Prostate-Specific Antigen and Testosterone Levels as Biochemical Indicators of Cognitive Function in Prostate Cancer Survivors and the Role of Diabetes
Abstract
1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
4.1. Prostate-Specific Antigen
4.2. Testosterone
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rawla, P. Epidemiology of Prostate Cancer. World J. Oncol. 2019, 10, 63–89. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Patasius, A.; Smailyte, G. All-Cause Mortality Risk in National Prostate Cancer Cohort: An Impact of Population-Based Prostate Cancer Screening. J. Clin. Med. 2021, 10, 2459. [Google Scholar] [CrossRef]
- Lange, M.; Joly, F.; Vardy, J.; Ahles, T.; Dubois, M.; Tron, L.; Winocur, G.; De Ruiter, M.; Castel, H. Cancer-related cognitive impairment: An update on state of the art, detection, and management strategies in cancer survivors. Ann. Oncol. 2019, 30, 1925–1940. [Google Scholar] [CrossRef] [PubMed]
- Ryan, C.; Wefel, J.S.; Morgans, A.K. A review of prostate cancer treatment impact on the CNS and cognitive function. Prostate Cancer Prostatic Dis. 2019, 23, 207–219. [Google Scholar] [CrossRef] [PubMed]
- Treanor, C.; Li, J.; Donnelly, M. Cognitive impairment among prostate cancer patients: An overview of reviews. Eur. J. Cancer Care 2017, 26. [Google Scholar] [CrossRef]
- Jarzemski, P.; Brzoszczyk, B.; Popiołek, A.; Stachowicz-Karpińska, A.; Gołota, S.; Bieliński, M.; Borkowska, A. Cognitive function, depression, and anxiety in patients undergoing radical prostatectomy with and without adjuvant treatment. Neuropsychiatr. Dis. Treat. 2019, 15, 819–829. [Google Scholar] [CrossRef]
- Hardy, S.J.; Krull, K.R.; Wefel, J.S.; Janelsins, M. Cognitive Changes in Cancer Survivors. Am. Soc. Clin. Oncol. Educ. Book 2018, 23, 795–806. [Google Scholar] [CrossRef]
- Cascella, M.; Di Napoli, R.; Carbone, D.; Cuomo, G.F.; Bimonte, S.; Mbolla, B.F.E.; Muzio, M.R. Chemotherapy-related cognitive impairment: Mechanisms, clinical features and research perspectives. Recent. Prog. Med. 2018, 109, 523–530. [Google Scholar] [CrossRef]
- Toh, Y.L.; Mujtaba, J.S.; Bansal, S.; Yeo, A.; Shwe, M.; Lau, A.J.; Chan, A. Prechemotherapy Levels of Plasma Dehydroepiandrosterone and Its Sulfated Form as Predictors of Cancer-Related Cognitive Impairment in Patients with Breast Cancer Receiving Chemotherapy. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2019, 39, 553–563. [Google Scholar] [CrossRef]
- Bertram, S.; Brixius, K.; Brinkmann, C. Exercise for the diabetic brain: How physical training may help prevent dementia and Alzheimer’s disease in T2DM patients. Endocrine 2016, 53, 350–363. [Google Scholar] [CrossRef]
- Cai, Z.; Li, H. An Updated Review: Androgens and Cognitive Impairment in Older Men. Front. Endocrinol. 2020, 11, 586909. [Google Scholar] [CrossRef]
