Effect of Multiple Sclerosis and Its Treatments on Male Fertility: Cues for Future Research
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Reproductive History of Men with Multiple Sclerosis
3.2. Possible Rationale for Reduced Fertility in Men with Multiple Sclerosis
3.3. Gonadotoxicity of Disease-Modifying Therapies in Male Patients
3.4. Gonadotoxicity of Symptomatic and Supporting Therapies
4. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Inglese, M.; Petracca, M. MRI in multiple sclerosis: Clinical and research update. Curr. Opin. Neurol. 2018, 31, 249–255. [Google Scholar] [CrossRef]
- Reich, D.S.; Lucchinetti, C.F.; Calabresi, P.A. Multiple Sclerosis. N. Engl. J. Med. 2018, 378, 169–180. [Google Scholar] [CrossRef]
- Walton, C.; King, R.; Rechtman, L.; Kaye, W.; Leray, E.; Marrie, R.A.; Robertson, N.; La Rocca, N.; Uitdehaag, B.; van der Mei, I.; et al. Rising prevalence of multiple sclerosis worldwide: Insights from the Atlas of MS, third edition. Mult. Scler. 2020, 26, 1816–1821. [Google Scholar] [CrossRef]
- Koch-Henriksen, N.; Sørensen, P.S. The changing demographic pattern of multiple sclerosis epidemiology. Lancet Neurol. 2010, 9, 520–532. [Google Scholar] [CrossRef]
- Kobelt, G.; Thompson, A.; Berg, J.; Gannedahl, M.; Eriksson, J. MSCOI Study Group; European Multiple Sclerosis Platform. New insights into the burden and costs of multiple sclerosis in Europe. Mult. Scler. 2017, 23, 1123–1136. [Google Scholar] [CrossRef]
- Dobson, R.; Giovannoni, G. Multiple sclerosis—A review. Eur. J. Neurol. 2019, 26, 27–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ascherio, A.; Munger, K. Epidemiology of Multiple Sclerosis: From Risk Factors to Prevention—An Update. Semin. Neurol. 2016, 36, 103–114. [Google Scholar] [CrossRef]
- Ysrraelit, M.C.; Correale, J. Impact of sex hormones on immune function and multiple sclerosis development. Immunology 2019, 156, 9–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avila, M.; Bansal, A.; Culberson, J.; Peiris, A.N. The Role of Sex Hormones in Multiple Sclerosis. Eur. Neurol. 2018, 80, 93–99. [Google Scholar] [CrossRef]
- Lassmann, H. Pathology and disease mechanisms in different stages of multiple sclerosis. J. Neurol. Sci. 2013, 333, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Thompson, A.J.; Banwell, B.L.; Barkhof, F.; Carroll, W.M.; Coetzee, T.; Comi, G.; Correale, J.; Fazekas, F.; Filippi, M.; Freedman, M.S.; et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018, 17, 162–173. [Google Scholar] [CrossRef]
- Ribbons, K.A.; McElduff, P.; Boz, C.; Trojano, M.; Izquierdo, G.; Duquette, P.; Girard, M.; Grand’Maison, F.; Hupperts, R.; Grammond, P.; et al. Male sex is independently associated with faster disability accumulation in relapse-onset MS but not in primary progressive MS. PLoS ONE 2015, 10, e0122686. [Google Scholar] [CrossRef] [Green Version]
- Lassmann, H. Pathogenic Mechanisms Associated with Different Clinical Courses of Multiple Sclerosis. Front. Immunol. 2019, 9, 3116. [Google Scholar] [CrossRef] [PubMed]
- Confavreux, C.; Hutchinson, M.; Hours, M.M.; Cortinovis-Tourniaire, P.; Moreau, T. Rate of pregnancy-related relapse in multiple sclerosis. Pregnancy in Multiple Sclerosis Group. N. Engl. J. Med. 1998, 9, 285–291. [Google Scholar] [CrossRef]
- Vukusic, S.; Hutchinson, M.; Hours, M.; Moreau, T.; Cortinovis-Tourniaire, P.; Adeleine, P.; Confavreux, C.; Pregnancy in Multiple Sclerosis Group. Pregnancy and multiple sclerosis (the PRIMS study): Clinical predictors of post-partum relapse. Brain 2004, 127, 1353–1360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Der Walt, A.; Nguyen, A.L.; Jokubaitis, V. Family planning, antenatal and post partum care in multiple sclerosis: A review and update. Med. J. Aust. 2019, 211, 230–236. [Google Scholar] [CrossRef]
- Hedström, A.K.; Hillert, J.; Olsson, T.; Alfredsson, L. Reverse causality behind the association between reproductive history and MS. Mult. Scler. 2014, 20, 406–411. [Google Scholar] [CrossRef]
- Nielsen, N.M.; Jørgensen, K.T.; Stenager, E.; Jensen, A.; Pedersen, B.; Hjalgrim, H.; Kjær, S.; Frisch, M. Reproductive history and risk of multiple sclerosis. Epidemiology 2011, 22, 546–552. [Google Scholar] [CrossRef]
- Safarinejad, M.R. Evaluation of endocrine profile, hypothalamic-pituitary-testis axis and semen quality in multiple sclerosis. J. Neuroendocrinol. 2008, 20, 1368–1375. [Google Scholar] [CrossRef]
- Glazer, C.H.; Tøttenborg, S.S.; Giwercman, A.; Bräuner, E.V.; Eisenberg, M.L.; Vassard, D.; Magyari, M.; Pinborg, A.; Schmidt, L.; Bonde, J.P. Male factor infertility and risk of multiple sclerosis: A register-based cohort study. Mult. Scler. 2018, 24, 1835–1842. [Google Scholar] [CrossRef]
- Fode, M.; Krogh-Jespersen, S.; Brackett, N.L.; Ohl, D.A.; Lynne, C.M.; Sønksen, J. Male sexual dysfunction and infertility associated with neurological disorders. Asian J. Androl. 2012, 14, 61–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haensch, C.A.; Jorg, J. Autonomic dysfunction in multiple sclerosis. J. Neurol. 2006, 253, I3–I9. [Google Scholar] [CrossRef] [PubMed]
