Low Branched Chain Amino Acids and Tyrosine in Thai Patients with Type 2 Diabetes Mellitus Treated with Metformin and Metformin-Sulfonylurea Combination Therapies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Sample Collection and Preparation
2.3. Liquid Chromatography-Mass Spectrometry (LC-MS)
2.4. Statistical Analysis
3. Results
3.1. Amino Acid Correlations and Regression Analysis
3.2. Amino Acid Profile between Healthy Controls, Single and Multi-Treated T2DM Groups
3.2.1. Branched Chain Amino Acids
3.2.2. Aromatic Amino Acids
3.2.3. Glutamate and Glutamine
4. Discussion
4.1. Branched Chain Amino Acids
4.2. Aromatic Amino Acids
4.3. Glutamate and Glutamine
4.4. Metformin Therapy
4.5. Metformin and Sulfonylurea Therapy
4.6. Significance of Low Branched Chain Amino Acids and Tyrosine
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Papier, K.; D’Este, C.; Bain, C.; Banwell, C.; Seubsman, S.; Sleigh, A.; Jordan, S. Consumption of sugar-sweetened beverages and type 2 diabetes incidence in Thai adults: Results from an 8-year prospective study. Nutr. Diabetes 2017, 7, e283. [Google Scholar] [CrossRef] [Green Version]
- Jitnarin, N.; Kosulwat, V.; Rojroongwasinkul, N.; Boonpraderm, A.; Haddock, C.K.; Poston, W.S. Risk factors for overweight and obesity among Thai adults: Results of the National Thai Food Consumption Survey. Nutrients 2010, 2, 60–74. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.C.; Chan, J.C. Type 2 diabetes in East Asians: Similarities and differences with populations in Europe and the United States. Ann. N. Y. Acad. Sci. 2013, 1281, 64–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolanu, B.R.; Boddula, V.; Vadakedath, S.; Kandi, V. Amino Acid (Leucine) Chromatography: A Study of Branched-Chain Aminoaciduria in Type 2 Diabetes. Cureus 2017, 9, e1091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Wang, Y.; Hao, F.; Zhou, X.; Han, X.; Tang, H.; Ji, L. Human serum metabonomic analysis reveals progression axes for glucose intolerance and insulin resistance statuses. J. Proteome Res. 2009, 8, 5188–5195. [Google Scholar] [CrossRef]
- Saleem, T.; Dahpy, M.; Ezzat, G.; Abdelrahman, G.; Abdel-Aziz, E.; Farghaly, R. The Profile of Plasma Free Amino Acids in Type 2 Diabetes Mellitus with Insulin Resistance: Association with Microalbuminuria and Macroalbuminuria. Appl. Biochem. Biotechnol. 2019, 188, 854–867. [Google Scholar] [CrossRef]
- Cheng, S.; Rhee, E.P.; Larson, M.G.; Lewis, G.D.; McCabe, E.L.; Shen, D.; Palma, M.J.; Roberts, L.D.; Dejam, A.; Souza, A.L.; et al. Metabolite profiling identifies pathways associated with metabolic risk in humans. Circulation 2012, 125, 2222–2231. [Google Scholar] [CrossRef] [Green Version]
- Preiss, D.; Rankin, N.; Welsh, P.; Holman, R.R.; Kangas, A.J.; Soininen, P.; Würtz, P.; Ala-Korpela, M.; Sattar, N. Effect of metformin therapy on circulating amino acids in a randomized trial: The CAMERA study. Diabet. Med. 2016, 33, 1569–1574. [Google Scholar] [CrossRef]
- Marchetti, P.; Masiello, P.; Benzi, L.; Cecchetti, P.; Fierabracci, V.; Giannarelli, R.; Gregorio, F.; Brunetti, P.; Navalesi, R. Effects of metformin therapy on plasma amino acid pattern in patients with maturity-onset diabetes. Drugs Exp. Clin. Res. 1989, 15, 565–570. [Google Scholar]
- Paterson, K.R.; Gyi, K.M.; McBride, D.; Cohen, H.N.; Shenkin, A.; Manderson, W.G.; MacCuish, A.C. Effect of sulphonylurea administration on insulin secretion and amino acid metabolism in non-insulin-dependent diabetic patients. Diabet. Med. 1985, 2, 38–40. [Google Scholar] [CrossRef] [PubMed]
- Rena, G.; Hardie, D.G.; Pearson, E.R. The mechanisms of action of metformin. Diabetologia 2017, 60, 1577–1585. [Google Scholar] [CrossRef] [Green Version]
- Hirst, J.A.; Farmer, A.J.; Dyar, A.; Lung, T.W.; Stevens, R.J. Estimating the effect of sulfonylurea on HbA1c in diabetes: A systematic review and meta-analysis. Diabetologia 2013, 56, 973–984. [Google Scholar] [CrossRef] [Green Version]
- Classification of Diabetes Mellitus; World Health Organization: Geneva, Switzerland, 2019.