- Lin, H.-C.; Kao, L.-T.; Chung, S.-D.; Huang, C.-C.; Shia, B.-C.; Huang, C.-Y. Alzheimer’s disease is associated with prostate cancer: A population-based study. Oncotarget 2018, 9, 7616–7622. [Google Scholar] [CrossRef] [PubMed]
- Spratt, D.E.; Shore, N.; Sartor, O.; Rathkopf, D.; Olivier, K. Treating the patient and not just the cancer: Therapeutic burden in prostate cancer. Prostate Cancer Prostatic Dis. 2021, 24, 647–661. [Google Scholar] [CrossRef] [PubMed]
- Burke, M.A.; Lowrance, W.; Perczek, R. Emotional and cognitive burden of prostate cancer. Urol. Clin. 2003, 30, 295–304. [Google Scholar] [CrossRef]
- Chung, N.-C.; Walker, A.K.; Dhillon, H.M.; Vardy, J.L. Mechanisms and Treatment for Cancer-and Chemotherapy-Related Cog-nitive Impairment in Survivors of Non-CNS Malignancies. Oncology 2018, 32, 591–598. [Google Scholar] [PubMed]
- Janelsins, M.C.; Kesler, S.R.; Ahles, T.A.; Morrow, G.R. Prevalence, mechanisms, and management of cancer-related cognitive impairment. Int. Rev. Psychiatry 2014, 26, 102–113. [Google Scholar] [CrossRef]
- Cui, M.Y.; Lin, Y.; Sheng, J.Y.; Zhang, X.; Cui, R.J. Exercise Intervention Associated with Cognitive Improvement in Alzheimer’s Disease. Neural Plast. 2018, 2018, 9234105. [Google Scholar] [CrossRef]
- Leidi-Maimone, B.; Notter-Bielser, M.-L.; Laouadi, M.-H.; Perrin, S.; Métraux, H.; Damian, D.; Chavan, C.F.; Nsir, M.; Cibelli, G.; Tâche, M.-J.; et al. How non-drug interventions affect the quality of life of patients suffering from progressive cognitive decline and their main caregiver. Aging 2020, 12, 10754–10771. [Google Scholar] [CrossRef] [PubMed]
- Ferraro, S.; Bussetti, M.; Bassani, N.; Rossi, R.; Incarbone, G.; Bianchi, F.; Maggioni, M.; Runza, L.; Ceriotti, F.; Panteghini, M. Definition of Outcome-Based Prostate-Specific Antigen (PSA) Thresholds for Advanced Prostate Cancer Risk Prediction. Cancers 2021, 13, 3381. [Google Scholar] [CrossRef] [PubMed]
- Sternberg, Z.; Podolsky, R.; Nir, A.; Yu, J.; Nir, R.; Halvorsen, S.W.; Chadha, K.; Quinn, J.F.; Kaye, J.; Kolb, C. Increased free prostate specific antigen serum levels in Alzheimer’s disease, correlation with Cognitive Decline. J. Neurol. Sci. 2019, 400, 188–193. [Google Scholar] [CrossRef]
- Giagulli, V.A.; Guastamacchia, E.; Licchelli, B.; Triggiani, V. Serum Testosterone and Cognitive Function in Ageing Male: Updating the Evidence. Recent Pat. Endocr. Metab. Immune Drug Discov. 2016, 10, 22–30. [Google Scholar] [CrossRef] [PubMed]
- van Leenders, G.J.; van der Kwast, T.H.; Grignon, D.J.; Evans, A.J.; Kristiansen, G.; Kweldam, C.F.; Litjens, G.; McKenney, J.K.; Melamed, J.; Mottet, N.; et al. The 2019 International Society of Urological Pathology (ISUP) Consensus Conference on Grading of Prostatic Carcinoma. Am. J. Surg. Pathol. 2020, 44, e87–e99. [Google Scholar] [CrossRef] [PubMed]