- Calabrò, R.S.; Russo, M.; Dattola, V.; de Luca, R.; Leo, A.; Grisolaghi, J.; Bramanti, P.; Quattrini, F. Sexual Function in Young Individuals with Multiple Sclerosis: Does Disability Matter? J. Neurosci Nurs. 2018, 50, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Wang, J.; Luo, H. Sildenafil citrate for erectile dysfunction in patients with multiple sclerosis. Cochrane Database Syst. Rev. 2012, 4, CD009427. [Google Scholar] [CrossRef]
- Lombardi, G.; Macchiarella, A.; del Popolo, G. Efficacy and safety of tadalafil for erectile dysfunction in patients with multiple sclerosis. J. Sex. Med. 2010, 7, 2192–2200. [Google Scholar] [CrossRef]
- Pinter, A.; Cseh, D.; Sarkozi, A.; Illigens, B.M.; Siepmann, T. Autonomic dysregulation in multiple sclerosis. Int. J. Mol. Sci 2015, 16, 16920–16952. [Google Scholar] [CrossRef]
- Michelson, D.; Stone, L.; Galliven, E.; Magiakou, M.A.; Chrousos, G.P.; Sternberg, E.M.; Gold, P.W. Multiple sclerosis is associated with alterations in hypo-thalamic-pituitary-adrenal axis function. J. Clin. Endocrinol. Metab. 1994, 79, 848–853. [Google Scholar]
- Reder, A.T.; Makowiec, R.L.; Lowy, M.T. Adrenal size is increased in multiple sclerosis. Arch Neurol. 1994, 51, 151–154. [Google Scholar] [CrossRef]
- Heesen, C.; Gold, S.M.; Huitinga, I.; Reul, J.M. Stress and hypothalamic-pituitary-adrenal axis function in experimental autoimmune encephalomyelitis and multiple sclerosis—A review. Psychoneuroendocrinology 2007, 32, 604–618. [Google Scholar] [CrossRef]
- Huitinga, I.; Erkut, Z.A.; van Beurden, D.; Swaab, D.F. Impaired hypothalamus-pituitary-adrenal axis activity and more severe multiple sclerosis with hypothalamic lesions. Ann. Neurol. 2004, 55, 37–45. [Google Scholar] [CrossRef]
- Podbielska, M.; O’Keeffe, J.; Hogan, E.L. Autoimmunity in multiple sclerosis: Role of sphingolipids, invariant NKT cells and other immune elements in control of inflammation and neurodegeneration. J. Neurol. Sci. 2018, 385, 198–214. [Google Scholar] [CrossRef] [PubMed]
- Tarin, J.J.; Garcia-Perez, M.A.; Hamatani, T.; Cano, A. Infertility etiologies are genetically and clinically linked with other diseases in single meta-diseases. Reprod. Biol. Endocrinol. 2015, 13, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jangir, R.N.; Jain, G.C. Diabetes mellitus induced impairment of male reproductive functions: A review. Curr. Diabetes Rev. 2014, 10, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Brubaker, W.D.; Li, S.; Baker, L.C.; Eisenberg, M.L. Increased risk of autoimmune disorders in infertile men: Analysis of US claims data. Andrology 2018, 6, 94–98. [Google Scholar] [CrossRef] [Green Version]
- Bobjer, J.; Katrinaki, M.; Tsatsanis, C.; Giwercman, Y.; Giwercman, A. Negative association between testosterone concentration and inflammatory markers in young men: A nested cross sectional study. PLoS ONE 2013, 8, e61466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bove, R.; Musallam, A.; Healy, B.C.; Raghavan, K.; Glanz, B.; Bakshi, R.; Weiner, H.; De Jager, P.; Miller, K.; Chitnis, T. Low testosterone is associated with disability in men with multiple sclerosis. Mult. Scler. 2014, 20, 1584–1592. [Google Scholar] [CrossRef] [Green Version]
- Bove, R.; Chitnis, T. Sexual disparities in the incidence and course of MS. Clin. Immunol. 2013, 149, 201–210. [Google Scholar] [CrossRef]
- Voci, C. Testicular hypofunction and multiple sclerosis: Cause or consequence? Ann. Neurol. 2014, 76, 765. [Google Scholar] [CrossRef]
- Pakpoor, J.; Wotton, C.J.; Schmierer, K.; Giovannoni, G.; Goldacre, M.J. Gender identity disorders and multiple sclerosis risk: A national record-linkage study. Mult. Scler. 2016, 22, 1759–1762. [Google Scholar] [CrossRef]
- Ohl, K.; Tenbrock, K.; Kipp, M. Oxidative stress in multiple sclerosis: Central and peripheral mode of action. Exp. Neurol. 2016, 277, 58–67. [Google Scholar] [CrossRef]
- Tremellen, K. Oxidative stress and male infertility—A clinical perspective. Hum. Reprod. Update 2008, 14, 243–258. [Google Scholar] [CrossRef]
- Opuwari, C.S.; Henkel, R.R. An update on oxidative damage to spermatozoa and oocytes. Biomed. Res. Int. 2016, 2016, 9540142. [Google Scholar] [CrossRef] [Green Version]
- Fragoso, Y.D.; Adoni, T.; Brooks, J.B.B.; Finkelsztejn, A.; da Gama, P.; Grzesiuk, A.; Marques, V.; Parolin, M.; Sato, H.; Varela, D.; et al. Practical Evidence-Based Recommendations for Patients with Multiple Sclerosis Who Want to Have Children. Neurol. Ther. 2018, 7, 207–232. [Google Scholar] [CrossRef] [Green Version]
- Pecori, C.; Giannini, M.; Portaccio, E.; Ghezzi, A.; Hakiki, B.; Pastò, L.; Razzolini, L.; Sturchio, A.; de Giglio, L.; Pozzilli, C.; et al. Paternal therapy with disease modifying drugs in multiple sclerosis and pregnancy outcomes: A prospective observational multicentric study. BMC Neurol. 2014, 14, 114. [Google Scholar] [CrossRef] [Green Version]
- Lu, E.; Zhu, F.; Zhao, Y.; van der Kop, M.; Synnes, A.; Dahlgren, L.; Sadovnick, A.D.; Traboulsee, A.; Tremlett, H. Birth outcomes in newborns fathered by men with multiple sclerosis exposed to disease-modifying drugs. CNS Drugs 2014, 28, 475–482. [Google Scholar] [CrossRef] [PubMed]
- TEVA: Copaxone® Full Prescribing Information. Revised 2016. Available online: http://copaxone.com/pdfs/PrescribingInformation.aspx (accessed on 25 September 2021).