- Badawy, A.A.; Morgan, C.J.; Turner, J.A. Application of the Phenomenex EZ:faasttrade mark amino acid analysis kit for rapid gas-chromatographic determination of concentrations of plasma tryptophan and its brain uptake competitors. Amino Acids 2008, 34, 587–596. [Google Scholar] [CrossRef] [Green Version]
- Tillin, T.; Hughes, A.D.; Wang, Q.; Würtz, P.; Ala-Korpela, M.; Sattar, N.; Forouhi, N.G.; Godsland, I.F.; Eastwood, S.V.; McKeigue, P.M.; et al. Diabetes risk and amino acid profiles: Cross-sectional and prospective analyses of ethnicity, amino acids and diabetes in a South Asian and European cohort from the SABRE (Southall And Brent REvisited) Study. Diabetologia 2015, 58, 968–979. [Google Scholar] [CrossRef] [Green Version]
- Tai, E.S.; Tan, M.L.; Stevens, R.D.; Low, Y.L.; Muehlbauer, M.J.; Goh, D.L.; Ilkayeva, O.R.; Wenner, B.R.; Bain, J.R.; Lee, J.J.; et al. Insulin resistance is associated with a metabolic profile of altered protein metabolism in Chinese and Asian-Indian men. Diabetologia 2010, 53, 757–767. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.C.; Watkins, S.M.; Lorenzo, C.; Wagenknecht, L.E.; Il’yasova, D.; Chen, Y.D.; Haffner, S.M.; Hanley, A.J. Branched-Chain Amino Acids and Insulin Metabolism: The Insulin Resistance Atherosclerosis Study (IRAS). Diabetes Care 2016, 39, 582–588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flakoll, P.J.; Kulaylat, M.; Frexes-Steed, M.; Hill, J.O.; Abumrad, N.N. Amino acids enhance insulin resistance to exogenous glucose infusion in overnight-fasted humans. J. Parenter. Enteral Nutr. 1991, 15, 123–127. [Google Scholar] [CrossRef] [PubMed]
- Xiao, F.; Yu, J.; Guo, Y.; Deng, J.; Li, K.; Du, Y.; Chen, S.; Zhu, J.; Sheng, H.; Guo, F. Effects of individual branched-chain amino acids deprivation on insulin sensitivity and glucose metabolism in mice. Metabolism 2014, 63, 841–850. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, N.; Mahbub, M.H.; Takahashi, H.; Hase, R.; Ishimaru, Y.; Sunagawa, H.; Amano, H.; Kobayashi-Miura, M.; Kanda, H.; Fujita, Y.; et al. Plasma free amino acid profiles evaluate risk of metabolic syndrome, diabetes, dyslipidemia, and hypertension in a large Asian population. Environ. Health Prev. Med. 2017, 22, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Safai, N.; Suvitaival, T.; Ali, A.; Spégel, P.; Al-Majdoub, M.; Carstensen, B.; Vestergaard, H.; Ridderstråle, M.; CIMT Trial Group. Effect of metformin on plasma metabolite profile in the Copenhagen Insulin and Metformin Therapy (CIMT) trial. Diabet. Med. 2018, 35, 944–953. [Google Scholar] [CrossRef]
- Welsh, P.; Rankin, N.; Li, Q.; Mark, P.B.; Würtz, P.; Ala-Korpela, M.; Marre, M.; Poulter, N.; Hamet, P.; Chalmers, J.; et al. Circulating amino acids and the risk of macrovascular, microvascular and mortality outcomes in individuals with type 2 diabetes: Results from the ADVANCE trial. Diabetologia 2018, 61, 1581–1591. [Google Scholar] [CrossRef] [Green Version]
- Long, J.; Yang, Z.; Wang, L.; Han, Y.; Peng, C.; Yan, C.; Yan, D. Metabolite biomarkers of type 2 diabetes mellitus and pre-diabetes: A systematic review and meta-analysis. BMC Endocr. Disord. 2020, 20, 174. [Google Scholar] [CrossRef]
- Liu, X.; Zheng, Y.; Guasch-Ferré, M.; Ruiz-Canela, M.; Toledo, E.; Clish, C.; Liang, L.; Razquin, C.; Corella, D.; Estruch, R.; et al. High plasma glutamate and low glutamine-to-glutamate ratio are associated with type 2 diabetes: Case-cohort study within the PREDIMED trial. Nutr. Metab. Cardiovasc. Dis. 2019, 29, 1040–1049. [Google Scholar] [CrossRef]