- Guenter, W.; Bieliński, M.; Bonek, R.; Borkowska, A. Neurochemical Changes in the Brain and Neuropsychiatric Symptoms in Clinically Isolated Syndrome. J. Clin. Med. 2020, 9, 3909. [Google Scholar] [CrossRef]
- Ferraro, S.; Bussetti, M.; Panteghini, M. Serum Prostate-Specific Antigen Testing for Early Detection of Prostate Cancer: Managing the Gap between Clinical and Laboratory Practice. Clin. Chem. 2021, 67, 602–609. [Google Scholar] [CrossRef]
- Quiñones, H.J.A.; Stish, B.J.; Hagen, C.; Petersen, R.C.; Mielke, M.M. Prostate Cancer, Use of Androgen Deprivation Therapy, and Cognitive Impairment: A Population-Based Study. Alzheimer Dis. Assoc. Disord. 2020, 34, 118–121. [Google Scholar] [CrossRef]
- Orphanos, G.; Ioannidis, G.; Michael, M.; Kitrou, G. Prostate-specific antigen in the cerebrospinal fluid: A marker of local disease. Med. Oncol. 2008, 26, 143–146. [Google Scholar] [CrossRef]
- Sahin, H.; Aflay, U.; Batun, S.; Bircan, M.K. Cerebrospinal fluid prostate specific antigen (CSF PSA) in prostate cancer patients with lower spine metastasis. Int. Urol. Nephrol. 2005, 37, 727–730. [Google Scholar] [CrossRef]
- Schaller, B.; Merlo, A.; Kirsch, E.; Lehmann, K.; Huber, P.R.; Lyrer, P.; Steck, A.J.; Gratzl, O. Prostate-specific antigen in the cerebrospinal fluid leads to diagnosis of solitary cauda equina metastasis: A unique case report and review of the literature. Br. J. Cancer 1998, 77, 2386–2389. [Google Scholar] [CrossRef]
- Jim, H.S.L.; Small, B.J.; Patterson, S.; Salup, R.; Jacobsen, P.B. Cognitive impairment in men treated with luteinizing hormone–releasing hormone agonists for prostate cancer: A controlled comparison. Support. Care Cancer 2009, 18, 21–27. [Google Scholar] [CrossRef]
- Yiannopoulou, K.G.; Anastasiou, A.I.; Kontoangelos, K.; Papageorgiou, C.; Anastasiou, I.P. Cognitive and Psychological Impacts of Different Treatment Options for Prostate Cancer: A Critical Analysis. Curr. Urol. 2020, 14, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Zarghami, N.; Grass, L.; Diamandis, E. Steroid hormone regulation of prostate-specific antigen gene expression in breast cancer. Br. J. Cancer 1997, 75, 579–588. [Google Scholar] [CrossRef] [PubMed]
- Soo, A.; O’Callaghan, M.E.; Kopsaftis, T.; Vatandoust, S.; Moretti, K.; Kichenadasse, G. PSA response to antiandrogen withdrawal: A systematic review and meta-analysis. Prostate Cancer Prostatic Dis. 2021, 24, 826–836. [Google Scholar] [CrossRef] [PubMed]
- Saad, F.; Bögemann, M.; Suzuki, K.; Shore, N. Treatment of nonmetastatic castration-resistant prostate cancer: Focus on second-generation androgen receptor inhibitors. Prostate Cancer Prostatic Dis. 2021, 24, 323–334. [Google Scholar] [CrossRef]
- Tarantino, G.; Crocetto, F.; Di Vito, C.; Martino, R.; Pandolfo, S.D.; Creta, M.; Aveta, A.; Buonerba, C.; Imbimbo, C. Clinical factors affecting prostate-specific antigen levels in prostate cancer patients undergoing radical prostatectomy: A retrospective study. Future Sci. OA 2021, 7, FSO643. [Google Scholar] [CrossRef]
