Is Colectomy Associated with the Risk of Type 2 Diabetes in Patients without Colorectal Cancer? A Population-Based Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Study Population
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chang, C.; Lu, F.; Yang, Y.C.; Wu, J.C.; Chen, M.S.; Chuang, L.M.; Thai, T.Y. Epidemiologic study of type 2 diabetes in Taiwan. Diabetes Res. Clin. Pract. 2000, 50, S49–S59. [Google Scholar] [CrossRef]
- Chen, K.T.; Chen, C.J.; Gregg, E.W.; Engelgau, M.M.; Narayan, K.M. Prevalence of type 2 diabetes mellitus in Taiwan: Ethnic variation and risk factors. Diabetes Res. Clin. Pract. 2001, 51, 59–66. [Google Scholar] [CrossRef]
- Association, A.D. Economic costs of diabetes in the US in 2017. Diabetes Care 2018, 41, 917–928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stumvoll, M.; Goldstein, B.J.; Van Haeften, T.W. Type 2 diabetes: Principles of pathogenesis and therapy. Lancet 2005, 365, 1333–1346. [Google Scholar] [CrossRef]
- Laakso, M. Hyperglycemia and cardiovascular disease in type 2 diabetes. Diabetes 1999, 48, 937–942. [Google Scholar] [CrossRef]
- Röder, P.V.; Wu, B.; Liu, Y.; Han, W. Pancreatic regulation of glucose homeostasis. Exp. Mol. Med. 2016, 48, e219. [Google Scholar] [CrossRef] [Green Version]
- Drucker, D.J. The role of gut hormones in glucose homeostasis. J. Clin. Investig. 2007, 117, 24–32. [Google Scholar] [CrossRef]
- Holst, J.J.; Madsbad, S. Mechanisms of surgical control of type 2 diabetes: GLP-1 is key factor. Surg. Obes. Relat. Dis. 2016, 12, 1236–1242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holst, J.J. The physiology of glucagon-like peptide 1. Physiol. Rev. 2007, 87, 1409–1439. [Google Scholar] [CrossRef]
- Eissele, R.; Göke, R.; Willemer, S.; Harthus, H.P.; Vermeer, H.; Arnold, R.; Göke, B. Glucagon-like peptide-1 cells in the gastrointestinal tract and pancreas of rat, pig and man. Eur. J. Clin. Investig. 1992, 22, 283–291. [Google Scholar] [CrossRef] [PubMed]
- Gurung, M.; Li, Z.; You, H.; Rodrigues, R.; Jump, D.; Morgun, A.; Shulzhenko, N. Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine 2020, 51, 102590. [Google Scholar] [CrossRef] [Green Version]
- Sekirov, I.; Russell, S.L.; Antunes, L.C.M.; Finlay, B.B. Gut microbiota in health and disease. Physiol. Rev. 2010, 90, 859–904. [Google Scholar] [CrossRef] [Green Version]
- Carding, S.; Verbeke, K.; Vipond, D.T.; Corfe, B.M.; Owen, L.J. Dysbiosis of the gut microbiota in disease. Microb. Ecol. Health Dis. 2015, 26, 26191. [Google Scholar] [CrossRef]
- Ahmadmehrabi, S.; Tang, W.H.W. Gut microbiome and its role in cardiovascular diseases. Curr. Opin. Cardiol. 2017, 32, 761–766. [Google Scholar] [CrossRef]
- Cong, J.; Zhu, H.; Liu, D.; Li, T.; Zhang, C.; Zhu, J.; Lv, H.; Liu, K.; Hao, C.; Tian, Z.; et al. A pilot study: Changes of gut microbiota in post-surgery colorectal cancer patients. Front. Microbiol. 2018, 9, 2777. [Google Scholar] [CrossRef]
