Transcutaneous Laryngeal Ultrasound for Vocal Cord Paralysis Assessment in Patients Undergoing Thyroid and Parathyroid Surgery—A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Evidence Acquisition
2.3. Inclusion and Exclusion Criteria
2.4. Statistical Analysis and Evidence Synthesis
3. Results
3.1. Operative Period
3.1.1. Diagnostic Accuracy Assessment
3.1.2. Risk Factors for Vocal Cord Non-Visualization
3.2. Technical Modifications
3.3. Risk of Bias Assessment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Ho, T.W.; Shaheen, A.A.; Dixon, E.; Harvey, A. Utilization of thyroidectomy for benign disease in the United States: A 15-year population-based study. Am. J. Surg. 2011, 201, 570–574. [Google Scholar] [CrossRef]
- Francis, D.O.; Randolph, G.; Davies, L. Nationwide Variation in Rates of Thyroidectomy Among US Medicare Beneficiaries. JAMA Otolaryngol. Neck Surg. 2017, 143, 1122–1125. [Google Scholar] [CrossRef]
- Kim, S.M.; Long, J.; Montez-Rath, M.E.; Leonard, M.B.; Norton, J.A.; Chertow, G.M. Rates and Outcomes of Parathyroidectomy for Secondary Hyperparathyroidism in the United States. Clin. J. Am. Soc. Nephrol. 2016, 11, 1260–1267. [Google Scholar] [CrossRef]
- Gambardella, C.; Polistena, A.; Sanguinetti, A.; Patrone, R.; Napolitano, S.; Esposito, D.; Testa, D.; Marotta, V.; Faggiano, A.; Calò, P.; et al. Unintentional recurrent laryngeal nerve injuries following thyroidectomy: Is it the surgeon who pays the bill? Int. J. Surg. 2017, 41, S55–S59. [Google Scholar] [CrossRef] [PubMed]
- Jeannon, J.-P.; Orabi, A.A.; Bruch, G.A.; Abdalsalam, H.A.; Simo, R. Diagnosis of recurrent laryngeal nerve palsy after thyroidectomy: A systematic review. Int. J. Clin. Pract. 2009, 63, 624–629. [Google Scholar] [CrossRef] [PubMed]
- Christou, N.; Mathonnet, M. Complications after total thyroidectomy. J. Visc. Surg. 2013, 150, 249–256. [Google Scholar] [CrossRef]
- Francis, D.O.; Pearce, E.C.; Ni, S.; Garrett, C.G.; Penson, D. Epidemiology of Vocal Fold Paralyses after Total Thyroidectomy for Well-Differentiated Thyroid Cancer in a Medicare Population. Otolaryngol. Neck Surg. 2014, 150, 548–557. [Google Scholar] [CrossRef] [Green Version]
- Patel, K.N.; Yip, L.; Lubitz, C.C.; Grubbs, E.G.; Miller, B.S.; Shen, W.; Angelos, P.; Chen, H.; Doherty, G.M.; Fahey, T.J.; et al. The American Association of Endocrine Surgeons Guidelines for the Definitive Surgical Management of Thyroid Disease in Adults. Ann. Surg. 2020, 271, e21–e93. [Google Scholar] [CrossRef] [PubMed]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef] [Green Version]
- Lacoste, L.; Karayan, J.; Lehuedé, M.; Thomas, D.; Goudou-Sinha, M.; Ingrand, P.; Barbier, J.; Fusciardi, J. A Comparison of Direct, Indirect, and Fiberoptic Laryngoscopy to Evaluate Vocal Cord Paralysis after Thyroid Surgery. Thyroid 1996, 6, 17–21. [Google Scholar] [CrossRef] [PubMed]
- Da Costa, B.O.I.; Rodrigues, D.D.S.B.; Santos, A.S.; Pernambuco, L. Transcutaneous Laryngeal Ultrasonography for the Assessment of Laryngeal Function After Thyroidectomy: A Review. Ear Nose Throat J. 2019, 100, 439–446. [Google Scholar] [CrossRef] [Green Version]
- Sciancalepore, P.I.; Anzivino, R.; Petrone, P.; Petrone, D.; Quaranta, N. Transcutaneous laryngeal ultrasonography: A promising tool for otolaryngologists during COVID-19. Am. J. Otolaryngol. 2020, 42, 102772. [Google Scholar] [CrossRef] [PubMed]