- Kobayashi, M.; Mizuno, T.; Yuki, H.; Kambara, T.; Betsunoh, H.; Nukui, A.; Abe, H.; Fukabori, Y.; Yashi, M.; Kamai, T. Association between serum prostate-specific antigen level and diabetes, obesity, hypertension, and the laboratory parameters related to glucose tolerance, hepatic function, and lipid profile: Implications for modification of prostate-specific antigen threshold. Int. J. Clin. Oncol. 2020, 25, 472–478. [Google Scholar] [CrossRef]
- Zilliox, L.A.; Chadrasekaran, K.; Kwan, J.Y.; Russell, J.W. Diabetes and Cognitive Impairment. Curr. Diabetes Rep. 2016, 16, 87. [Google Scholar] [CrossRef]
- Elabbady, A.; Hashad, M.M.; Kotb, A.; Ghanem, A.E. Studying the effect of type 2 diabetes mellitus on prostate-related parameters: A prospective single institutional study. Prostate Int. 2016, 4, 156–159. [Google Scholar] [CrossRef]
- Cherrier, M.M.; Matsumoto, A.M.; Amory, J.K.; Asthana, S.; Bremner, W.; Peskind, E.R.; Raskind, M.A.; Craft, S. Testosterone improves spatial memory in men with Alzheimer disease and mild cognitive impairment. Neurology 2005, 64, 2063–2068. [Google Scholar] [CrossRef]
- Okamoto, K.; Sekine, Y.; Nomura, M.; Koike, H.; Matsui, H.; Shibata, Y.; Ito, K.; Suzuki, K. Effects of a luteinizing hormone-releasing hormone agonist on cognitive, sexual, and hormonal functions in patients with prostate cancer: Relationship with testicular and adrenal androgen levels. Basic Clin. Androl. 2015, 25, 3. [Google Scholar] [CrossRef]
- Pintana, H.; Chattipakorn, N.; Chattipakorn, S. Testosterone deficiency, insulin-resistant obesity and cognitive function. Metab. Brain Dis. 2015, 30, 853–876. [Google Scholar] [CrossRef]
- Matsumoto, A.M. Testosterone Replacement in Men with Age-Related Low Testosterone: What Did We Learn from the Testosterone Trials? Curr. Opin. Endocr. Metab. Res. 2019, 6, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Jamadar, R.J.; Winters, M.J.; Maki, P.M. Cognitive changes associated with ADT: A review of the literature. Asian J. Androl. 2012, 14, 232–238. [Google Scholar] [CrossRef]
- Cherrier, M.; Rose, A.; Higano, C. The effects of combined androgen blockade on cognitive function during the first cycle of intermittent androgen suppression in patients with prostate cancer. J. Urol. 2003, 170, 1808–1811. [Google Scholar] [CrossRef]
- Nelson, C.J.; Bs, J.S.L.; Ba, M.C.G.; Roth, A.J. Cognitive effects of hormone therapy in men with prostate cancer. Cancer 2008, 113, 1097–1106. [Google Scholar] [CrossRef]
- Andela, C.D.; Matte, R.; Jazet, I.M.; Zonneveld, W.C.; Schoones, J.W.; Meinders, A.E. Effect of androgen deprivation therapy on cognitive functioning in men with prostate cancer: A systematic review. Int. J. Urol. 2021, 28, 786–798. [Google Scholar] [CrossRef]