- Faintuch, J.; Hayashi, S.Y.; Nahas, S.C.; Yagi, O.K.; Faintuch, S.; Cecconello, I. Do colorectal cancer resections improve diabetes in long-term survivors? A case–control study. Surg. Endosc. 2014, 28, 1019–1026. [Google Scholar] [CrossRef]
- Jensen, A.B.; Sorensen, T.I.; Pedersen, O.; Jess, T.; Brunak, S.; Allin, K.H. Increase in clinically recorded type 2 diabetes after colectomy. Elife 2018, 7, e37420. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.H.; Jiang, J.K.; Luo, J.C.; Lin, C.C.; Ting, P.H.; Yang, U.C.; Lan, Y.T.; Huang, Y.H.; Hou, M.C.; Lee, Y.F. The long term microbiota and metabolic status in patients with colorectal cancer after curative colon surgery. PLoS ONE 2019, 14, e0218436. [Google Scholar] [CrossRef] [PubMed]
- Hwangbo, Y.; Kang, D.; Kang, M.; Kim, S.; Lee, E.K.; Kim, Y.A.; Chang, Y.J.; Choi, K.S.; Jung, S.; Woo, S.M.; et al. Incidence of Diabetes After Cancer Development: A Korean National Cohort Study. JAMA Oncol. 2018, 4, 1099–1105. [Google Scholar] [CrossRef]
- Chen, S.L.; Bilchik, A.J. More extensive nodal dissection improves survival for stages I to III of colon cancer: A population-based study. Ann. Surg. 2006, 244, 602. [Google Scholar] [CrossRef] [PubMed]
- Rachel Lu, J.F.; Chiang, T.L. Evolution of Taiwan’s health care system. Health Econ. Policy Law 2011, 6, 85–107. [Google Scholar] [CrossRef]
- Lin, L.-Y.; Warren-Gash, C.; Smeeth, L.; Chen, P.-C. Data resource profile: The National Health Insurance Research Database (NHIRD). Epidemiol. Health. 2018, 40, e2018062. [Google Scholar] [CrossRef]
- Hsieh, C.Y.; Su, C.C.; Shao, S.C.; Sung, S.F.; Lin, S.J.; Yang, Y.-H.K.; Lai, E.C.-C. Taiwan’s national health insurance research database: Past and future. Clin. Epidemiol. 2019, 11, 349–358. [Google Scholar] [CrossRef] [Green Version]
- Hu, K.F.; Chou, Y.H.; Wen, Y.H.; Hsieh, K.P.; Tsai, J.H.; Yang, P.; Yang, Y.H.; Lin, C.R. Antipsychotic medications and dental caries in newly diagnosed schizophrenia: A nationwide cohort study. Psychiatry Res. 2016, 245, 45–50. [Google Scholar] [CrossRef]
- Hu, K.F.; Ho, P.S.; Chou, Y.H.; Tsai, J.H.; Lin, C.R.; Chuang, H.Y. Periodontal disease and effects of antipsychotic medications in patients newly diagnosed with schizophrenia: A population-based retrospective cohort. Epidemiol. Psychiatry Sci. 2019, 17, e49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoon, W.J.; Kim, H.N.; Park, E.; Ryu, S.; Chang, Y.; Shin, H.; Kim, H.L.; Yi, S.Y. The impact of cholecystectomy on the gut microbiota: A case-control study. J. Clin. Med. 2019, 8, 79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babakhanov, A.T.; Dzhumabekov, A.T.; Zhao, A.V.; Kuandykov, Y.K.; Tanabayeva, S.B.; Fakhradiyev, I.R.; Nazarenko, T.; Saliev, T.M. Impact of Appendectomy on Gut Microbiota. Surg. Infect. 2021, 22, 7. [Google Scholar] [CrossRef]
- Hsu, C.C.; Tu, S.T.; Sheu, W.H.-H. 2019 Diabetes Atlas: Achievements and challenges in diabetes care in Taiwan. J. Formos. Med. Assoc. Suppl. 2019, 118, S130–S134. [Google Scholar] [CrossRef] [PubMed]