- Kandil, E.; Deniwar, A.; Noureldine, S.I.; Hammad, A.Y.; Mohamed, H.; Al-Qurayshi, Z.; Tufano, R.P. Assessment of Vocal Fold Function Using Transcutaneous Laryngeal Ultrasonography and Flexible Laryngoscopy. JAMA Otolaryngol. Neck Surg. 2016, 142, 74–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whiting, P.F.; Rutjes, A.W.S.; Westwood, M.E.; Mallett, S.; Deeks, J.J.; Reitsma, J.B.; Leeflang, M.M.; Sterne, J.A.; Bossuyt, P.M.; QUADAS-2 Group. QUADAS-2: A Revised Tool for the Quality Assessment of Diagnostic Accuracy Studies. Ann. Intern. Med. 2011, 155, 529–536. [Google Scholar] [CrossRef]
- Borel, F.; Delemazure, A.-S.; Espitalier, F.; Spiers, A.; Mirallié, E.; Blanchard, C. Transcutaneous Ultrasonography in Early Postoperative Diagnosis of Vocal Cord Palsy After Total Thyroidectomy. World J. Surg. 2016, 40, 665–671. [Google Scholar] [CrossRef]
- de Miguel, M.; Peláez, E.M.; Caubet, E.; González, Ó.; Velasco, M.; Rigual, L. Accuracy of transcutaneous laryngeal ultrasound for detecting vocal cord paralysis in the immediate postoperative period after total thyroidectomy. Minerva Anestesiol. 2017, 83, 1239–1247. [Google Scholar] [CrossRef]
- Gambardella, C.; Offi, C.; Romano, R.M.; De Palma, M.; Ruggiero, R.; Candela, G.; Puziello, A.; Docimo, L.; Grasso, M.; Docimo, G. Transcutaneous laryngeal ultrasonography: A reliable, non-invasive and inexpensive preoperative method in the evaluation of vocal cords motility—a prospective multicentric analysis on a large series and a literature review. Updat. Surg. 2020, 72, 885–892. [Google Scholar] [CrossRef]
- Kılıç, M.Ö.; Terzioğlu, S.G.; Gülçek, S.Y.; Sarı, E. The Role of Ultrasonography in the Assessment of Vocal Cord Functions After Thyroidectomy. J. Investig. Surg. 2016, 31, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Knyazeva, P.; Makarin, V.; Seeliger, B.; Chernikov, R.; Sleptsov, I.; Semenov, A.; Walz, M.K.; Alesina, P.F. Transcutaneous laryngeal ultrasonography (TLUS) as an alternative to direct flexible laryngoscopy (DFL) in the perioperative evaluation of the vocal cord mobility in thyroid surgery. Langenbeck’s Arch. Surg. 2018, 403, 1015–1020. [Google Scholar] [CrossRef]
- Rybakovas, A.; Bausys, A.; Matulevicius, A.; Zaldokas, G.; Kvietkauskas, M.; Tamulevicius, G.; Beisa, V.; Strupas, K. Recurrent laryngeal nerve injury assessment by intraoperative laryngeal ultrasonography: A prospective diagnostic test accuracy study. Videosurg. Other Miniinvasive Tech. 2019, 14, 38–45. [Google Scholar] [CrossRef]
- Shah, M.K.; Ghai, B.; Bhatia, N.; Verma, R.K.; Panda, N.K. ☆Comparison of transcutaneous laryngeal ultrasound with video laryngoscope for assessing the vocal cord mobility in patients undergoing thyroid surgery. Auris Nasus Larynx 2019, 46, 593–598. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.-P.; Lang, B.H.-H.; Ng, S.-H.; Cheung, C.-Y.; Chan, C.T.-Y.; Lo, C.-Y. A prospective, assessor-blind evaluation of surgeon-performed transcutaneous laryngeal ultrasonography in vocal cord examination before and after thyroidectomy. Surgery 2013, 154, 1158–1165. [Google Scholar] [CrossRef] [Green Version]