- Cherrier, M.M.; Cross, D.J.; Higano, C.S.; Minoshima, S. Changes in cerebral metabolic activity in men undergoing androgen deprivation therapy for non-metastatic prostate cancer. Prostate Cancer Prostatic Dis. 2018, 21, 394–402. [Google Scholar] [CrossRef] [PubMed]
- Chao, H.H.; Uchio, E.; Zhang, S.; Hu, S.; Bednarski, S.R.; Luo, X.; Rose, M.; Concato, J.; Li, C.-S.R. Effects of androgen deprivation on brain function in prostate cancer patients–a prospective observational cohort analysis. BMC Cancer 2012, 12, 371. [Google Scholar] [CrossRef] [PubMed]
- McGinty, H.L.; Phillips, K.M.; Jim, H.S.L.; Cessna, J.M.; Asvat, Y.; Cases, M.; Small, B.; Jacobsen, P.B. Cognitive functioning in men receiving androgen deprivation therapy for prostate cancer: A systematic review and meta-analysis. Support. Care Cancer 2014, 22, 2271–2280. [Google Scholar] [CrossRef]
- Salminen, E.K.; Portin, R.I.; Koskinen, A.; Helenius, H.; Nurmi, M. Associations between serum testosterone fall and cognitive function in prostate cancer patients. Clin. Cancer Res. 2004, 10, 7575–7582. [Google Scholar] [CrossRef][Green Version]
- Etgen, T.; Sander, D.; Bickel, H.; Förstl, H. Mild cognitive impairment and dementia. Dtsch. Aerztebl. Int. 2011, 108, 743–750. [Google Scholar] [CrossRef] [PubMed]
Test | Patient’s Task | Evaluated Parameters |
---|---|---|
Simple reaction time test (SRT) | to press the button after seeing a green circle appearing on the computer screen; the stimulus is presented five times, and the number of correct answers and the average response time (ms) are measured | speed and correctness of reactions to stimuli; general vigilance and psychomotor speed |
Verbal memory test (VM test) | to remember as many words as possible from the list of 10 words read by a researcher five times; the patient has to recall words in any order after each reading and 20 min later; the number of correctly repeated words, the number of words outside the list and the number of repetitions are counted (for each attempt) | efficiency of the working memory (VM1), short-term memory (VM2, VM3, VM4, and VM5, VM1–VM5 are successive attempts when patients recall the memorized words during the test), and deferred memory (verbal memory deferred test; VMDT), immediate auditory memory (number of words saved), learning (improvement of results in subsequent repetitions), and deferred memory (remembering repeating words) |
GoNoGo test | to press a key when a green square appears on the computer screen (“Go” part) and to refrain from pressing a key when a blue square appears on the screen (“NoGo” part); stimuli are presented in a random manner; the time (ms) of correct “Go” reactions and the number and percentage of correct and incorrect “Go” and “NoGo” reactions are listed | response time under the conditions of the need to control reactions–actions and inhibitions (cognitive control and cognitive inhibition); executive functions |