- Frias, S.; Van Hummelen, P.; Meistrich, M.L.; Lowe, X.R.; Hagemeister, F.B.; Shelby, M.D.; Bishop, J.B.; Wyrobek, A.J. NOVP chemotherapy for Hodgkin’s disease transiently induces sperm aneuploidies associated with the major clinical aneuploidy syndromes involving chromosomes X, Y, 18, and 21. Cancer Res. 2003, 63, 44–51. [Google Scholar]
- Lemez, P.; Urbánek, V. Chemotherapy for acute myeloid leukemias with cytosine arabinoside, daunorubicin, etoposide, and mitoxantrone may cause permanent oligoasthenozoospermia or amenorrhea in middle-aged patients. Neoplasma 2005, 52, 398–401. [Google Scholar] [PubMed]
- Bermas, B.L. Paternal safety of anti-rheumatic medications. Best Pract. Res. Clin. Obstet. Gynaecol. 2020, 64, 77–84. [Google Scholar] [CrossRef]
- Ghobadi, E.; Moloudizargari, M.; Asghari, M.H.; Abdollahi, M. The mechanisms of cyclophosphamide-induced testicular toxicity and the protective agents. Expert Opin. Drug Metab. Toxicol. 2017, 13, 525–536. [Google Scholar] [CrossRef] [PubMed]
- Austin, S.M.; Robaire, B.; Hales, B.F.; Kelly, S.M. Paternal cyclophosphamide exposure causes decreased cell proliferation in cleavage-stage embryos. Biol. Reprod. 1994, 50, 55–64, Correction in Biol. Reprod. 1994, 50, 711. [Google Scholar] [CrossRef] [Green Version]
- Samplaski, M.K.; Nangia, A.K. Adverse effects of common medications on male fertility. Nat. Rev. Urol. 2015, 12, 401–413. [Google Scholar] [CrossRef] [PubMed]
- Bendre, S.V.; Shaddock, J.G.; Patton, R.E.; Dobrovolsky, V.N.; Albertini, R.J.; Heflich, R.H. Lymphocyte Hprt mutant frequency and sperm toxicity in C57BL/6 mice treated chronically with Azathioprine. Mutat. Res. 2005, 578, 1–14. [Google Scholar] [CrossRef]
- Ligumsky, M.; Badaan, S.; Lewis, H.; Meirow, D. Effects of 6-mercaptopurine treatment on sperm production and reproductive performance: A study in male mice. Scand. J. Gastroenterol. 2005, 40, 444–449. [Google Scholar] [CrossRef] [PubMed]
- Dejaco, C.; Mittermaier, C.; Reinisch, W.; Gasche, C.; Waldhoer, T.; Strohmer, H.; Moser, G. Azathioprine treatment and male fertility in inflammatory bowel disease. Gastroenterology 2001, 121, 1048–1053. [Google Scholar] [CrossRef] [PubMed]
- Valer, P.; Algaba, A.; Santos, D.; Fuentes, M.E.; Nieto, E.; Gisbert, J.P.; López, P.; Quintanilla, E.; García-Alonso, F.J.; Guerra, I.; et al. Evaluation of the quality of semen and sexual function in men with inflammatory bowel disease. Inflamm. Bowel Dis. 2017, 23, 1144–1153. [Google Scholar] [CrossRef] [Green Version]
- Soares, P.M.; Borba, E.F.; Bonfa, E.; Hallak, J.; Correa, A.L.; Silva, C.A. Gonad evaluation in male systemic lupus erythematosus. Arthr. Rheum. 2007, 56, 2352–2361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uzunaslan, D.; Saygin, C.; Hatemi, G.; Tascilar, K.; Yazici, H. No appreciable decrease in fertility in Behcet’s syndrome. Rheumatology 2014, 53, 828–833. [Google Scholar] [CrossRef] [Green Version]
- Norgard, B.; Pedersen, L.; Jacobsen, J.; Rasmussen, S.N.; Sorensen, H.T. The risk of congenital abnormalities in children fathered by men treated with azathioprine or mercaptopurine before conception. Aliment. Pharmacol. Ther. 2004, 19, 679–685. [Google Scholar] [CrossRef]
- Norgard, B.M.; Magnussen, B.; Larsen, M.D.; Friedman, S. Reassuring results on birth outcomes in children fathered by men treated with azathioprine/6-mercaptopurine within 3 months before conception: A nationwide cohort study. Gut 2017, 66, 1761–1766. [Google Scholar] [CrossRef]
- Grosen, A.; Kelsen, J.; Hvas, C.L.; Bellaguarda, E.; Hanauer, S.B. The Influence of Methotrexate Treatment on Male Fertility and Pregnancy Outcome After Paternal Exposure. Inflamm. Bowel Dis. 2017, 23, 561–569. [Google Scholar] [CrossRef] [Green Version]
- Viktil, K.K.; Engeland, A.; Furu, K. Outcomes after anti-rheumatic drug use before and during pregnancy: A cohort study among 150,000 pregnant women and expectant fathers. Scand. J. Rheumatol. 2012, 41, 196–201. [Google Scholar] [CrossRef]
- Wallenius, M.; Lie, E.; Daltveit, A.K.; Salvesen, K.Å.; Skomsvoll, J.F.; Kalstad, S.; Lexberg, Å.S.; Mikkelsen, K.; Kvien, T.K.; Østensen, M. No excess risks in offspring with paternal preconception exposure to disease-modifying antirheumatic drugs. Arthritis Rheumatol. 2015, 67, 296–301. [Google Scholar] [CrossRef] [Green Version]
- Weber-Schoendorfer, C.; Hoeltzenbein, M.; Wacker, E.; Meister, R.; Schaefer, C. No evidence for an increased risk of adverse pregnancy outcome after paternal low-dose Methotrexate: An observational cohort study. Rheumatology 2014, 53, 757–763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eck, L.K.; Jensen, T.B.; Mastrogiannis, D.; Torp-Pedersen, A.; Askaa, B.; Nielsen, T.K.; Poulsen, H.E.; Jimenez-Solem, E.; Andersen, J.T. Risk of adverse pregnancy outcome after paternal exposure to methotrexate within 90 days before pregnancy. Obstet. Gynecol. 2017, 129, 707–714. [Google Scholar] [CrossRef] [Green Version]
- D’Amico, E.; Zanghì, A.; Calogero, A.E.; Patti, F. Male fertility in relapsing-remitting multiple sclerosis patients treated with natalizumab and ocrelizumab: A prospective case-control study. Mult. Scler. 2021, 19, 13524585211009208. [Google Scholar] [CrossRef]