- Wong, K.-P.; Lang, B.H.-H.; Chang, Y.-K.; Wong, K.C.; Chow, F.C.-L. Assessing the Validity of Transcutaneous Laryngeal Ultrasonography (TLUSG) After Thyroidectomy: What Factors Matter? Ann. Surg. Oncol. 2014, 22, 1774–1780. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.-P.; Au, K.P.; Lam, S.; Chang, Y.K.; Lang, B.H.H. Vocal Cord Palsies Missed by Transcutaneous Laryngeal Ultrasound (TLUSG): Do They Experience Worse Outcomes? World J. Surg. 2019, 43, 824–830. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.P.; Woo, J.-W.; Li, J.Y.-Y.; Lee, K.E.; Youn, Y.K.; Lang, B. Using Transcutaneous Laryngeal Ultrasonography (TLUSG) to Assess Post-thyroidectomy Patients’ Vocal Cords: Which Maneuver Best Optimizes Visualization and Assessment Accuracy? World J. Surg. 2016, 40, 652–658. [Google Scholar] [CrossRef]
- Woo, J.-W.; Kim, S.K.; Park, I.; Choe, J.H.; Kim, J.-H.; Kim, J.S. A Novel Gel Pad Laryngeal Ultrasound for Vocal Cord Evaluation. Thyroid 2017, 27, 553–557. [Google Scholar] [CrossRef]
- Woo, J.-W.; Park, I.; Choe, J.H.; Kim, J.-H.; Kim, J.S. Comparison of ultrasound frequency in laryngeal ultrasound for vocal cord evaluation. Surgery 2017, 161, 1108–1112. [Google Scholar] [CrossRef]
- Woo, J.-W.; Suh, H.; Song, R.-Y.; Lee, J.-H.; Yu, H.W.; Kim, S.-J.; Chai, Y.J.; Choi, J.Y.; Lee, K.E. A novel lateral-approach laryngeal ultrasonography for vocal cord evaluation. Surgery 2016, 159, 52–57. [Google Scholar] [CrossRef]
- Wong, K.-P.; Woo, J.-W.; Youn, Y.-K.; Chow, F.C.-L.; Lee, K.E.; Lang, B.H.-H. The importance of sonographic landmarks by transcutaneous laryngeal ultrasonography in post-thyroidectomy vocal cord assessment. Surgery 2014, 156, 1590–1596. [Google Scholar] [CrossRef] [Green Version]
- Carneiro-Pla, D. Transcutaneous Laryngeal Ultrasonography: Technical Performance and Interpretation. In Advanced Thyroid and Parathyroid Ultrasound; Springer: Singapore, 2017; pp. 351–354. [Google Scholar]
- Wenaas, A.E.; Tran, B.; Ongkasuwan, J. The progression of thyroid cartilage calcification as it relates to the utilization of laryngeal ultrasound. Laryngoscope 2015, 126, 913–917. [Google Scholar] [CrossRef]
- Glikson, E.; Sagiv, D.; Eyal, A.; Wolf, M.; Primov-Fever, A. The anatomical evolution of the thyroid cartilage from childhood to adulthood: A computed tomography evaluation. Laryngoscope 2017, 127, E354–E358. [Google Scholar] [CrossRef]
- Knyazeva, P.; Walz, M.K.; Alesina, P.F. A Simple Tool to Improve Visualization of the Vocal Cords on Translaryngeal Ultrasound in Male Patients. World J. Surg. 2021, 1–4. [Google Scholar] [CrossRef]
- Wong, K.-P.; Lang, B.; Lam, S.; Au, K.-P.; Chan, D.T.-Y.; Kotewall, N.C. Determining the Learning Curve of Transcutaneous Laryngeal Ultrasound in Vocal Cord Assessment by CUSUM Analysis of Eight Surgical Residents: When to Abandon Laryngoscopy. World J. Surg. 2016, 40, 659–664. [Google Scholar] [CrossRef]
- Lazard, D.S.; Bergeret-Cassagne, H.; Lefort, M.; Leenhardt, L.; Russ, G.; Frouin, F.; Tresallet, C. Transcutaneous Laryngeal Ultrasonography for Laryngeal Immobility Diagnosis in Patients with Voice Disorders After Thyroid/Parathyroid Surgery. World J. Surg. 2018, 42, 2102–2108. [Google Scholar] [CrossRef] [PubMed]