- Palmer, N.D.; Stevens, R.D.; Antinozzi, P.A.; Anderson, A.; Bergman, R.N.; Wagenknecht, L.E.; Newgard, C.B.; Bowden, D.W. Metabolomic profile associated with insulin resistance and conversion to diabetes in the Insulin Resistance Atherosclerosis Study. J. Clin. Endocrinol. Metab. 2015, 100, E463–E468. [Google Scholar] [CrossRef] [PubMed]
- Rhee, S.Y.; Jung, E.S.; Park, H.M.; Jeong, S.J.; Kim, K.; Chon, S.; Yu, S.Y.; Woo, J.T.; Lee, C.H. Plasma glutamine and glutamic acid are potential biomarkers for predicting diabetic retinopathy. Metabolomics 2018, 14, 89. [Google Scholar] [CrossRef] [Green Version]
- Walford, G.A.; Ma, Y.; Clish, C.; Florez, J.C.; Wang, T.J.; Gerszten, R.E.; Diabetes Prevention Program Research Group. Metabolite Profiles of Diabetes Incidence and Intervention Response in the Diabetes Prevention Program. Diabetes 2016, 65, 1424–1433. [Google Scholar] [CrossRef] [Green Version]
- Zemdegs, J.; Martin, H.; Pintana, H.; Bullich, S.; Manta, S.; Marqués, M.A.; Moro, C.; Layé, S.; Ducrocq, F.; Chattipakorn, N.; et al. Metformin Promotes Anxiolytic and Antidepressant-Like Responses in Insulin-Resistant Mice by Decreasing Circulating Branched-Chain Amino Acids. J. Neurosci. 2019, 39, 5935–5948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riera-Borrull, M.; García-Heredia, A.; Fernández-Arroyo, S.; Hernández-Aguilera, A.; Cabré, N.; Cuyàs, E.; Luciano-Mateo, F.; Camps, J.; Menendez, J.A.; Joven, J. Metformin Potentiates the Benefits of Dietary Restraint: A Metabolomic Study. Int. J. Mol. Sci. 2017, 18, 2263. [Google Scholar] [CrossRef] [Green Version]
- Irving, B.A.; Carter, R.E.; Soop, M.; Weymiller, A.; Syed, H.; Karakelides, H.; Bhagra, S.; Short, K.R.; Tatpati, L.; Barazzoni, R.; et al. Effect of insulin sensitizer therapy on amino acids and their metabolites. Metabolism 2015, 64, 720–728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laferrère, B.; Reilly, D.; Arias, S.; Swerdlow, N.; Gorroochurn, P.; Bawa, B.; Bose, M.; Teixeira, J.; Stevens, R.D.; Wenner, B.R.; et al. Differential metabolic impact of gastric bypass surgery versus dietary intervention in obese diabetic subjects despite identical weight loss. Sci. Transl. Med. 2011, 3, 80re2. [Google Scholar] [CrossRef] [Green Version]
- Walford, G.A.; Davis, J.; Warner, A.S.; Ackerman, R.J.; Billings, L.K.; Chamarthi, B.; Fanelli, R.R.; Hernandez, A.M.; Huang, C.; Khan, S.Q.; et al. Branched chain and aromatic amino acids change acutely following two medical therapies for type 2 diabetes mellitus. Metabolism 2013, 62, 1772–1778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sears, D.D.; Hsiao, G.; Hsiao, A.; Yu, J.G.; Courtney, C.H.; Ofrecio, J.M.; Chapman, J.; Subramaniam, S. Mechanisms of human insulin resistance and thiazolidinedione-mediated insulin sensitization. Proc. Natl. Acad. Sci. USA 2009, 106, 18745–18750. [Google Scholar] [CrossRef] [Green Version]
- Bao, Y.; Zhao, T.; Wang, X.; Qiu, Y.; Su, M.; Jia, W.; Jia, W. Metabonomic variations in the drug-treated type 2 diabetes mellitus patients and healthy volunteers. J. Proteome Res. 2009, 8, 1623–1630. [Google Scholar] [CrossRef] [PubMed]
- Neinast, M.; Murashige, D.; Arany, Z. Branched Chain Amino Acids. Annu Rev. Physiol. 2019, 81, 139–164. [Google Scholar] [CrossRef] [PubMed]
- Korner, J.; Cline, G.W.; Slifstein, M.; Barba, P.; Rayat, G.R.; Febres, G.; Leibel, R.L.; Maffei, A.; Harris, P.E. A role for foregut tyrosine metabolism in glucose tolerance. Mol. Metab. 2019, 23, 37–50. [Google Scholar] [CrossRef] [PubMed]