- Gress, T.W.; Nieto, F.J.; Shahar, E.; Wofford, M.R.; Brancati, F.L. Hypertension and antihypertensive therapy as risk factors for type 2 diabetes mellitus. N. Engl. J. Med. 2000, 342, 905–912. [Google Scholar] [CrossRef] [Green Version]
- Haffner, S.M. Diabetes, hyperlipidemia, and coronary artery disease. Am. J. Cardiol. 1999, 83, 17–21. [Google Scholar] [CrossRef]
- Chan, J.M.; Rimm, E.B.; Colditz, G.A.; Stampfer, M.J.; Willett, W.C. Obesity, fat distribution, and weight gain as risk factors for clinical diabetes in men. Diabetes Care 1994, 17, 961–969. [Google Scholar] [CrossRef] [Green Version]
- Abdullah, A.; Peeters, A.; de Courten, M.; Stoelwinder, J. The magnitude of association between overweight and obesity and the risk of diabetes: A meta-analysis of prospective cohort studies. Diabetes Res. Clin. Pract. 2010, 89, 309–319. [Google Scholar] [CrossRef]
- Rana, J.S.; Mittleman, M.A.; Sheikh, J.; Hu, F.B.; Manson, J.E.; Colditz, G.A.; Speizer, F.E.; Barr, R.G.; Camargo, C.A., Jr. Chronic obstructive pulmonary disease, asthma, and risk of type 2 diabetes in women. Diabetes Care 2004, 27, 2478–2484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stenvinkel, P.; Heimbürger, O.; Paultre, F.; Diczfalusy, U.; Wang, T.; Berglund, L.; Jogestrand, T. Strong association between malnutrition, inflammation, and atherosclerosis in chronic renal failure. Kidney Int. 1999, 55, 1899–1911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holstein, A.; Hinze, S.; Thiessen, E.; Plaschke, A.; Egberts, E.H. Clinical implications of hepatogenous diabetes in liver cirrhosis. J. Gastroenterol. Hepatol. 2002, 17, 677–681. [Google Scholar] [CrossRef]
- Thomas, M.C. Anemia in diabetes: Marker or mediator of microvascular disease? Nat. Clin. Pract. Nephrol. 2007, 3, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Syed, M.; Barinas-Mitchell, E.; Pietropaolo, S.; Zhang, Y.; Henderson, T.; Kelley, D.; Korytkowski, M.T.; Donahue, R.P.; Tracy, R.P.; Trucco, M.; et al. Is type 2 diabetes a chronic inflammatory/autoimmune disease? Diabetes Nutr. Metab. 2002, 15, 68. [Google Scholar] [PubMed]
- Group, D.S. Age-and sex-specific prevalence of diabetes and impaired glucose regulation in 11 Asian cohorts. Diabetes Care 2003, 26, 1770–1780. [Google Scholar] [CrossRef] [Green Version]
- Garg, R.; Grover, A.; McGurk, S.; Rawn, J.D. Predictors of hyperglycemia after cardiac surgery in nondiabetic patients. J. Thorac. Cardiovasc. Surg. 2013, 145, 1083–1087. [Google Scholar] [CrossRef] [Green Version]
- Megyesi, C.; Samols, E.; Marks, V. Glucose tolerance and diabetes in chronic liver disease. Lancet 1967, 290, 1051–1056. [Google Scholar] [CrossRef]