- Kirchhoff, C. CD52 is the ’major maturation-associated’ sperm membrane antigen. Mol. Hum. Reprod. 1996, 2, 9–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeung, C.H.; Cooper, T.G.; Nieschlag, E. Human epididymal secreted protein CD52 on ejaculated spermatozoa: Correlations with semen characteristics and the effect of its antibody. Mol. Hum. Reprod. 1997, 3, 1045–1051. [Google Scholar] [CrossRef] [Green Version]
- Margolin, D.H.; Rizzo, M.A.; Smith, G.; Arnold, D.L.; Cohen, J.A.; Coles, A.J.; Confavreux, C.; Fox, E.; Hartung, H.; Havrdova, E.; et al. Alemtuzumab treatment has no adverse impact on sperm quality, quantity, or motility: A CARE-MS substudy. J. Neurol. Sci. 2013, 333, e375–e376. [Google Scholar] [CrossRef]
- Bar-Or, A.; Pachner, A.; Menguy-Vacheron, F.; Kaplan, J.; Wiendl, H. Teriflunomide and its mechanism of action in multiple sclerosis. Drugs 2014, 74, 659–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersen, J.B.; Moberg, J.Y.; Spelman, T.; Magyari, M. Pregnancy Outcomes in Men and Women Treated with Teriflunomide. A Population-Based Nationwide Danish Register Study. Front. Immunol. 2018, 9, 2706. [Google Scholar] [CrossRef]
- Vukusic, S.; Coyle, P.K.; Jurgensen, S.; Truffinet, P.; Benamor, M.; Afsar, S.; Purvis, A.; Poole, E.M.; Chambers, C. Pregnancy outcomes in patients with multiple sclerosis treated with teriflunomide: Clinical study data and 5 years of post-marketing experience. Mult. Scler. 2020, 26, 829–836. [Google Scholar] [CrossRef]
- Kieseier, B.C.; Benamor, M. Pregnancy Outcomes Following Maternal and Paternal Exposure to Teriflunomide During Treatment for Relapsing–Remitting Multiple Sclerosis. Neurol. Ther. 2014, 3, 133–138. [Google Scholar] [CrossRef] [Green Version]
- Karlsson, G.; Francis, G.; Koren, G.; Heining, P.; Zhang, X.; Cohen, J.A.; Kappos, L.; Collins, W. Pregnancy outcomes in the clinical development program of fingolimod in multiple sclerosis. Neurology 2014, 82, 674–680. [Google Scholar] [CrossRef] [Green Version]
- Cree, B.A. Update on reproductive safety of current and emerging disease-modifying therapies for multiple sclerosis. Mult. Scler. J. 2013, 19, 835–843. [Google Scholar] [CrossRef] [Green Version]
- Beeder, L.A.; Samplaski, M.K. Effect of antidepressant medications on semen parameters and male fertility. Int. J. Urol. 2020, 27, 39–46. [Google Scholar] [CrossRef] [Green Version]
- Coker, F.; Taylor, D. Antidepressant-induced hyperprolactinaemia: Incidence, mechanisms and management. CNS Drugs 2010, 24, 563–574. [Google Scholar] [CrossRef]
- Milosavljević, J.Z.; Milosavljević, M.N.; Arsenijević, P.S.; Milentijević, M.N.; Stefanović, S.M. The effects of selective serotonin reuptake inhibitors on male and female fertility: A brief literature review. Int. J. Psychiatry Clin. Pract. 2021, 22, 1–7. [Google Scholar] [CrossRef]
- Akasheh, G.; Sirati, L.; Noshad Kamran, A.R.; Sepehrmanesh, Z. Comparison of the effect of sertraline with behavioral therapy on semen parameters in men with primary premature ejaculation. Urology 2014, 83, 800–804. [Google Scholar] [CrossRef]
- Tanrikut, C.; Feldman, A.S.; Altemus, M.; Paduch, D.A.; Schlegel, P.N. Adverse effect of paroxetine on sperm. Fertil. Steril. 2010, 94, 1021–1026. [Google Scholar] [CrossRef]
- Safarinejad, M.R. Sperm DNA damage and semen quality impairment after treatment with selective serotonin reuptake inhibitors detected using semen analysis and sperm chromatin structure assay. J. Urol. 2008, 180, 2124–2128. [Google Scholar] [CrossRef]
- Cavariani, M.M.; de Almeida Kiguti, L.R.; de Lima Rosa, J.; de Araujo Leite, G.A.; Silva, P.V.E.; Pupo, A.S.; De Grava Kempinas, W. Bupropion treatment increases epididymal contractility and impairs sperm quality with no effects on the epididymal sperm transit time of male rats. J. Appl. Toxicol. 2015, 35, 1007–1016. [Google Scholar] [CrossRef]
- Modell, J.G.; Katholi, C.R.; Modell, J.D.; DePalma, R.L. Comparative sexual side effects of bupropion, fluoxetine, paroxetine, and sertraline. Clin. Pharmacol. Ther. 1997, 61, 476–487. [Google Scholar] [CrossRef]
- Punjani, N.; Kang, C.; Flannigan, R.; Bach, P.; Altemus, M.; Kocsis, J.H.; Wu, A.; Pierce, H.; Schlegel, P.N. Impact of duloxetine on male fertility: A randomised controlled clinical trial. Andrologia 2021, 53, e14207. [Google Scholar] [CrossRef]
- Bandegi, L.; Anvari, M.; Vakili, M.; Khoradmehr, A.; Mirjalili, A.; Talebi, A.R. Effects of antidepressants on parameters, melondiadehyde, and diphenyl-2-picryl-hydrazyl levels in mice spermatozoa. Int. J. Reprod Biomed. 2018, 16, 365–372. [Google Scholar] [CrossRef]
- Chowdary, P.S.; Rao, M.S. Cytogenetic effects of amitriptyline hydrochloride in somatic and germ cells of mice. Toxicol. Lett. 1987, 39, 199–204. [Google Scholar] [CrossRef]
- Hassanane, M.S.; Hafiz, N.; Radwan, W.; El-Ghor, A.A. Genotoxic evaluation for the tricyclic antidepressant drug, amitriptyline. Drug Chem. Toxicol. 2012, 35, 450–455. [Google Scholar] [CrossRef]
- Drobnis, E.Z.; Nangia, A.K. Psychotropics and Male Reproduction. Adv. Exp. Med. Biol. 2017, 1034, 63–101. [Google Scholar] [CrossRef]
- Herzog, A.G.; Drislane, F.W.; Schomer, D.L.; Pennell, P.B.; Bromfield, E.B.; Dworetzky, B.A.; Farina, E.L.; Frye, C.A. Differential effects of antiepileptic drugs on sexual function and hormones in men with epilepsy. Neurology 2005, 65, 1016–1020. [Google Scholar] [CrossRef]
- Asadi-Pooya, A.; Farazdaghi, M.; Ashjazadeh, N. Effects of carbamazepine on semen parameters in men with newly diagnosed epilepsy. Iran. J. Neurol. 2015, 14, 168–170. [Google Scholar]