- Vieira, E.E.S.; Pereira, I.C.; Braz, A.F.; Nascimento-Ferreira, M.V.; de Oliveira Torres, L.R.; de Freitas Brito, A.; do Nascimento Marreiro, D.; de Castro, E.; Sousa, J.M.; da Silva, F.C.C.; et al. Food consumption of branched chain amino acids and insulin resistance: A systematic review of observational studies in humans. Clin. Nutr. ESPEN 2020, 40, 277–281. [Google Scholar] [CrossRef]
Variable | G0 (n = 104) | G1 (n = 65) | G2 (n = 38) | p Value |
---|---|---|---|---|
Gender (women/men) | 85/19 | 38/27 | 26/12 | |
Age (year) | 48.0 (51.0–54.0) | 55.0 (49.0–58.0) | 53.0 (47.0–57.0) | <0.001 |
BMI (kg/m2) | 24.5 (21.8–27.1) | 27.8 (25.7–31.6) | 27.0 (24.8–30.4) | <0.001 |
Glucose (mg/dL) | 89.0 (84.0–95.0) | 132.0 (113.0–161.0) | 129.0 (112.0–179.0) | <0.001 |
HbA1c (%) | 5.4 (5.1–5.5) | 6.9 (6.2–7.6) | 6.8 (6.0–8.3) | <0.001 |
Total-C (mg/dL) | 205.0 (180.0–227.0) | 176.0 (163.0–210.0) | 185.0 (158.0–212.0) | <0.001 |
HDL-C (mg/dL) | 62.0 (54.0–71.0) | 50.0 (44.0–59.0) | 53.0 (47.0–66.0) | <0.001 |
LDL-C (mg/dL) | 120.0 (96.0–142.0) | 94.0 (78.0–114.0) | 100.0 (71.0–115.0) | <0.001 |
Triglyceride (mg/dL) | 97.0 (73.0–128.0) | 135.0 (104.0–168.0) | 129.0 (94.0–172.0) | <0.001 |
Creatinine (mg/dL) | 0.72 (0.63–0.84) | 0.78 (0.64–0.92) | 0.73 (0.59–0.95) | <0.001 |
eGFR (ml/min/1.73m²) | 99.5 (88.8–107.0) | 95.0 (83.8–103.0) | 100.5 (89.3–105.8) | 0.329 |
Amino Acid (nM) | Spearman’s Rank Correlation | G0 | G1 | G2 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Isoleucine (nM) | Valine (nM) | Leucine (nM) | Isoleucine (nM) | Valine (nM) | Leucine (nM) | Isoleucine (nM) | Valine (nM) | Leucine (nM) | ||
Isoleucine | Correlation Coefficient | 1.000 | 0.795 ** | 0.828 ** | 1.000 | 0.728 ** | 0.757 ** | 1.000 | 0.795 ** | 0.828 ** |
Significance (p value) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||||
Valine | Correlation Coefficient | 0.795 ** | 1.000 | 0.902 ** | 0.728 ** | 1.000 | 0.839 ** | 0.795 ** | 1.000 | 0.902 ** |
Significance (p value) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||||
Leucine | Correlation Coefficient | 0.828 ** | 0.902 ** | 1.000 | 0.757 ** | 0.839 ** | 1.000 | 0.828 ** | 0.902 ** | 1.000 |
Significance (p value) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||||
Phenylalanine | Correlation Coefficient | 0.618 ** | 0.203 | 0.247 | 0.400 ** | −0.098 | 0.063 | 0.618 ** | 0.203 | 0.247 |
Significance (p value) | 0.000 | 0.221 | 0.135 | 0.001 | 0.439 | 0.619 | 0.000 | 0.221 | 0.135 | |
Tyrosine | Correlation Coefficient | −0.163 | 0.072 | 0.096 | 0.050 | 0.350 ** | 0.438 ** | −0.163 | 0.072 | 0.096 |
Significance (p value) | 0.327 | 0.667 | 0.566 | 0.694 | 0.004 | 0.000 | 0.327 | 0.667 | 0.566 | |
Aminoadipate | Correlation Coefficient | 0.420 ** | 0.361 * | 0.316 | 0.301 * | 0.197 | 0.112 | 0.420 ** | 0.361 * | 0.316 |
Significance (p value) | 0.009 | 0.026 | 0.053 | 0.015 | 0.115 | 0.376 | 0.009 | 0.026 | 0.053 | |
Arginine | Correlation Coefficient | 0.148 | 0.219 | 0.406 * | 0.083 | 0.182 | 0.300 * | 0.148 | 0.219 | 0.406 * |
Significance (p value) | 0.374 | 0.187 | 0.011 | 0.509 | 0.148 | 0.015 | 0.374 | 0.187 | 0.011 | |
Glycine | Correlation Coefficient | 0.659 ** | 0.570 ** | 0.480 ** | 0.411 ** | 0.380 ** | 0.236 | 0.659 ** | 0.570 ** | 0.480 ** |
Significance (p value) | 0.000 | 0.000 | 0.002 | 0.001 | 0.002 | 0.061 | 0.000 | 0.000 | 0.002 | |
Threonine | Correlation Coefficient | 0.474 ** | 0.326 * | 0.223 | 0.265 * | 0.089 | −0.089 | 0.474 ** | 0.326 * | 0.223 |
Significance (p value) | 0.003 | 0.045 | 0.179 | 0.033 | 0.482 | 0.481 | 0.003 | 0.045 | 0.179 | |