Visuospatial working memory task (VWMT) | to remember the layout of the seven playing cards that were previously presented in different places on the monitor screen | visuospatial memory—correct and incorrect answer and time of reaction |
Parameter | All n = 118 | Postoperative PSA < 0.1 ng/mL (n = 97) | Postoperative PSA > 0.1 ng/mL (n = 21) | d-Cohen | p | |
---|---|---|---|---|---|---|
Age (y) | 66.0 (60–70) | 66.0 (60.0–70.0) | 67.0 (65.0–71.0) | 0.82 | 0.29 | |
BMI (kg/m2) | 27.2 (25.6–29.7) | 26.8 (25.4–29.7) | 27.5 (26.0–29.0) | 0.16 | 0.54 | |
Months from surgery (m) | 19.0 (13.0–33.0) | 19.0 (14.0–33.0) | 23.0 (12.0–33.0) | 0.03 | 0.70 | |
Diabetes (n, %) | 19 (16%) | 14 (14.5%) | 5 (24%) | 0.50 | ||
Hypertension (n, %) | 65 (55%) | 59 (61%) | 6 (28.5%) | 0.02 | ||
MI (n, %) | 10 (8.5%) | 8 (8%) | 2 (9.5%) | 0.92 | ||
Stroke (n, %) | 7 (6%) | 7 (7%) | 0 (0%) | 0.60 | ||
Education | Basic (n, %) | 6 (5%) | 5 (5%) | 1 (5%) | 0.31 | |
Vocational (n, %) | 33 (28%) | 27 (28%) | 6 (28.5%) | |||
Secondary (n, %) | 36 (30.5%) | 26 (27%) | 10 (47.5%) | |||
Higher (n, %) | 43 (36.5%) | 39 (40%) | 4 (19%) | |||
Physical activity | None (n, %) | 40 (34%) | 37 (38%) | 3 (14%) | 0.09 | |
<1x/week (n, %) | 24 (20.5%) | 17 (17.5%) | 7 (33.5%) | |||
<3x/week | 54 (45.5%) | 43 (44.5%) | 11 (52.5%) | |||
GRADE | 1 (n, %) | 70 (59.5%) | 63 (65%) | 7 (33.5%) | 0.005 | |
2 (n, %) | 35 (29.5%) | 27 (28%) | 8 (38%) | |||
3 (n, %) | 5 (4%) | 5 (5%) | 0 (0.0%) | |||
4 (n, %) | 4 (3.5%) | 1 (1%) | 3 (14.25%) | |||
5 (n, %) | 4 (3.5%) | 1 (1%) | 3 (14.25%) | |||
Nicotinism (n, %) | 53 (45%) | 44 (45%) | 9 (43%) | 0.86 |
Parameter | Preoperative PSA | p | Post-Surgery PSA | p | Current PSA | p |
---|---|---|---|---|---|---|
SRT_C | 0.062 | ns. | 0.019 | ns. | 0.016 | ns. |
SRT_RT | −0.118 | ns. | 0.043 | ns. | 0.249 | 0.007 |
VM_1 | 0.003 | ns. | −0.214 | 0.017 | −0.193 | 0.036 |
VM_2 | 0.114 | ns. | −0.049 | ns. | −0.235 | 0.01 |
VM_3 | 0.055 | ns. | −0.017 | ns. | −0.218 | 0.017 |
VM_4 | −0.092 | ns. | 0.080 | ns. | −0.266 | 0.003 |
VM_5 | −0.098 | ns. | 0.078 | ns. | −0.267 | 0.003 |
VMDT_C | −0.123 | ns. | −0.084 | ns. | −0.187 | 0.047 |
GoNoGo_C | 0.116 | ns. | 0.017 | ns. | −0.156 | ns. |
GoNoGo_RT | 0.057 | ns. | −0.048 | ns. | −0.194 | 0.035 |
GoNoGo IncGO | −0.132 | ns. | −0.069 | ns. | 0.131 | ns. |
GoNoGo IncNoGo | 0.087 | ns. | −0.016 | ns. | 0.108 | ns. |
VWMT_C | −0.061 | ns. | −0.039 | ns. | 0.131 | ns. |
VWMT_CRT | 0.023 | ns. | −0.029 | ns. | 0.224 | 0.014 |
VWMT_IRT | 0.060 | ns. | −0.039 | ns. | 0.244 | 0.007 |
Parameter | Current PSA in NONdiabetes Group | p | Current PSA in Diabetes Group | p |
---|---|---|---|---|
SRT_C | 0.044846 | ns. | 0.003714 | ns. |
SRT_RT | −0.119912 | ns. | 0.703496 | 0.0007 |
VM_1 | 0.048692 | ns. | −0.510703 | 0.025 |
VM_2 | 0.089762 | ns. | −0.616001 | 0.005 |