- Reis, R.M.; de Angelo, A.G.; Sakamoto, A.C.; Ferriani, R.A.; Lara, L.A. Altered sexual and reproductive functions in epileptic men taking carbamazepine. J. Sex. Med. 2013, 10, 493–499. [Google Scholar] [CrossRef]
- Lee, M.S.; Lanes, A.; Ginsburg, E.S.; Fox, J.H. Delta-9 THC can be detected and quantified in the semen of men who are chronic users of inhaled cannabis. J. Assist. Reprod. Genet. 2020, 37, 1497–1504. [Google Scholar] [CrossRef]
- Gundersen, T.D.; Jørgensen, N.; Andersson, A.M.; Bang, A.K.; Nordkap, L.; Skakkebæk, N.E.; Priskorn, L.; Juul, A.; Jensen, T.K. Association between use of marijuana and male reproductive hormones and semen quality: A study among 1215 healthy young men. Am. J. Epidemiol. 2015, 182, 473–481. [Google Scholar] [CrossRef]
- Nassan, F.L.; Arvizu, M.; Mínguez-Alarcón, L.; Williams, P.L.; Attaman, J.; Petrozza, J.; Hauser, R.; Chavarro, J.; EARTH Study Team. Marijuana smoking and markers of testicular function among men from a fertility centre. Hum. Reprod. 2019, 34, 715–723. [Google Scholar] [CrossRef]
- Whan, L.B.; West, M.C.; McClure, N.; Lewis, S. Effects of delta-9-tetrahydrocannabinol, the primary psychoactive cannabinoid in marijuana, on human sperm function in vitro. Fertil. Steril. 2006, 85, 653. [Google Scholar] [CrossRef]
- Aversa, A.; Rossi, F.; Francomano, D.; Bruzziches, R.; Bertone, C.; Santiemma, V.; Spera, G. Early endothelial dysfunction as a marker of vasculogenic erectile dysfunction in young habitual cannabis users. Int. J. Impot. Res. 2008, 20, 566. [Google Scholar] [CrossRef] [Green Version]
- Payne, K.S.; Mazur, D.J.; Hotaling, J.M.; Pastuszak, A.W. Cannabis and Male Fertility: A Systematic Review. J. Urol. 2019, 202, 674–681. [Google Scholar] [CrossRef]
- Levin, E.D.; Hawkey, A.B.; Hall, B.J.; Cauley, M.; Slade, S.; Yazdani, E.; Kenou, B.; White, H.; Wells, C.; Rezvani, A.H.; et al. Paternal THC exposure in rats causes long-lasting neurobehavioral effects in the offspring. Neurotoxicol. Teratol. 2019, 74, 106806. [Google Scholar] [CrossRef]
- Carvalho, R.K.; Souza, M.R.; Santos, M.L.; Guimarães, F.S.; Pobbe, R.L.H.; Andersen, M.L.; Mazaro-Costa, R. Chronic cannabidiol exposure promotes functional impairment in sexual behavior and fertility of male mice. Reprod. Toxicol. 2018, 81, 34–40. [Google Scholar] [CrossRef]
- Marson, L.; Yu, G.; Farber, N.M. The effects of oral administration of d-modafinil on male rat ejaculatory behavior. J. Sex. Med. 2010, 7 Pt 1, 70–78. [Google Scholar] [CrossRef]
- Serefoglu, E.C. On-demand d-modafinil may be an effective treatment option for lifelong premature ejaculation: A case report. Andrologia 2016, 48, 121–122. [Google Scholar] [CrossRef]
- Tuken, M.; Kiremit, M.C.; Serefoglu, E.C. On-demand Modafinil Improves Ejaculation Time and Patient-reported Outcomes in Men with Lifelong Premature Ejaculation. Urology 2016, 94, 139–142. [Google Scholar] [CrossRef]
- Glenn, D.R.; McVicar, C.M.; McClure, N.; Lewis, S.E. Sildenafil citrate improves sperm motility but causes a premature acrosome reaction in vitro. Fertil. Steril. 2007, 87, 1064–1070. [Google Scholar] [CrossRef]
- Tan, P.; Liu, L.; Wei, S.; Tang, Z.; Yang, L.; Wei, Q. The Effect of Oral Phosphodiesterase-5 Inhibitors on Sperm Parameters: A Meta-analysis and Systematic Review. Urology 2017, 105, 54–61. [Google Scholar] [CrossRef]
- Drobnis, E.Z.; Nangia, A.K. Challenges of Obtaining Evidence-Based Information Regarding Medications and Male Fertility. Adv. Exp. Med. Biol. 2017, 1034, 5–11. [Google Scholar] [CrossRef]
- Calabrò, R.S.; D’Aleo, G.; Sessa, E.; Leo, A.; De Cola, M.C.; Bramanti, P. Sexual dysfunction induced by intrathecal baclofen administration: Is this the price to pay for severe spasticity management? J. Sex. Med. 2014, 11, 1807–1815. [Google Scholar] [CrossRef]
- Taneja, N.; Kucheria, K.; Jain, S.; Maheshwari, M.C. Effect of phenytoin on semen. Epilepsia 1994, 35, 136–140. [Google Scholar] [CrossRef]
- Otoom, S.; Batieneh, H.; Hassan, Z.; Daoud, A. Effects of long-term use Topiramate on fertility and growth parameter in adult male rats. Neuro Endocrinol. Lett. 2004, 25, 351–355. [Google Scholar]
- Osuntokun, O.S.; Olayiwola, G.; Oladele, A.; Ola, I.; AyokaAbiodun, O. Chronic administration of gabapentin and a gabapentin-carbamazepine combination reversibly suppress testicular function in male Wistar rats (Rattus norvegicus). Pathophysiology 2017, 24, 63–69. [Google Scholar] [CrossRef]
- Valevski, A.; Modai, I.; Zbarski, E.; Zemishlany, Z.; Weizman, A. Effect of amantadine on sexual dysfunction in neuroleptic-treated male schizophrenic patients. Clin. Neuropharmacol. 1998, 21, 355–357. [Google Scholar]
- Drobnis, E.Z.; Nangia, A.K. Introduction to Medication Effects on Male Reproduction. Adv. Exp. Med. Biol. 2017, 1034, 1–4. [Google Scholar] [CrossRef]
- Massarotti, C.; Scaruffi, P.; Lambertini, M.; Sozzi, F.; Remorgida, V.; Anserini, P. Beyond fertility preservation: Role of the oncofertility unit in the reproductive and gynecological follow-up of young cancer patients. Hum. Reprod. 2019, 34, 1462–1469. [Google Scholar] [CrossRef] [PubMed]
Effect on Fertility | Pathway | Major Findings | Quality of Evidence |
---|---|---|---|