Methionine | Correlation Coefficient | 0.386 * | 0.434 ** | 0.479 ** | 0.253 * | 0.282 * | 0.442 ** | 0.386 * | 0.434 ** | 0.479 ** |
Significance (p value) | 0.017 | 0.007 | 0.002 | 0.042 | 0.023 | 0.000 | 0.017 | 0.007 | 0.002 | |
Aspartate | Correlation Coefficient | 0.115 | 0.068 | 0.158 | 0.347 ** | 0.307 * | 0.359 ** | 0.115 | 0.068 | 0.158 |
Significance (p value) | 0.492 | 0.686 | 0.343 | 0.005 | 0.014 | 0.004 | 0.492 | 0.686 | 0.343 | |
Sacosine | Correlation Coefficient | −0.517 ** | −0.640 ** | −0.521 ** | −0.403 ** | −0.337 ** | −0.126 | −0.517 ** | −0.640 ** | −0.521 ** |
Significance (p value) | 0.001 | 0.000 | 0.001 | 0.001 | 0.006 | 0.317 | 0.001 | 0.000 | 0.001 | |
Ornithine | Correlation Coefficient | −0.152 | 0.073 | 0.026 | −0.053 | 0.110 | 0.204 | −0.152 | 0.073 | 0.026 |
Significance (p value) | 0.363 | 0.662 | 0.875 | 0.674 | 0.381 | 0.104 | 0.363 | 0.662 | 0.875 | |
Proline | Correlation Coefficient | 0.620 ** | 0.875 ** | 0.777 ** | 0.670 ** | 0.667 ** | 0.555 ** | 0.620 ** | 0.875 ** | 0.777 ** |
Significance (p value) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
Lysine | Correlation Coefficient | −0.344 * | −0.034 | 0.047 | −0.141 | 0.104 | 0.327 ** | −0.344 * | −0.034 | 0.047 |
Significance (p value) | 0.034 | 0.838 | 0.778 | 0.263 | 0.409 | 0.008 | 0.034 | 0.838 | 0.778 | |
Glutamate | Correlation Coefficient | −0.241 | −0.098 | 0.001 | −0.022 | 0.141 | 0.317 ** | −0.241 | −0.098 | 0.001 |
Significance (p value) | 0.146 | 0.557 | 0.995 | 0.860 | 0.262 | 0.010 | 0.146 | 0.557 | 0.995 | |
Glutamine | Correlation Coefficient | 0.062 | 0.169 | 0.163 | −0.059 | 0.176 | 0.266 * | 0.062 | 0.169 | 0.163 |
Significance (p value) | 0.711 | 0.309 | 0.328 | 0.642 | 0.160 | 0.033 | 0.711 | 0.309 | 0.328 | |
Serine | Correlation Coefficient | 0.422 ** | 0.280 | 0.143 | 0.195 | 0.005 | −0.141 | 0.422 ** | 0.280 | 0.143 |
Significance (p value) | 0.008 | 0.088 | 0.391 | 0.119 | 0.968 | 0.261 | 0.008 | 0.088 | 0.391 | |
Asparagine | Correlation Coefficient | 0.474 ** | 0.379 * | 0.258 | 0.228 | 0.156 | −0.007 | 0.474 ** | 0.379 * | 0.258 |
Significance (p value) | 0.003 | 0.019 | 0.117 | 0.068 | 0.216 | 0.953 | 0.003 | 0.019 | 0.117 | |
4-Hydroxy-proline | Correlation Coefficient | 0.321 * | 0.122 | 0.048 | 0.176 | −0.006 | −0.211 | 0.321 * | 0.122 | 0.048 |
Significance (p value) | 0.049 | 0.465 | 0.773 | 0.161 | 0.961 | 0.091 | 0.049 | 0.465 | 0.773 |
Amino Acid (nM) | Spearman’s Rank Correlation | G0 | G1 | G2 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Phenylalanine (nM) | Tyrosine (nM) | Glutamate (nM) | Glutamine (nM) | Phenylalanine (nM) | Tyrosine (nM) | Glutamate (nM) | Glutamine (nM) | Phenylalanine (nM) | Tyrosine (nM) | Glutamate (nM) | Glutamine (nM) | ||
Isoleucine | Correlation Coefficient | 0.618 ** | −0.163 | −0.241 | 0.062 | 0.400 ** | 0.050 | −0.022 | −0.059 | 0.618 ** | −0.163 | −0.241 | 0.062 |
Significance (p value) | 0.000 | 0.327 | 0.146 | 0.711 | 0.001 | 0.694 | 0.860 | 0.642 | 0.000 | 0.327 | 0.146 | 0.711 | |
Valine | Correlation Coefficient | 0.203 | 0.072 | −0.098 | 0.169 | −0.098 | 0.350 ** | 0.141 | 0.176 | 0.203 | 0.072 | −0.098 | 0.169 |
Significance (p value) | 0.221 | 0.667 | 0.557 | 0.309 | 0.439 | 0.004 | 0.262 | 0.160 | 0.221 | 0.667 | 0.557 | 0.309 | |
Leucine | Correlation Coefficient | 0.247 | 0.096 | 0.001 | 0.163 | 0.063 | 0.438 ** | 0.317 ** | 0.266 * | 0.247 | 0.096 | 0.001 | 0.163 |
Significance (p value) | 0.135 | 0.566 | 0.995 | 0.328 | 0.619 | 0.000 | 0.010 | 0.033 | 0.135 | 0.566 | 0.995 | 0.328 | |