VM_3 | −0.030882 | ns. | −0.558431 | 0.012 |
VM_4 | −0.066766 | ns. | −0.615173 | 0.005 |
VM_5 | −0.009472 | ns. | −0.625363 | 0.004 |
VMDT_C | 0.175397 | ns. | −0.474987 | 0.03 |
GoNoGo_C | 0.069103 | ns. | −0.231986 | ns. |
GoNoGo_RT | 0.117830 | ns. | −0.486785 | 0.03 |
GoNoGo IncGO | −0.054729 | ns. | 0.311612 | ns. |
GoNoGo IncNoGo | −0.048036 | ns. | 0.211985 | ns. |
VWMT_C | 0.175397 | ns. | −0.458971 | 0.048 |
VWMT_CRT | −0.113569 | ns. | 0.789822 | 0.00005 |
VWMT_IRT | −0.083593 | ns. | 0.739536 | 0.0002 |
Parameter | Free Testosterone | Current PSA | ||||||
---|---|---|---|---|---|---|---|---|
No Hormone Therapy Group (n = 104) | p | Hormone Therapy Group (n = 14) | p | No Hormone Therapy Group (n = 14) | p | Hormone Therapy Group (n = 104) | p | |
SRT_C | 0.020066 | ns. | 0.012728 | ns. | 0.0184537 | ns. | −0.030253 | ns. |
SRT_RT | −0.183624 | 0.06 | 0.167365 | ns. | 0.261116 | ns. | 0.001209 | ns. |
VM_1 | −0.216214 | 0.02 | 0.377769 | ns. | −0.236645 | ns. | 0.080332 | ns. |
VM_2 | −0.166072 | ns. | 0.311832 | ns. | −0.542544 | 0.04 | −0.073243 | ns. |
VM_3 | −0.001777 | ns. | 0.148310 | ns. | −0.445146 | ns. | −0.126351 | ns. |
VM_4 | 0.022967 | ns. | 0.395777 | ns. | −0.336402 | ns. | −0.218489 | 0.02 |
VM_5 | 0.031529 | ns. | 0.493676 | 0.07 | −0.191995 | ns. | −0.219604 | 0.02 |
VMDT_C | 0.004462 | ns. | 0.667309 | 0.01 | 0.077626 | ns. | −0.163046 | ns. |
GoNoGo_C | 0.066962 | ns. | 0.779579 | 0.001 | −0.090094 | ns. | 0.022998 | ns. |
GoNoGo_RT | −0.082913 | ns. | 0.485360 | 0.07 | −0.417786 | ns. | 0.047521 | ns. |
GoNoGo IncGO | −0.065987 | ns. | −0.711890 | 0.004 | 0.090094 | ns. | −0.023911 | ns. |
GoNoGo IncNoGo | −0.043903 | ns. | −0.765654 | 0.001 | 0.418701 | ns. | −0.029561 | ns. |
VWMT_C | −0.093605 | ns. | 0.487308 | 0.07 | 0.066111 | ns. | −0.163046 | ns. |
VWMT_CRT | 0.044880 | ns. | −0.393309 | ns. | 0.681656 | 0.007 | 0.263424 | 0.007 |
VWMT_IRT | 0.078058 | ns. | −0.178738 | ns. | 0.739830 | 0.002 | 0.075388 | ns. |
Age | Duration from Surgery | Pre-Treatment PSA | Post-Surgery PSA | Current PSA | Free Testosterone | Total Testosterone | Diabetes | GRADE | Hormone Therapy | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Wald | p | Wald | p | Wald | p | Wald | p | Wald | p | Wald | p | Wald | p | Wald | p | Wald | p | Wald | p | |
SRT_C | 0.8 | 0.34 | 26.0 | <0.001 | 17.2 | <0.001 | 2.7 | 0.09 | 16.2 | <0.001 | 1.5 | 0.22 | 21.8 | <0.001 | 2.9 | 0.08 | 14.5 | 0.002 | 3.5 | 0.06 |
SRT_RT | 0.2 | 0.61 | 0.01 | 0.91 | 0.002 | 0.95 | 0.5 | 0.47 | 4.5 | 0.03 | 0.36 | 0.54 | 9.1 | 0.001 | 0.03 | 0.84 | 1.27 | 0.73 | 0.005 | 0.94 |
VM_1 | 3.0 | 0.08 | 0.05 | 0.80 | 1.4 | 0.23 | 1.64 | 0.19 | 2.08 | 0.14 | 2.9 | 0.08 | 0.34 | 0.59 | 0.56 | 0.45 | 0.84 | 0.83 | 0.95 | 0.32 |
VM_2 | 0.4 | 0.52 | 0.64 | 0.42 | 0.05 | 0.81 | 0.02 | 0.87 | 0.89 | s0.34 | 3.41 | 0.06 | 0.03 | 0.84 | 5.7 | 0.01 | 0.95 | 0.81 | 0.22 | 0.64 |