1. Hypogonadotropic hypogonadism | Demyelination: central neurological damage, altered hypothalamus–pituitary function | Lower mean basal serum levels for LH, FSH, and testosterone, and no significant increase with the injection of GnRH analogue (case control study: 68 men) [19] Evidence of other impaired hypothalamic functions were reported in post mortem studies in men with worse disease course (i.e., lesion of corticotropin-releasing hormone (CRH)-producing neurons, resulting in defects in adrenal function [27,28,29,30]) | Case series, case control studies |
2. Hypergonadotropic hypogonadism | Reduced protective role of T if low levels are present Autoimmunity | Pre-existing lower levels of T may be a risk factor: lower levels of T described in men with more progressive disease [36], transgender women at higher risk of MS than men [39]. Higher prevalence of infertility due to immunological causes was described in other autoimmune diseases [33,34]. | Longitudinal association |
3. Semen parameter alterations | Chronic inflammation Oxidative stress | Chronic inflammation and OS have been linked to both MS [40] and infertility [41,42]. | Longitudinal association |
4. Erection/ejaculation dysfunction | Demyelination: autonomic dysfunction | Suprasacral, parasympathetic, or peripheral autonomic lesion. Up to 70% of the men with MS report erection dysfunction; up to 50% alterations in ejaculation [21,22,23]. | Observational studies |
Drug | Mechanism of Action | Animal Studies | Spermatogenesis | Fathering a Child | Management in Men Trying to Conceive | FDA/EMA Warnings |
---|---|---|---|---|---|---|
Glatiramer Acetate | Shift inflammatory Th1 profile into anti-inflammatory Th2. | No effect in mice. | No mutagenic effect in in vitro and in vivo studies. | Outcomes comparable with unexposed population. | Continue use if benefits overcome risks. No washout needed. | FDA: Pregnancy category B. EMA: Decreased weight gain in infants breastfed by mothers treated during pregnancy and breastfeeding. No mention of men fathering a child. |
Interferon B-1a (intramuscolar/ subcutaneous) | Anti-inflammatory (enhances the production of anti-inflammatory cytokines IL-4 and IL-10). Anti T-cell proliferation. Decreases antigen presentation. | No effects. | No alterations reported. | Outcomes comparable with unexposed population. | Continue use if benefits overcome risks. No washout needed. | FDA: Pregnancy category C. Subcutaneous is FDA and EMA approved for its safe use during pregnancy. No mention of men fathering a child. |
PEGylated Interferon B-1a | Anti-inflammatory. Anti T-cell proliferation. Decreases antigen presentation. Prolonged efficacy thanks to PEGylation. | No effects. | No alterations reported. | Outcomes comparable with unexposed population. | Continue use if benefits overcome risks. No washout needed. | FDA: Pregnancy category C. No mention of men fathering a child. |
Interferon B-1b | Anti-inflammatory (decreases the production of the proinflammatory cytokine IFN-gamma). Anti T-cell proliferation. Decreases antigen presentation. | No effects. | No alterations reported. | Outcomes comparable with unexposed population. | Continue use if benefits overcome risks. No washout needed. | FDA: For females, discontinue therapy if the patient becomes pregnant, plans to become pregnant, or is breastfeeding. No mention of men fathering a child. |
Teriflunomide | Decreases pyrimidine synthesis. Shift Th1→Th2. Decreases antigen presentation. | In mice: reduced epididymal sperm count at high doses. Severe malformations in offspring of exposed animals. | No data, probably no adverse effect. | Limited data. One small study does not report malformations or other adverse effects in pregnancies from fathers taking Teriflunomide. | Should be avoided in men wishing to conceive. | FDA: Warning for pregnancy (may cause major birth defects). Contraindicated in pregnant women or women of childbearing potential who are not using reliable contraception. Contraception is recommended with plasma levels above 0.02 mg/L. Men trying to conceive should discontinue therapy. EMA: No recommendation of discontinuation for men trying to conceive. |
Dimethyl Fumarate | Anti-inflammatory. Targets anti-oxidant mechanisms. | In mice: asthenospermia at high doses. In mice, rats, dogs: testicular toxicity at clinically relevant doses. | No data. | No adverse outcomes observed. | Not enough data for a clinical recommendation. | FDA: Pregnancy category C. EMA: No recommendation of use for pregnancy and females trying to conceive. No mention of men fathering a child. |
Cladribrine | Decreases lymphocyte transit through blood–brain barrier, decreases lymphocytes subpopulations. | In mice: asthenospermia at high doses. In monkeys: reduced testicular weight at high doses. | No data. Possible damage (interferes with DNA synthesis). | No data for males. | Should be avoided in men wishing to conceive. A 6-month washout is required. | FDA and EMA warning for pregnancy: controindicated for use by pregnant women and by women and men with reproductive potential who do not plan to use effective contraception (for at least 6 months after the last dose) because of the risk of fetal harm. FDA: Discontinue therapy if a woman becames pregnant while using this drug. Controindicated during breastfeeding. |