Phenyl-alanine | Correlation Coefficient | 1.000 | −0.425 ** | −0.506 ** | −0.158 | 1.000 | −0.370 ** | −0.310 * | −0.371 ** | 1.000 | −0.425 ** | −0.506 ** | −0.158 |
Significance (p value) | 0.008 | 0.001 | 0.343 | 0.002 | 0.012 | 0.002 | 0.008 | 0.001 | 0.343 | ||||
Tyrosine (nm) | Correlation Coefficient | −0.425 ** | 1.000 | 0.396 * | 0.386 * | −0.370 ** | 1.000 | 0.440 ** | 0.629 ** | −0.425 ** | 1.000 | 0.396 * | 0.386 * |
Significance (p value) | 0.008 | 0.014 | 0.017 | 0.002 | 0.000 | 0.000 | 0.008 | 0.014 | 0.017 | ||||
Amino-adipate | Correlation Coefficient | 0.352 * | 0.115 | −0.274 | 0.082 | 0.302 * | 0.013 | −0.256 * | −0.181 | 0.352 * | 0.115 | −0.274 | 0.082 |
Significance (p value) | 0.030 | 0.492 | 0.095 | 0.624 | 0.015 | 0.918 | 0.040 | 0.148 | 0.030 | 0.492 | 0.095 | 0.624 | |
Arginine | Correlation Coefficient | −0.285 | 0.385 * | 0.361 * | 0.080 | −0.244 | 0.441 ** | 0.489 ** | 0.271 * | −0.285 | 0.385 * | 0.361 * | 0.080 |
Significance (p value) | 0.083 | 0.017 | 0.026 | 0.633 | 0.051 | 0.000 | 0.000 | 0.029 | 0.083 | 0.017 | 0.026 | 0.633 | |
Glycine | Correlation Coefficient | 0.510 ** | −0.073 | −0.291 | 0.404 * | 0.216 | −0.001 | −0.203 | 0.205 | 0.510 ** | −0.073 | −0.291 | 0.404 * |
Significance (p value) | 0.001 | 0.665 | 0.076 | 0.012 | 0.087 | 0.994 | 0.107 | 0.103 | 0.001 | 0.665 | 0.076 | 0.012 | |
Threonine | Correlation Coefficient | 0.488 ** | −0.104 | −0.347 * | 0.504 ** | 0.282 * | −0.179 | −0.336 ** | 0.210 | 0.488 ** | −0.104 | −0.347 * | 0.504 ** |
Significance (p value) | 0.002 | 0.536 | 0.033 | 0.001 | 0.023 | 0.153 | 0.006 | 0.093 | 0.002 | 0.536 | 0.033 | 0.001 | |
Methionine | Correlation Coefficient | 0.091 | 0.441 ** | 0.180 | 0.448 ** | 0.027 | 0.481 ** | 0.303 * | 0.336 ** | 0.091 | 0.441 ** | 0.180 | 0.448 ** |
Significance (p value) | 0.588 | 0.006 | 0.278 | 0.005 | 0.829 | 0.000 | 0.014 | 0.006 | 0.588 | 0.006 | 0.278 | 0.005 | |
Aspartate | Correlation Coefficient | 0.033 | 0.145 | 0.420 ** | −0.049 | 0.137 | 0.090 | 0.337 ** | −0.009 | 0.033 | 0.145 | 0.420 ** | −0.049 |
Significance (p value) | 0.843 | 0.384 | 0.009 | 0.772 | 0.280 | 0.479 | 0.006 | 0.942 | 0.843 | 0.384 | 0.009 | 0.772 | |
Sacosine | Correlation Coefficient | −0.129 | 0.109 | 0.127 | −0.028 | −0.153 | 0.344 ** | 0.282 * | 0.373 ** | −0.129 | 0.109 | 0.127 | −0.028 |
Significance (p value) | 0.439 | 0.516 | 0.449 | 0.867 | 0.223 | 0.005 | 0.023 | 0.002 | 0.439 | 0.516 | 0.449 | 0.867 | |
Ornithine | Correlation Coefficient | −0.217 | 0.492 ** | 0.421 ** | 0.480 ** | −0.184 | 0.644 ** | 0.217 | 0.485 ** | −0.217 | 0.492 ** | 0.421 ** | 0.480 ** |
Significance (p value) | 0.190 | 0.002 | 0.008 | 0.002 | 0.143 | 0.000 | 0.083 | 0.000 | 0.190 | 0.002 | 0.008 | 0.002 | |
Proline | Correlation Coefficient | −0.004 | 0.216 | 0.074 | 0.295 | 0.038 | 0.065 | 0.067 | −0.078 | −0.004 | 0.216 | 0.074 | 0.295 |
Significance (p value) | 0.983 | 0.193 | 0.657 | 0.072 | 0.761 | 0.607 | 0.596 | 0.536 | 0.983 | 0.193 | 0.657 | 0.072 | |
Lysine | Correlation Coefficient | −0.641 ** | 0.442 ** | 0.735 ** | 0.370 * | −0.419 ** | 0.613 ** | 0.538 ** | 0.506 ** | −0.641 ** | 0.442 ** | 0.735 ** | 0.370 * |
Significance (p value) | 0.000 | 0.005 | 0.000 | 0.022 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.005 | 0.000 | 0.022 | |
Glutamate | Correlation Coefficient | −0.506 ** | 0.396 * | 1.000 | 0.394 * | −0.310 * | 0.440 ** | 1.000 | 0.385 ** | −0.506 ** | 0.396 * | 1.000 | 0.394 * |
Significance (p value) | 0.001 | 0.014 | 0.014 | 0.012 | 0.000 | 0.002 | 0.001 | 0.014 | 0.014 | ||||