VM_3 | 0.4 | 0.50 | 0.03 | 0.86 | 0.57 | 0.44 | 0.91 | 0.33 | 1.1 | 0.29 | 0.01 | 0.93 | 3.22 | 0.07 | 8.8 | 0.002 | 8.2 | 0.04 | 0.28 | 0.59 |
VM_4 | 2.9 | 0.08 | 5.8 | 0.01 | 3.4 | 0.06 | 0.49 | 0.48 | 0.93 | 0.33 | 2.2 | 0.13 | 0.56 | 0.45 | 1.35 | 0.24 | 4.1 | 0.25 | 0.93 | 0.33 |
VM_5 | 2.9 | 0.08 | 5.7 | 0.01 | 3.4 | 0.06 | 0.5 | 0.48 | 0.9 | 0.33 | 2.24 | 0.13 | 0.56 | 0.45 | 1.3 | 0.24 | 4.1 | 0.25 | 0.93 | 0.33 |
VMDT_C | 19.4 | <0.001 | 16.5 | <0.001 | 18.3 | <0.001 | 0.28 | 0.59 | 0.12 | 0.72 | 15.8 | <0.001 | 0.56 | 0.45 | 1.01 | 0.31 | 23.3 | <0.001 | 7.4 | 0.006 |
GoNoGo_C | 1.22 | 0.26 | 1.4 | 0.22 | 2.5 | 0.11 | 3.8 | 0.05 | 6.4 | 0.01 | 0.14 | 0.70 | 12.3 | <0.001 | 0.7 | 0.38 | 11.4 | 0.009 | 0.5 | 0.46 |
GoNoGo_RT | 0.02 | 0.86 | 1.64 | 0.2 | 2.8 | 0.09 | 0.2 | 0.66 | 0.24 | 0.62 | 0.006 | 0.93 | 10.2 | <0.001 | 0.54 | 0.45 | 2.2 | 0.52 | 0.67 | 0.41 |
GoNoGo IncNoGo | 4.8 | 0.02 | 8.5 | 0.003 | 5.8 | 0.01 | 0.2 | 0.6 | 0.02 | 0.88 | 19.9 | <0.001 | 1.8 | 0.17 | <0.001 | 0.95 | 4.7 | 0.19 | 11.1 | <0.001 |
VWMT_C | 15.2 | <0.001 | 12.3 | <0.001 | 0.98 | 0.32 | 0.53 | 0.46 | 0.44 | 0.50 | 0.28 | 0.59 | 0.97 | 0.32 | 3.15 | 0.07 | 6.78 | 0.07 | 4.2 | 0.04 |
VWMT_CRT | 2.64 | 0.10 | 0.37 | 0.54 | 1.6 | 0.20 | 0.14 | 0.70 | 0.23 | 0.62 | 5.2 | 0.02 | 25.0 | <0.001 | 1.8 | 0.18 | 8.1 | 0.04 | 0.6 | 0.41 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popiołek, A.; Brzoszczyk, B.; Jarzemski, P.; Chyrek-Tomaszewska, A.; Wieczór, R.; Borkowska, A.; Bieliński, M. Prostate-Specific Antigen and Testosterone Levels as Biochemical Indicators of Cognitive Function in Prostate Cancer Survivors and the Role of Diabetes. J. Clin. Med. 2021, 10, 5307. https://doi.org/10.3390/jcm10225307
Popiołek A, Brzoszczyk B, Jarzemski P, Chyrek-Tomaszewska A, Wieczór R, Borkowska A, Bieliński M. Prostate-Specific Antigen and Testosterone Levels as Biochemical Indicators of Cognitive Function in Prostate Cancer Survivors and the Role of Diabetes. Journal of Clinical Medicine. 2021; 10(22):5307. https://doi.org/10.3390/jcm10225307
Chicago/Turabian StylePopiołek, Alicja, Bartosz Brzoszczyk, Piotr Jarzemski, Aleksandra Chyrek-Tomaszewska, Radosław Wieczór, Alina Borkowska, and Maciej Bieliński. 2021. "Prostate-Specific Antigen and Testosterone Levels as Biochemical Indicators of Cognitive Function in Prostate Cancer Survivors and the Role of Diabetes" Journal of Clinical Medicine 10, no. 22: 5307. https://doi.org/10.3390/jcm10225307
APA StylePopiołek, A., Brzoszczyk, B., Jarzemski, P., Chyrek-Tomaszewska, A., Wieczór, R., Borkowska, A., & Bieliński, M. (2021). Prostate-Specific Antigen and Testosterone Levels as Biochemical Indicators of Cognitive Function in Prostate Cancer Survivors and the Role of Diabetes. Journal of Clinical Medicine, 10(22), 5307. https://doi.org/10.3390/jcm10225307