- Printz, H.; Reiter, S.; Samadi, N.; Ebrahimsade, S.; Kirchner, R.; Arnold, R.; Göke, B. GLP-1 release in man after lower large bowel resection or intrarectal glucose administration. Digestion 1998, 59, 689–695. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Ma, C.; Han, L.; Nawaz, M.; Gao, F.; Zhang, X.; Yu, P.; Zhao, C.; Li, L.; Zhou, A.; et al. Molecular characterisation of the faecal microbiota in patients with type II diabetes. Curr. Microbiol. 2010, 61, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Larsen, N.; Vogensen, F.K.; Van Den Berg, F.W.; Nielsen, D.S.; Andreasen, A.S.; Pedersen, B.K.; Al-Soud, A.W.; Sørensen, S.J.; Hansen, L.H.; Jakobsen, M. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS ONE 2010, 5, e9085. [Google Scholar] [CrossRef]
- Qin, J.; Li, Y.; Cai, Z.; Li, S.; Zhu, J.; Zhang, F.; Liang, S.; Zhang, W.; Guan, Y.; Shen, D. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012, 490, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Yadav, H.; Lee, J.-H.; Lloyd, J.; Walter, P.; Rane, S.G. Beneficial metabolic effects of a probiotic via butyrate-induced GLP-1 hormone secretion. J. Biol. Chem. 2013, 288, 25088–25097. [Google Scholar] [CrossRef] [Green Version]
- Schwiertz, A.; Taras, D.; Schäfer, K.; Beijer, S.; Bos, N.A.; Donus, C.; Hardt, P.D. Microbiota and SCFA in lean and overweight healthy subjects. Obesity 2010, 18, 190–195. [Google Scholar] [CrossRef]
- Rios-Covian, D.; Gueimonde, M.; Duncan, S.H.; Flint, H.J.; de Los Reyes-Gavilan, C.G. Enhanced butyrate formation by cross-feeding between Faecalibacterium prausnitzii and Bifidobacterium adolescentis. FEMS Microbiol. Lett. 2015, 362, fnv176. [Google Scholar] [CrossRef] [Green Version]
- Furet, J.P.; Kong, L.C.; Tap, J.; Poitou, C.; Basdevant, A.; Bouillot, J.L.; Mariat, D.; Corthier, G.; Doré, J.; Henegar, C.; et al. Differential adaptation of human gut microbiota to bariatric surgery–induced weight loss: Links with metabolic and low-grade inflammation markers. Diabetes 2010, 59, 3049–3057. [Google Scholar] [CrossRef] [Green Version]
- Saffarian, A.; Mulet, C.; Regnault, B.; Amiot, A.; Tran-Van-Nhieu, J.; Ravel, J.; Sobhani, I.; Sansonetti, P.J.; Pédron, T. Crypt-and mucosa-associated core microbiotas in humans and their alteration in colon cancer patients. MBio 2019, 10, e01315-19. [Google Scholar] [CrossRef] [Green Version]
- Cummings, J.; Macfarlane, G. The control and consequences of bacterial fermentation in the human colon. J. Appl. Bacteriol. 1991, 70, 443–459. [Google Scholar] [CrossRef] [PubMed]
- Ehrmann-Jósko, A.; Siemińska, J.; Górnicka, B.; Ziarkiewicz-Wróblewska, B.; Ziółkowski, B.; Muszyński, J. Impaired glucose metabolism in colorectal cancer. Scand. J. Gastroenterol. 2006, 41, 1079–1086. [Google Scholar] [CrossRef]
- Blanchard, C.M.; Denniston, M.M.; Baker, F.; Ainsworth, S.R.; Courneya, K.S.; Hann, D.M.; Gesme, H.D.; Reding, D.; Flynn, T.; Kennedy, S.J. Do adults change their lifestyle behaviors after a cancer diagnosis? Am. J. Health Behav. 2003, 27, 246–256. [Google Scholar] [CrossRef]