Glutamine | Correlation Coefficient | −0.158 | 0.386 * | 0.394 * | 1.000 | −0.371 ** | 0.629 ** | 0.385 ** | 1.000 | −0.158 | 0.386 * | 0.394 * | 1.000 |
Significance (p value) | 0.343 | 0.017 | 0.014 | 0.002 | 0.000 | 0.002 | 0.343 | 0.017 | 0.014 | ||||
Serine | Correlation Coefficient | 0.515 ** | −0.215 | −0.351 * | 0.426 ** | 0.307 * | −0.226 | −0.390 ** | 0.149 | 0.515 ** | −0.215 | −0.351 * | 0.426 ** |
Significance (p value) | 0.001 | 0.195 | 0.031 | 0.008 | 0.013 | 0.070 | 0.001 | 0.237 | 0.001 | 0.195 | 0.031 | 0.008 | |
Asparagine | Correlation Coefficient | 0.458 ** | −0.158 | −0.367 * | 0.442 ** | 0.109 | −0.006 | −0.262 * | 0.325 ** | 0.458 ** | −0.158 | −0.367 * | 0.442 ** |
Significance (p value) | 0.004 | 0.344 | 0.023 | 0.005 | 0.390 | 0.962 | 0.035 | 0.008 | 0.004 | 0.344 | 0.023 | 0.005 | |
4−Hydroxyproline | Correlation Coefficient | 0.462 ** | −0.219 | −0.306 | 0.454 ** | 0.347 ** | −0.287 * | −0.446 ** | −0.010 | 0.462 ** | −0.219 | −0.306 | 0.454 ** |
Significance (p value) | 0.004 | 0.187 | 0.061 | 0.004 | 0.005 | 0.020 | 0.000 | 0.939 | 0.004 | 0.187 | 0.061 | 0.004 |
G0 | G1 | G2 | ||||||
Isoleucine | ||||||||
Independent Predictors | β | p | Independent Predictors | β | p | Independent Predictors | β | p |
Leucine | 0.880 | 0.000 | Leucine | 0.625 | 0.000 | leucine | 0.747 | 0.002 |
Phenylalanine | 0.253 | 0.001 | Phenylalanine | 0.329 | 0.000 | phenylalanine | 0.298 | 0.044 |
Threonine | 0.145 | 0.010 | Arginine | −0.252 | 0.034 | lysine | −0.838 | 0.046 |
Serine | −0.236 | 0.000 | Threonine | 0.190 | 0.049 | |||
Proline | 0.215 | 0.021 | ||||||
G0 | G1 | G2 | ||||||
valine | ||||||||
Independent predictors | β | p | Independent predictors | β | p | Independent predictors | β | p |
Leucine | 0.661 | 0.000 | Leucine | 1.033 | 0.000 | Threonine | −0.616 | 0.021 |
Phenylalanine | −0.400 | 0.000 | Ornithine | −1.227 | 0.029 | |||
Sarcosine | 0.240 | 0.000 | Proline | 1.168 | 0.001 | |||
BMI | 0.799 | 0.008 | Asparagine | 0.810 | 0.017 | |||
4−Hydroxyproline | −0.993 | 0.010 | ||||||
G0 | G1 | G2 | ||||||
leucine | ||||||||
Independent predictors | β | p | Independent predictors | β | p | Independent predictors | β | p |
Phenylalanine | 0.145 | 0.024 | Arginine | 0.294 | 0.011 | (constant) | −8.991 | 0.039 |
Serine | 0.130 | 0.018 | Threonine | −0.206 | 0.028 | Lysine | 0.913 | 0.009 |
Isoleucine | 0.554 | 0.000 | Lysine | 0.427 | 0.013 | Isoleucine | 0.554 | 0.002 |
Valine | 0.292 | 0.000 | Isoleucine | 0.605 | 0.000 | |||
Valine | 0.263 | 0.000 | ||||||
G0 | G1 | G2 | ||||||
phenylalanine | ||||||||
Independent predictors | β | p | Independent predictors | β | p | Independent predictors | β | p |
(Constant) | 6.469 | 0.030 | Proline | −0.376 | 0.014 | Proline | −1.403 | 0.001 |
Methionine | 0.928 | 0.002 | Asparagine | −0.813 | 0.004 | Isoleucine | 0.693 | 0.044 |
Aspartate | −1.147 | 0.044 | Isoleucine | 0.905 | 0.000 | |||
Asparagine | −0.471 | 0.010 | ||||||
Isoleucine | 0.459 | 0.001 | ||||||
Valine | −0.508 | 0.000 | ||||||
Leucine | 0.417 | 0.024 | ||||||
G0 | G1 | G2 | ||||||
tyrosine | ||||||||
Independent predictors | β | p | Independent predictors | β | p | Independent predictors | β | p |
Aminoadipate | 0.699 | 0.006 | Ornithine | 0.764 | 0.000 | |||
Methionine | 0.665 | 0.000 | Glutamate | 0.191 | 0.013 | |||
Aspartate | −0.687 | 0.050 | ||||||
Proline | −0.117 | 0.043 | ||||||
Glutamate | 0.142 | 0.003 | ||||||
Glutamine | 0.267 | 0.000 | ||||||
Age | 0.317 | 0.024 | ||||||
BMI | 0.425 | 0.045 | ||||||