- Dubey, M.; Mittal, A.K.; Jaipuria, J.; Arora, M.; Dewan, A.K.; Pahade, A. Functional analysis of vocal folds by transcutaneous laryngeal ultrasonography in patients undergoing thyroidectomy. Acta Anaesthesiol. Scand. 2019, 63, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Dedecjus, M.; Adamczewski, Z.; Brzeziński, J.; Lewiński, A. Real-time, high-resolution ultrasonography of the vocal folds—A prospective pilot study in patients before and after thyroidectomy. Langenbeck’s Arch. Surg. 2010, 395, 859–864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varaldo, E.; Ansaldo, G.L.; Mascherini, M.; Cafiero, F.; Minuto, M.N. Neurological Complications in Thyroid Surgery: A Surgical Point of View on Laryngeal Nerves. Front. Endocrinol. 2014, 5, 108. [Google Scholar] [CrossRef] [Green Version]
- Potenza, A.S.; Filho, V.J.F.A.; Cernea, C.R. Injury of the external branch of the superior laryngeal nerve in thyroid surgery. Gland. Surg. 2017, 6, 552–562. [Google Scholar] [CrossRef] [Green Version]
- Orestes, M.I.; Chhetri, D.K. Superior laryngeal nerve injury. Curr. Opin. Otolaryngol. Head Neck Surg. 2014, 22, 439–443. [Google Scholar] [CrossRef] [Green Version]
- Kundra, P.; Kumar, K.; Allampalli, V.; Anathkrishnan, R.; Gopalakrishnan, S.; Elangovan, S. Use of ultrasound to assess superior and recurrent laryngeal nerve function immediately after thyroid surgery. Anaesthesia 2012, 67, 301–302. [Google Scholar] [CrossRef]
Study Characteristics | TLUSG Examination | Cohort Demographics | |||||||
---|---|---|---|---|---|---|---|---|---|
First Author, Year, Country | Accrual Years | Study Design, Blinding | Reference Method | USG Probe, Frequency | TLUSG Approach | Maneuver Used | No. of Patients | Female% | Mean Age |
Borel et al., 2016, France | 2013–2015 | P, Y | DFL | Linear, 8 MHz | Transverse Approach | A | 103 | 82.5 | 51 |
de Miguel et al., 2017, Spain | 2014–2015 | P, Y | VL | Linear, 5–10 MHz | Transverse Approach → lateral approach (if non-visualization) | PA | 108 | 78.5 | NR |
Gambardella et al., 2020, Italy | 2018 | P, Y | DFL | Linear, 7–13 MHz | Transverse Approach → lateral approach (if non-visualization) | PAV | 396 | 66.2 | 56.4 |
Kandil et al., 2016, USA 1 | 2013–2014 | P, N | DFL | Linear, 12 MHz | Transverse Approach | PA | 250 (500 VC) | 83 | 52.7 |
Kilic et al., 2017, Turkey | NR | P, NR | DFL | Linear, 6–13 MHz | Transverse and/or lateral approach | A | 325 | 78.5 | 48.2 |
Knyazeva et al., 2018, Germany | 2016–2017 | P, Y | DFL | Linear, 5–10 MHz | Transverse Approach | PAV | 668 | 83.8 | 50.3 |
Rybakovas et al., 2019, Lithuania | 2016–2017 | P, NR | DFL | Linear, 4–10 MHz | Transverse Approach → lateral approach (if non-visualization) | NA 2 | 112 | 82.1 | 56.2 |
Shah et al., 2019, India | NR | P, Y | VL | Linear, 5–10 MHz | Transverse Approach | NA 2 | 45 | 86.7 | 42 |
Wong et al., 2013, Hong Kong | NR | P, Y | DFL | Linear, 5–10 MHz | Transverse Approach → gel pad (if non-visualization) | PA | 204 | 78.9 | 52 3 |
Wong et al., 2015, Hong Kong | NR | P, Y | DFL | Linear, 5–10 MHz | Transverse Approach | PA | 581 | 80.2 | 52 3 |
Wong et al., 2019, Hong Kong | 2012–2016 | P, Y | DFL | Linear, 5–10 MHz | Transverse Approach | PA; PAV (from 2014) | 1196 | 78.59 | 51 3 |
N. of Studies | N. of Patients | VR% * | VCP% * | Sensitivity% § | Specificity% § | PPV% § | NPV% § | |
---|---|---|---|---|---|---|---|---|
Preoperative Period | 3 | 1015 | 86.28 | 3.57 | 78.48 (NC) | 98.28 (NC) | 86.42 (NC) | 99.73 (NC) |
Transverse + Lateral | 2 | 489 | 95.93 | 6.93 | 91.15 (NC) | 96.43 (NC) | 71.82 (NC) | 99.55 (NC) |
Transverse alone | 1 | 526 | 79.00 | 0.45 | 66.70 (11.85–98.29) | 100 (99.40–100.00) | 100 (17.77–100.00) | 99.90 (98.93–99.99) |
Valsalva Maneuver | 2 | 922 | 85.50 | 3.61 | 79.67 (NC) | 98.11 (NC) | 85.05 (NC) | 99.81 (NC) |