- Aydin, Ö.; Nieuwdorp, M.; Gerdes, V. The gut microbiome as a target for the treatment of type 2 diabetes. Curr. Diab. Rep. 2018, 18, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conlon, M.A.; Bird, A.R. The impact of diet and lifestyle on gut microbiota and human health. Nutrients 2015, 7, 17–44. [Google Scholar] [CrossRef]
- Rothschild, D.; Weissbrod, O.; Barkan, E.; Kurilshikov, A.; Korem, T.; Zeevi, D.; Costea, P.I.; Godneva, A.; Kalka, N.I.; Bar, N.; et al. Environment dominates over host genetics in shaping human gut microbiota. Nature 2018, 555, 210–215. [Google Scholar] [CrossRef]
- De Filippo, C.; Cavalieri, D.; Di Paola, M.; Ramazzotti, M.; Poullet, J.B.; Massart, S.; Collini, S.; Pieraccini, G.; Lionetti, P. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl. Acad. Sci. USA 2010, 107, 14691–14696. [Google Scholar] [CrossRef] [Green Version]
- Barbara, G.; Scaioli, E.; Barbaro, M.R.; Biagi, E.; Laghi, L.; Cremon, C.; Marasco, G.; Colecchia, A.; Picone, G.; Salfi, N.; et al. Gut microbiota, metabolome and immune signatures in patients with uncomplicated diverticular disease. Gut 2017, 66, 1252–1261. [Google Scholar] [CrossRef]
- Keller, J.; Beglinger, C.; Holst, J.J.; Andresen, V.; Layer, P. Mechanisms of gastric emptying disturbances in chronic and acute inflammation of the distal gastrointestinal tract. Am. J. Physiol. Gastrointest. Liver Physiol. 2009, 297, G861–G868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azzam, N.; Aljebreen, A.M.; Alharbi, O.; Almadi, M.A. Prevalence and clinical features of colonic diverticulosis in a Middle Eastern population. World J. Gastrointest. Endosc. 2013, 5, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Sakuta, H.; Suzuki, T. Prevalence rates of type 2 diabetes and hypertension are elevated among middle-aged Japanese men with colonic diverticulum. Environ. Health Prev. Med. 2007, 12, 97–100. [Google Scholar] [CrossRef]
- Wang, F.W.; Chuang, H.Y.; Tu, M.S.; King, T.M.; Wang, J.H.; Hsu, C.W.; Hsu, P.I.; Chen, W.C. Prevalence and risk factors of asymptomatic colorectal diverticulosis in Taiwan. BMC Gastroenterol. 2015, 15, 40. [Google Scholar] [CrossRef] [Green Version]
- Willi, C.; Bodenmann, P.; Ghali, W.A.; Faris, P.D.; Cornuz, J. Active smoking and the risk of type 2 diabetes: A systematic review and meta-analysis. JAMA 2007, 298, 2654–2664. [Google Scholar] [CrossRef] [PubMed]
- Bays, H.E.; Chapman, R.H.; Grandy, S. The Relationship of Body Mass Index to Diabetes Mellitus, Hypertension and Dyslipidaemia: Comparison of Data from Two National Surveys. Int. J. Clin. Pract. 2007, 61, 737–747. [Google Scholar] [CrossRef] [Green Version]
- Colditz, G.A.; Willett, W.C.; Rotnitzky, A.; Manson, J.E. Weight gain as a risk factor for clinical diabetes mellitus in women. Ann. Intern. Med. 1995, 122, 481–486. [Google Scholar] [CrossRef] [PubMed]
- Lindström, J.; Tuomilehto, J. The diabetes risk score: A practical tool to predict type 2 diabetes risk. Diabetes Care 2003, 26, 725–731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variable | Total | Non-Colectomy | Colectomy | p-Value |