G0 | G1 | G2 | ||||||
glutamate | ||||||||
Independent predictors | β | p | Independent predictors | β | p | Independent predictors | β | p |
Arginine | 0.386 | 0.009 | (constant) | −29.084 | 0.041 | |||
Methionine | −0.856 | 0.045 | Threonine | −1.310 | 0.026 | |||
Aspartate | 3.079 | 0.000 | Lysine | 2.510 | 0.032 | |||
Glutamine | −0.334 | 0.001 | Glutamine | 1.110 | 0.010 | |||
Tyrosine | 0.709 | 0.003 | ||||||
G0 | G1 | G2 | ||||||
glutamine | ||||||||
Independent predictors | β | p | Independent predictors | β | p | Independent predictors | β | p |
Aminoadipate | −1.580 | 0.008 | Sarcosine | 0.177 | 0.033 | Glutamate | 0.285 | 0.010 |
Methionine | −1.233 | 0.005 | Lysine | 0.748 | 0.026 | Aminoadipate | −4.066 | 0.043 |
Aspartate | 1.722 | 0.034 | Tyrosine | 0.695 | 0.013 | Proline | −0.954 | 0.023 |
Asparagine | 0.836 | 0.001 | ||||||
Tyrosine | 1.438 | 0.000 | ||||||
Glutamate | −0.360 | 0.001 |
Amino Acid (nM) | Group | Kruskal Wallis | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
G0 | G1 | G2 | G0 vs. G1 vs. G2 | G0 vs. G1 | G0 vs. G2 | G1 vs. G2 | |||||||
Median | Lower QR | Upper QR | Median | Lower QR | Upper QR | Median | Lower QR | Upper QR | (p Values) | (p Values) | (p Values) | (p Values) | |
Isoleucine | 190.46 | 131.59 | 246.49 | 132.43 | 90.68 | 195.89 | 156.1 | 99 | 156.1 | 0.018 | 0.003 | 0.003 | 0.222 |
Valine | 223.12 | 168.12 | 279.6 | 138.86 | 26.63 | 222.54 | 147.17 | 50.77 | 147.17 | 0.000 | 0.000 | 0.000 | 0.773 |
Leucine | 212.14 | 152.71 | 255.4 | 121.47 | 62.43 | 181.85 | 147.64 | 72.43 | 147.64 | 0.000 | 0.000 | 0.000 | 0.318 |
Phenyl-alanine | 138.36 | 77.98 | 193.73 | 77.53 | 54.68 | 170.11 | 163.6 | 59.78 | 163.6 | 0.042 | 0.058 | 0.058 | 0.041 |
Tyrosine | 50.91 | 40.25 | 63.24 | 37.4 | 20.11 | 59.52 | 23.96 | 16.15 | 23.96 | 0.000 | 0.001 | 0.001 | 0.087 |
Glutamate | 154.43 | 120.42 | 199 | 258.76 | 89.2 | 384.68 | 73.68 | 25.23 | 73.68 | 0.002 | 0.009 | 0.009 | 0.011 |
Glutamine | 230.64 | 186.45 | 337.24 | 162.09 | 100.15 | 288.63 | 132.39 | 102.41 | 132.39 | 0.000 | 0.000 | 0.000 | 0.207 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sriboonvorakul, N.; Pan-Ngum, W.; Poovorawan, K.; Muangnoicharoen, S.; Quinn, L.M.; Tan, B.K. Low Branched Chain Amino Acids and Tyrosine in Thai Patients with Type 2 Diabetes Mellitus Treated with Metformin and Metformin-Sulfonylurea Combination Therapies. J. Clin. Med. 2021, 10, 5424. https://doi.org/10.3390/jcm10225424
Sriboonvorakul N, Pan-Ngum W, Poovorawan K, Muangnoicharoen S, Quinn LM, Tan BK. Low Branched Chain Amino Acids and Tyrosine in Thai Patients with Type 2 Diabetes Mellitus Treated with Metformin and Metformin-Sulfonylurea Combination Therapies. Journal of Clinical Medicine. 2021; 10(22):5424. https://doi.org/10.3390/jcm10225424
Chicago/Turabian StyleSriboonvorakul, Natthida, Wirichada Pan-Ngum, Kittiyod Poovorawan, Sant Muangnoicharoen, Lauren M. Quinn, and Bee K. Tan. 2021. "Low Branched Chain Amino Acids and Tyrosine in Thai Patients with Type 2 Diabetes Mellitus Treated with Metformin and Metformin-Sulfonylurea Combination Therapies" Journal of Clinical Medicine 10, no. 22: 5424. https://doi.org/10.3390/jcm10225424
APA StyleSriboonvorakul, N., Pan-Ngum, W., Poovorawan, K., Muangnoicharoen, S., Quinn, L. M., & Tan, B. K. (2021). Low Branched Chain Amino Acids and Tyrosine in Thai Patients with Type 2 Diabetes Mellitus Treated with Metformin and Metformin-Sulfonylurea Combination Therapies. Journal of Clinical Medicine, 10(22), 5424. https://doi.org/10.3390/jcm10225424