No Valsalva Maneuver | 1 | 93 | 94.00 | 3.20 | 66.70 (11.85–98.29) | 100 (95.91–100.00) | 100 (17.77–100.00) | 98.90 (94.04–99.94) |
Postoperative Period | 7 | 2317 | 94.13 | 7.11 | 83.95 (77.24–88.50) | 96.15 (95.24–96.88) | 64.32 (55.90–68.56) | 98.71 (98.13–99.11) |
Transverse + Lateral | 4 | 712 | 96.04 | 8.54 | 87.62 (78.16–94.33) | 98.15 (96.81–98.94) | 81.97 (70.85–89.28) | 98.89 (97.78–99.47) |
Transverse alone | 4 | 1798 | 93.11 | 6.61 | 83.52 (74.52–88.16) | 95.53 (94.44–96.42) | 58.79 (49.20–63.81) | 98.71 (98.03–99.15) |
Valsalva Maneuver | 2 | 1658 | NA | 6.39 | 86.63 (79.04–91.97) | 95.56 (94.41–96.47) | 59.67 (49.42–64.53) | 99.06 (98.44–99.44) |
No Valsalva Maneuver | 4 | 1054 | 93.23 | 8.80 | 83.86 (75.08–89.97) | 96.47 (95.10–97.46) | 70.54 (60.59–77.39) | 98.44 (97.39–99.03) |
Radiologist | 2 | 409 | 90.95% | 8.27 | 72.15 (53.83–83.17) | 98.39 (96.55–99.26) | 80.06 (62.69–90.49) | 97.36 (95.21–98.56) |
Anesthesiologist | 2 | 138 | 95.06% | 0.82 | 87.33 (68.61–98.13) | 95.84 (90.54–98.19) | 75.09 (56.56–89.88) | 98.31 (93.93–99.69) |
Radiologist + Anesthesiologist | 4 | 547 | 92.03% | 7.00 | 75.98 (64.47–86.55) | 97.75 (96.06–98.75) | 78.81 (65.97–87.76) | 97.59 (95.81–98.61) |
Operating Surgeon | 3 | 1770 | 95.06% | 6.33 | 86.42 (79.07–91.71) | 95.66 (94.57–96.54) | 59.85 (49.86–64.61) | 99.06 (98.46–99.43) |
Author Name | Male Gender | Older Age | Body Mass Index | Disease | Thyroid Volume | Other Factors Examined |
---|---|---|---|---|---|---|
Kilic et al., 2017 | + | + | − | − | − | Thyroid Function (−) Surgery type (−) |
Borel et al., 2016 | + | + | − | − | + | Postoperative drainage (+), Operative time (+) Cautery use (−), Reoperation (−) |
Wong et al., 2015 | + | + | − | − | Anatomical features 1 (−) | |
Gambardella et al., 2020 | + | − | − | − | ||
Knyazeva et al., 2018 | + | + | ||||
Wong et al., 2013 | + | + | ||||
Kandil et al., 2016 | − | − | + | Postoperative Period (+) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patel, A.; Spychalski, P.; Aszkiełowicz, A.; Mikaszewski, B.; Kobiela, J. Transcutaneous Laryngeal Ultrasound for Vocal Cord Paralysis Assessment in Patients Undergoing Thyroid and Parathyroid Surgery—A Systematic Review and Meta-Analysis. J. Clin. Med. 2021, 10, 5393. https://doi.org/10.3390/jcm10225393
Patel A, Spychalski P, Aszkiełowicz A, Mikaszewski B, Kobiela J. Transcutaneous Laryngeal Ultrasound for Vocal Cord Paralysis Assessment in Patients Undergoing Thyroid and Parathyroid Surgery—A Systematic Review and Meta-Analysis. Journal of Clinical Medicine. 2021; 10(22):5393. https://doi.org/10.3390/jcm10225393
Chicago/Turabian StylePatel, Agastya, Piotr Spychalski, Aleksander Aszkiełowicz, Bogusław Mikaszewski, and Jarek Kobiela. 2021. "Transcutaneous Laryngeal Ultrasound for Vocal Cord Paralysis Assessment in Patients Undergoing Thyroid and Parathyroid Surgery—A Systematic Review and Meta-Analysis" Journal of Clinical Medicine 10, no. 22: 5393. https://doi.org/10.3390/jcm10225393
APA StylePatel, A., Spychalski, P., Aszkiełowicz, A., Mikaszewski, B., & Kobiela, J. (2021). Transcutaneous Laryngeal Ultrasound for Vocal Cord Paralysis Assessment in Patients Undergoing Thyroid and Parathyroid Surgery—A Systematic Review and Meta-Analysis. Journal of Clinical Medicine, 10(22), 5393. https://doi.org/10.3390/jcm10225393