---|---|---|---|---|
n = 3210 | n = 2568 | n = 642 | ||
n | n (%)/Mean ± SD | n (%)/Mean ± SD | ||
Age at baseline (years) | 0.99 | |||
<40 | 580 | 463 (18.0) | 117 (18.2) | |
40–64 | 1303 | 1044 (40.7) | 259 (40.3) | |
≥65 | 1327 | 1061 (41.3) | 266 (41.4) | |
Mean age | 58.4 (18.1) | 58.3 (18.0) | 0.92 | |
Sex | 0.42 | |||
Female | 1219 | 984 (38.3) | 235 (36.6) | |
Male | 1991 | 1584 (61.7) | 407 (63.4) | |
Baseline comorbidity | ||||
Hypertension | 1362 | 1095 (42.6) | 267 (41.6) | 0.63 |
Hyperlipidemia | 574 | 459 (17.9) | 115 (17.9) | 0.98 |
Cerebrovascular disease 430–438 | 1253 | 1010 (39.3) | 243 (37.9) | 0.49 |
Heart disease | 612 | 499 (19.4) | 113 (17.6) | 0.29 |
Thyroid disease | 168 | 135 (5.3) | 33 (5.1) | 0.91 |
COPD | 761 | 617 (24.0) | 144 (22.4) | 0.39 |
Renal disease | 284 | 220 (8.6) | 64 (10.0) | 0.26 |
Liver disease | 786 | 635 (24.7) | 151 (23.5) | 0.52 |
Anemia | 462 | 365 (14.2) | 97 (15.1) | 0.56 |
Immune disorder | 21 | 17 (0.7) | 4 (0.6) | 0.91 |
Follow-up time (years) | 5.6 (3.6) | 4.9 (4.0) |
Characteristics | Event | Crude | Adjusted | ||
---|---|---|---|---|---|
(n = 65) | HR (95% CI) | p Value | HR a (95% CI) | p Value | |
Age at baseline | |||||
<40 | 5 | Ref. | Ref. | ||
40–64 | 33 | 3.75 (1.46–9.62) | 0.006 | 3.39 (1.30–8.86) | 0.013 |
≥65 | 27 | 4.56 (1.75–11.88) | 0.002 | 4.21 (1.49–11.91) | 0.007 |
Sex | |||||
Female | 31 | 1.54 (0.94–2.50) | 0.086 | 1.72 (1.03–2.85) | 0.039 |
Male | 34 | Ref. | - | Ref. | - |
Baseline comorbidity | |||||
Hypertension | 30 | 1.96 (1.20–3.20) | 0.008 | 1.33 (0.69–2.56) | 0.391 |
Hyperlipidemia | 15 | 1.68 (0.94–2.99) | 0.080 | 1.12 (0.60–2.11) | 0.723 |
Cerebrovascular disease | 5 | 1.85 (1.12–3.06) | 0.016 | 1.22 (0.63–2.37) | 0.550 |
Heart disease | 26 | 0.69 (0.28–1.72) | 0.422 | 0.41 (0.16–1.09) | 0.075 |
Thyroid disease | 3 | 0.91 (0.28–2.88) | 0.866 | 0.78 (0.23–2.61) | 0.681 |
COPD | 14 | 1.40 (0.77–2.53) | 0.268 | 0.88 (0.46–1.68) | 0.700 |
Renal disease | 5 | 1.30 (0.52–3.23) | 0.577 | 0.96 (0.37–2.49) | 0.933 |
Liver disease | 22 | 1.93 (1.16–3.24) | 0.012 | 1.79 (1.02–3.13) | 0.043 |
Anemia | 9 | 1.32 (0.65–2.68) | 0.436 | 1.06 (0.50–2.27) | 0.872 |
Immune disorder | 1 | 3.73 (0.52–26.98) | 0.193 | 2.33 (0.27–19.91) | 0.441 |
Variables | Colectomy Cases | Non-Colectomy Controls | Compared with the Non-Colectomy Controls | |||||
---|---|---|---|---|---|---|---|---|
n = 642 | n = 2568 | Crude HR | Adjusted HR a | |||||
Event | Person Years | IR | Event | Person Years | IR | (95% CI) | (95% CI) | |
Overall | 65 | 3151 | 20.63 | 398 | 14254 | 27.92 | 0.74 (0.57–0.96) * | 0.80 (0.61–1.04) |
Age at baseline (years) | ||||||||
<40 | 5 | 778 | 6.43 | 30 | 3213 | 9.34 | 0.69 (0.27–1.77) | 0.67 (0.26–1.72) |
40–64 | 33 | 1396 | 23.63 | 149 | 6194 | 24.06 | 0.99 (0.68–1.44) | 0.98 (0.67–1.44) |
≥65 | 27 | 977 | 27.63 | 219 | 4847 | 45.18 | 0.62 (0.41–0.92) * | 0.67 (0.45–1.00) |
Sex | ||||||||
Female | 31 | 1172 | 26.45 | 159 | 5806 | 27.38 | 0.96 (0.66–1.42) | 1.11 (0.75–1.63) |