Fingolimod | Sphingosine 1-phosphate (S1P) receptor modulator. Keeps lymphocytes in secondary lymphatic organs. | No effect in mice at high doses. | No data. | No data for males. Associated with a 2-fold increased risk of a severe congenital malformation when administered in women during pregnancy. | Not enough data for a clinical recommendation. | FDA and EMA warning for pregnancy. Women of childbearing potential should use effective contraception. Washout period of 2 months required in women. No mention of men fathering a child. |
Siponimod | S1P receptor modulator selective for subtypes 1 and 5. Direct action in central nervous system: inhibits demyelination and attenuates TNFα, IL-6, and IL-17 production via astrocytes and microglia. | Male rats: dose-related increase in precoital interval. Decrease in implantation sites, increase in preimplantation loss, decrease in the number of viable fetuses (at 100 times the recommended human dose). | No data. | No data for males. | Not enough data for a clinical recommendation. | FDA and EMA warning for pregnancy. Women with childbearing potential should use effective contraception during and for 10 days after stopping Siponimod. EMA: Discontinue therapy if a woman becomes pregnant while using this drug. Contraindicated during breastfeeding. No mention of men fathering a child. |
Natalizumab | Anti-inflammatory. Blocks leukocyte attachment to cerebral endothelial cells. | In guinea pigs: no effects on male fertility at doses up to 7 times the clinical dose. | No effect on semen parameters and gonadal steroids after 12 months of treatment (16 men). | No data for males. | Continue use if benefits overcome risks. No washout needed. | FDA and EMA: Can be used during pregnancy when the potential benefit justifies the potential risk. No mention of men fathering a child. |
Alemtuzumab | Targets CD52. | CD52s are present in male reproductive tissue. In mice: OAT, but no altered reproductive performance. | CD52 antibodies agglutinate and inactivate sperm in vitro. A study (n = 13) reported no effect on sperm parameters in vivo after 1, 3, and 6 months. | No data for males. | Not enough data for a clinical recommendation. | FDA: Pregnancy category C. EMA for females: Contraception while receiving the drug and for at least 4 months after the last dose is recommended. No mention of men fathering a child. |
Ocrelizumab | Humanized monoclonal antibody against CD20, endovenous administration. Lyses B-cells via antibody-dependent cellular cytotoxicity (ADCC) and and complement mediated lysis. | In monkeys: no effects on male fertility at doses up to 10 times the clinical dose. | No effect on semen parameters and gonadal steroids after 12 months of treatment (16 men). Possible transient haematological anomalies in infants born to mothers exposed to other anti-CD20 B-cell-depleting antibodies during pregnancy. | No data for males. | Not enough data for a clinical recommendation. | For females: Contraception while receiving the drug and for at least 6 (FDA)–12 (EMA) months after the last dose is recommended. No mention of men fathering a child. |
Ofatumumab | Humanized monoclonal antibody against CD20, subcutanenous administration. Lyses B-cells via antibody-dependent cellular cytotoxicity (ADCC) and complement mediated lysis. | In monkeys: no effect from exposures greater than 500 times that in humans at the recommended human maintenance dose of 20 mg/month. | No data. | No data for males. Possible fetal harm due to lymphopenia, possible transient haematological anomalies in infants born to mothers exposed to other anti-CD20 B-cell-depleting antibodies during pregnancy. | Not enough data for a clinical recommendation. | For females: Contraception while receiving the drug and for at least 6 months (FDA) after the last dose is recommended. No mention of men fathering a child. |
Mitoxantrone | Enhances T-cell suppressor function. Inhibits B-cell function and antibody production. Remotely used in clinical practice. | No data. | Reversible azoospermia. | No data for males. | Semen cryopreservation. Washout of 6 months before pregnancy using fresh semen. | FDA: Pregnancy category D. FDA warning for pregnancy. EMA warning for fertility and pregnancy. Men in therapy had to use contraceptive measures during and for at least 6 months after the end of the therapy (4 months for women). |
Cyclophosphamide (off-label) | Reduce the number of T- and B-cells. Conditioning before aHSCT. | In mice: alteration of seminal parameters with clinical treatment doses. | Azoospermia/ oligospermia, sometimes irreversible. Hypergonadotropic hypogonadism. | Increased risk of post-implantation loss. | Semen cryopreservation. Washout of 6 months before pregnancy using fresh semen. | FDA warning for fertility and pregnancy. Washout of 6 months before pregnancy using fresh semen. |
Azathioprine (off-label) | Immunosuppressive activity. | In mice: temporary oligospermia and reduced number of successful mating at high doses. | No long-term effect on semen (studies in patients with IBD). | Reports of increased pregnancy complications. | Washout of 6 months before pregnancy using fresh semen. | FDA warning for fertility and pregnancy. Washout of 6 months before pregnancy using fresh semen. |
Methotexate (off-label) | Immunosuppressive activity. | No data. | Reversible oligospermia. | No increase in adverse outcomes of pregnancies fathered by men taking methotrexate. | Washout of 3 months period before using fresh semen. | FDA warning for pregnancy. Washout of 3 months before pregnancy using fresh semen. |
