact of SARS-CoV-2 Pandemic on Time to Primary, Secondary Resection and Adjuvant Intravesical Therapy in Patients with High-Risk Non-Muscle Invasive Bladder Cancer: A Retrospective Multi-Institutional Cohort Analysis. Cancers 2021, 13, 5276. [Google Scholar] [CrossRef]
Characteristics | Low IMPROVE Group <4 Points (n = 66) | High IMPROVE Group ≥4 Points (n = 64) | p-Value |
---|---|---|---|
Age (years) mean ± SD | 65.77 ± 11.316 | 73.64 ± 9.03 | <0.0001 |
Gender, M/F nr (%) | 55/11 (16.9%) | 54/10 (15.6%) | 0.84 |
Lymphocytes, 103/µL median (min-max) and mean± SD | 2.00 (0.00–4.00) 2.04 ± 0.89 | 2.00 (0.00–4.00) 1.65 ± 0.83 | 0.005 |
Neutrophils, 103/µL median (min-max) | 6.14 ± 2.88 | 7.22 ± 4.6 | 0.21 |
Neutrophil to lymphocyte ratio median (min-max) | 2.44 (1.15–19.68) | 3.50 (1.05–63.47) | 0.002 |
NLR > 3, nr (%) | 26 (40.0%) | 41 (64.1%) | 0.008 |
Monocytes, 103/µL median (min-max) | 1.00 (0.00–1.00) | 0.00–2.00 | 0.046 |
Lymphocyte to monocyte ratio median (min-max) | 3.75 (0.557–12.42) | 2.69 (0.32–8.31) | 0.0001 |
Previous VTE, nr (%) | 2 (5.0%) | 18 (28.1%) | 0.004 |
Tumor stage pT1, nr (%) | 20 (30.8%) | 24 (37.5%) | 0.28 |
pT1 + CIS | 0 (0.0%) | 1 (1.6%) | |
pT1a | 0 (0.0%) | 1 (1.6%) | |
pTa | 43 (66.2%) | 38 (59.4%) | |
pTa + CIS | 2 (3.1%) | 0 (0.0%) | |
Tumor grade G1 | 3 (4.6%) | 1 (1.6%) | 0.43 |
G2 | 34 (52.3%) | 31 (48.4%) | |
G3 | 23 (35.4%) | 22 (34.4%) | |
Tumor size > 3 cm, nr (%) | 44 (67.7%) | 54 (84.4%) | 0.047 |
Variables | Odds Ratio | 95% CI | p |
---|---|---|---|
Age | 1.0200 | 0.9873 to 1.0538 | 0.2329 |
Lymphocytes | 0.1204 | 0.0546 to 0.2653 | <0.0001 |
NLR (>3) | 0.3740 | 0.1834 to 0.7624 | 0.007 |
Monocytes | 8.9106 | 1.9967 to 39.7642 | 0.0042 |
Lymphocyte to monocyte Rratio | 0.4082 | 0.2925 to 0.5696 | 0.0001 |
Tumor size >3 cm | 1.3258 | 0.5480 to 3.2073 | 0.53 |
Previous VTE | 0.9091 | 0.3427 to 2.4114 | 0.84 |
Variables | Odds Ratio | 95%CI | p |
---|---|---|---|
Lymphocytes | 0.1214 | 0.0303 to 0.4864 | 0.0029 |
NLR (>3) | 0.4697 | 0.2170 to 0.9845 | 0.0098 |
Monocytes | 12.8667 | 0.2403 to 688.8504 | 0.2084 |
Lymphocyte to monocyte ratio | 0.8590 | 0.4312 to 1.7111 | 0.6655 |
Correlations | ||||||||
---|---|---|---|---|---|---|---|---|
Age | Neutrophils | Lymphocytes | NLR | Monocytes | LMR | |||
Spearman’s rho | Age | Correlation Coefficient | 1.000 | −0.070 | −0.196 | 0.110 | −0.009 | −0.269 * |
Sig. (2-tailed) | . | 0.575 | 0.111 | 0.376 | 0.944 | 0.028 | ||
Neutrophils | Correlation Coefficient | −0.070 | 1.000 | 0.138 | 0.678 ** | 0.159 | −0.254 * | |
Sig. (2-tailed) | 0.575 | . | 0.266 | 0.000 | 0.198 | 0.038 | ||
Lymphocytes | Correlation Coefficient | −0.196 | 0.138 | 1.000 | −0.489 ** | 0.307 * | 0.466 ** | |
Sig. (2-tailed) | 0.111 | 0.266 | . | 0.000 | 0.012 | 0.000 | ||
NLR | Correlation Coefficient | 0.110 | 0.678 ** | −0.489 ** | 1.000 | −0.023 | −0.613 ** | |
Sig. (2-tailed) | 0.376 | 0.000 | 0.000 | . | 0.851 | 0.000 | ||
Monocytes | Correlation Coefficient | −0.009 | 0.159 | 0.307 * | −0.023 | 1.000 | −0.408 ** | |
Sig. (2-tailed) | 0.944 | 0.198 | 0.012 | 0.851 | . | 0.001 | ||
LMR | Correlation Coefficient | −0.269 * | −0.254 * | 0.466 ** | −0.613 ** | −0.408 ** | 1.000 | |
Sig. (2-tailed) | 0.028 | 0.038 | 0.000 | 0.000 | 0.001 | . |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balan, D.; Vartolomei, M.D.; Magdás, A.; Balan-Bernstein, N.; Voidăzan, S.T.; Mártha, O. Inflammatory Markers and Thromboembolic Risk in Patients with Non-Muscle-Invasive Bladder Cancer. J. Clin. Med. 2021, 10, 5270. https://doi.org/10.3390/jcm10225270
Balan D, Vartolomei MD, Magdás A, Balan-Bernstein N, Voidăzan ST, Mártha O. Inflammatory Markers and Thromboembolic Risk in Patients with Non-Muscle-Invasive Bladder Cancer. Journal of Clinical Medicine. 2021; 10(22):5270. https://doi.org/10.3390/jcm10225270
Chicago/Turabian StyleBalan, Daniel, Mihai Dorin Vartolomei, Annamária Magdás, Noemi Balan-Bernstein, Septimiu Toader Voidăzan, and Orsolya Mártha. 2021. "Inflammatory Markers and Thromboembolic Risk in Patients with Non-Muscle-Invasive Bladder Cancer" Journal of Clinical Medicine 10, no. 22: 5270. https://doi.org/10.3390/jcm10225270
APA StyleBalan, D., Vartolomei, M. D., Magdás, A., Balan-Bernstein, N., Voidăzan, S. T., & Mártha, O. (2021). Inflammatory Markers and Thromboembolic Risk in Patients with Non-Muscle-Invasive Bladder Cancer. Journal of Clinical Medicine, 10(22), 5270. https://doi.org/10.3390/jcm10225270