Male | 34 | 1980 | 17.18 | 239 | 8448 | 28.29 | 0.61 (0.42–0.87) ** | 0.62 (0.43–0.89) ** |
Baseline comorbidity | ||||||||
Hypertension | 30 | 994 | 30.17 | 250 | 5011 | 49.89 | 0.61 (0.42–0.89) * | 0.63 (0.43–0.93) * |
Hyperlipidemia | 15 | 483 | 31.03 | 90 | 2000 | 45.00 | 0.68 (0.39–1.17) | 0.68 (0.39–1.19) |
Cerebrovascular disease | 5 | 354 | 14.11 | 93 | 1964 | 47.35 | 0.30 (0.12–0.73) ** | 0.32 (0.13–0.79) * |
Heart disease | 26 | 867 | 30.00 | 227 | 4647 | 48.85 | 0.62 (0.41–0.93) * | 0.66 (0.44–0.99) * |
Thyroid disease | 3 | 161 | 18.59 | 11 | 680 | 16.17 | 1.16 (0.32–4.15) | 1.11 (0.29–4.21) |
COPD | 14 | 532 | 26.33 | 116 | 2735 | 42.41 | 0.63 (0.36–1.09) | 0.65 (0.37–1.14) |
Renal disease | 5 | 200 | 25.06 | 52 | 960 | 54.16 | 0.47 (0.19–1.17) | 0.51 (0.20–1.31) |
Liver disease | 22 | 667 | 32.98 | 119 | 3428 | 34.71 | 0.97 (0.61–1.52) | 1.03 (0.65–1.63) |
Anemia | 9 | 348 | 25.89 | 55 | 1810 | 30.39 | 0.87 (0.43–1.76) | 0.89 (0.43–1.84) |
Immune disorder | 1 | 13 | 74.24 | 3 | 83 | 36.07 | 2.08 (0.21–20.12) | - |
Variable | Event/n | Person Years | IR | Crude HR (95% CI) | Adjusted HR a (95% CI) |
---|---|---|---|---|---|
Non-colectomy controls | 398/2568 | 14254 | 27.92 | Ref. | Ref. |
Surgery procedures of the colectomy cases | |||||
Overall | 65/642 | 3151 | 20.63 | 0.74 (0.57–0.96) * | 0.80 (0.61–1.04) |
Subtotal or total colectomy | 3/41 | 261 | 11.48 | 0.41 (0.13–1.28) | 0.55 (0.18–1.72) |
Right hemicolectomy, transverse colectomy | 14/169 | 1016 | 13.78 | 0.49 (0.29–0.84) ** | 0.57 (0.34–0.98) * |
Left hemicolectomy or sigmoid colectomy | 36/294 | 1252 | 28.75 | 1.04 (0.74–1.46) | 1.06 (0.75–1.49) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, C.-C.; Lee, C.-H.; Hsu, T.-W.; Yeh, C.-C.; Lin, M.-C.; Chang, C.-M.; Tsai, J.-H. Is Colectomy Associated with the Risk of Type 2 Diabetes in Patients without Colorectal Cancer? A Population-Based Cohort Study. J. Clin. Med. 2021, 10, 5313. https://doi.org/10.3390/jcm10225313
Wu C-C, Lee C-H, Hsu T-W, Yeh C-C, Lin M-C, Chang C-M, Tsai J-H. Is Colectomy Associated with the Risk of Type 2 Diabetes in Patients without Colorectal Cancer? A Population-Based Cohort Study. Journal of Clinical Medicine. 2021; 10(22):5313. https://doi.org/10.3390/jcm10225313
Chicago/Turabian StyleWu, Chin-Chia, Cheng-Hung Lee, Ta-Wen Hsu, Chia-Chou Yeh, Mei-Chen Lin, Chun-Ming Chang, and Jui-Hsiu Tsai. 2021. "Is Colectomy Associated with the Risk of Type 2 Diabetes in Patients without Colorectal Cancer? A Population-Based Cohort Study" Journal of Clinical Medicine 10, no. 22: 5313. https://doi.org/10.3390/jcm10225313
APA StyleWu, C. -C., Lee, C. -H., Hsu, T. -W., Yeh, C. -C., Lin, M. -C., Chang, C. -M., & Tsai, J. -H. (2021). Is Colectomy Associated with the Risk of Type 2 Diabetes in Patients without Colorectal Cancer? A Population-Based Cohort Study. Journal of Clinical Medicine, 10(22), 5313. https://doi.org/10.3390/jcm10225313