Rituximab (off-label) | Chimeric monoclonal antibody against CD20. Lyses B-cells via direct signaling of apoptosis, complement activation, and ADCC. | No effect. | No data. | No data for males. Possible transient haematological anomalies in infants born to mothers exposed to other anti-CD20 B-cell-depleting antibodies during pregnancy. | Not enough data for a clinical recommendation. | EMA: For females, contraception while receiving the drug and for at least 12 months after the last dose is recommended. No mention of men fathering a child. |
Drug | Indication | Effect on Male Reproduction |
---|---|---|
Benzodiazepine (Aprazolam, Diazepam, Lorazepam, Clonazepam) [76,77] | Anxiety, insomnia, mood disorders. Neuropathic pain. Spasticity. | Hyperprolactinemia (may cause erection/ejaculation dysfunction and alteration of spermatogenesis). No direct effect on spermatogenesis in preclinical studies on animals. |
SSRIs (Citalopram, Paroxetine, Fluoxetine, Setraline) [76,77,78,79,80,81,83] and SNRIs (Duloxetine, Venlafaxine) [84,85] | Anxiety, insomnia, mood disorders. Neuropathic pain. | All: Hyperprolactinemia (may cause erection/ejaculation dysfunction and alteration of spermatogenesis). Paroxetine: Increased sperm DNA fragmentation (human study). Fluoxetine: OAT in rats. Sertraline: OAT and increased DNA fragmentation in humans, oxidative stress in rats. Citalopram: Case reports of OAT in humans, increased oxidative stress in animal studies. Duloxetine: 1 RCT (68 healthy men) showing no effect on semen parameters, DNA fragmentation, and serum hormones after 6 weeks. Venlafaxine: Increased percentage of non-progressive motility. |
NDRIs (Bupropion) [79,82,83] | Depression | Animal studies have shown no negative effect on semen parameters in rats. Lower sexual side effects in humans compared to SSRIs. |
Tricyclic antidepressant (Amitriptyline) [85,86,87] | Neuropathic pain, depression, urinary symptoms. | Hyperprolactinemia (may cause erection/ejaculation dysfunction and alteration of spermatogenesis). Reduction in semen volume and motility. Oxidative stress. |
CBD, THC [92,93,94,95,96,97,98,99] | Spasticity | Conflicting evidence on seminal parameters. Lowers libido. Neurobehavioral risk in offspring (animal model). |
Baclofen [106] | Spasticity | Sexual dysfunction reported in men using intrathecal (not oral) Baclofen |
Tizanidine | Spasticity | In rats, reduced fertility at high doses. No data for men. |
Tolperisone | Spasticity | No data. |
Botulinum toxin | Spasticity, urinary dysfunction. | In rats, reduced fertility at high doses. No data for men. |
Phenytoin/Lamotrigine [107] | Neuropathic pain | Decreased sperm count and motility (especially Phenytoin). |
Topiramate [108] | Neuropathic pain, tremor, dysesthesia. | In rats: decreased count and mobility, decreased testicular weight and testosterone levels. No data in men. |
Carbamazepine, Oxcarbamazepine [88,89,90,91] | Neuropathic pain (off label) | Decrease in all sperm parameters (human study). Decreased levels of bioavailable testosterone and bioactive testosterone/LH ratio. |
Gabapentin—Pregabalin [109] | Neuropathic pain | Gabapentin: Reversible suppression of testicular function in rats. |
Amantadine [110] | Fatigue (off label) | Improves sexual function. |
4-aminopyridine | Fatigue | No effect in animal studies. No data for men. |
Modafinil [100,101,102] | Fatigue | Beneficial effect on premature ejaculation. |
Naltrexone | Fatigue | No effect in animal studies. No data for men. |
Phosphodiesterase inhibitors (Sildenafil, Vardenafil, Tadalafil, Avanafil) [103,104] | Erectile dysfunction | Conflicting data on semen parameters/function. Modest increase in motility and morphology in infertile men. |
Anticholinergic—antimuscarinic drugs (Mirabegron, Ossibutine, Solifenacine, Tolterodine, Trospium Chloride) | Urinary symptoms | No effect on fertility in rats at high doses (registrative studies, in prescribing information). |
Pramipexole | Restless legs syndrome | Not mutagenic or clastogenic in a battery of in vitro and in vivo (mouse micronucleus) assays (registrative studies, in prescribing information). No data for men. |
Laxatives (Bisacodyl, Macrogol, Lactulose, Magnesium Hydroxide, Glycerin) | Constipation | Probably no effect on fertility or reproduction. No studies on reproductive toxicity in animals are available, except for lactulose (no effect on male fertility in rats in registrative studies). |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Massarotti, C.; Sbragia, E.; Gazzo, I.; Stigliani, S.; Inglese, M.; Anserini, P. Effect of Multiple Sclerosis and Its Treatments on Male Fertility: Cues for Future Research. J. Clin. Med. 2021, 10, 5401. https://doi.org/10.3390/jcm10225401
Massarotti C, Sbragia E, Gazzo I, Stigliani S, Inglese M, Anserini P. Effect of Multiple Sclerosis and Its Treatments on Male Fertility: Cues for Future Research. Journal of Clinical Medicine. 2021; 10(22):5401. https://doi.org/10.3390/jcm10225401
Chicago/Turabian StyleMassarotti, Claudia, Elvira Sbragia, Irene Gazzo, Sara Stigliani, Matilde Inglese, and Paola Anserini. 2021. "Effect of Multiple Sclerosis and Its Treatments on Male Fertility: Cues for Future Research" Journal of Clinical Medicine 10, no. 22: 5401. https://doi.org/10.3390/jcm10225401