Risk Factors Associated with Refractory Epilepsy in Patients with Tuberous Sclerosis Complex: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
- (a)
- P (patients)—patients with TSC.
- (b)
- I (intervention)—development of DRE.
- (c)
- C (comparator)—we searched for studies comparing patients with refractory and non-refractory epilepsy.
- (d)
- O (outcome)—an association between risk factors and DRE.
- (e)
- S (study design)—only full-text, original studies published in English or Polish.
2.2. Information Sources
2.3. Search Strategy
2.4. Study Selection
2.5. Data Collection Process and Data Items
2.6. Assessing the Risk of Bias in Individual Studies
2.7. Summary Measures
2.8. Data Analysis
3. Results
3.1. Study Selection and Available Literature
3.2. Study Characteristics
3.3. Risk of Bias within Studies
3.4. Results of Included Studies
3.4.1. Definition of Drug-Resistant Epilepsy (DRE)
3.4.2. Association of Genetic Mutation and DRE
3.4.3. Type and Time of Seizures and DRE
3.4.4. Psychiatric Disorders and the Risk of DRE
3.4.5. MRI/CT Changes and DRE
3.4.6. EEG Findings and DRE
3.4.7. Treatment and the Risk of DRE
4. Discussion
Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Holmes, G.L.; Stafstrom, C.E.; Baraban, S.C.; Bertram, E.; Bolton, P.; Brooks-Kayal, A.; Chugani, H.T.; Coulter, D.; Crino, P.; Delanerolle, N.C.; et al. Tuberous Sclerosis Complex and Epilepsy: Recent Developments and Future Challenges. Epilepsia 2007, 48, 617–630. [Google Scholar] [CrossRef] [PubMed]
- Chu-Shore, C.J.; Major, P.; Montenegro, M.; Thiele, E. Cyst-like tubers are associated with TSC2 and epilepsy in tuberous sclerosis complex. Neurology 2009, 72, 1165–1169. [Google Scholar] [CrossRef] [PubMed]
- Kwan, P.; Arzimanoglou, A.; Berg, A.T.; Brodie, M.J.; Allen Hauser, W.; Mathern, G.; Moshé, S.L.; Perucca, E.; Wiebe, S.; French, J. Definition of drug resistant epilepsy: Consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia 2010, 51, 1069–1077. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi-Fakhari, D.; Mann, L.L.; Poryo, M.; Graf, N.; Von Kries, R.; Heinrich, B.; Ebrahimi-Fakhari, D.; Flotats-Bastardas, M.; Gortner, L.; Zemlin, M.; et al. Incidence of tuberous sclerosis and age at first diagnosis: New data and emerging trends from a national, prospective surveillance study. Orphanet J. Rare Dis. 2018, 13, 117. [Google Scholar] [CrossRef]
- Curatolo, P.; Bombardieri, R.; Jozwiak, S. Tuberous Sclerosis. Lancet 2008, 372, 657–668. [Google Scholar] [CrossRef]
- Curatolo, P.; Moavero, R.; de Vries, P.J. Neurological and neuropsychiatric aspects of tuberous sclerosis complex. Lancet Neurol. 2015, 14, 733–745. [Google Scholar] [CrossRef]
- Curatolo, P.; Aronica, E.; Jansen, A.; Jansen, F.; Kotulska, K.; Lagae, L.; Moavero, R.; Jozwiak, S. Early onset epileptic encephalopathy or genetically determined encephalopathy with early onset epilepsy? Lessons learned from TSC. Eur. J. Paediatr. Neurol. 2016, 20, 203–211. [Google Scholar] [CrossRef]
- Franz, D.N. Everolimus: An mTOR inhibitor for the treatment of tuberous sclerosis. Expert Rev. Anticancer Ther. 2011, 11, 1181–1192. [Google Scholar] [CrossRef]
- Northrup, H.; Aronow, M.E.; Bebin, E.M.; Bissler, J.; Darling, T.N.; de Vries, P.J.; Frost, M.D.; Fuchs, Z.; Gosnell, E.S.; Gupta, N.; et al. Updated International Tuberous Sclerosis Complex Diagnostic Criteria and Surveillance and Management Recommendations. Pediatr. Neurol. 2021, 123, 50–66. [Google Scholar] [CrossRef]
- Kotulska, K.; Jurkiewicz, E.; Domańska-Pakieła, D.; Grajkowska, W.; Mandera, M.; Borkowska, J.; Jóźwiak, S. Epilepsy in newborns with tuberous sclerosis complex. Eur. J. Paediatr. Neurol. 2014, 18, 714–721. [Google Scholar] [CrossRef]
- Curatolo, P.; Seri, S.; Verdecchia, M.; Bombardieri, R. Infantile spasms in tuberous sclerosis complex. Brain Dev. 2001, 23, 502–507. [Google Scholar] [CrossRef]
- Jeong, A.; Nakagawa, J.A.; Wong, M. Predictors of Drug-Resistant Epilepsy in Tuberous Sclerosis Complex. J. Child Neurol. 2017, 32, 1092–1098. [Google Scholar] [CrossRef]
- Nabbout, R.; Belousova, E.; Benedik, M.P.; Carter, T.; Cottin, V.; Curatolo, P.; Dahlin, M.; D’amato, L.; D’Augères, G.B.; De Vries, P.J. Epilepsy in tuberous sclerosis complex: Findings from the TOSCA Study. Epilepsia Open 2019, 4, 73–84. [Google Scholar] [CrossRef] [Green Version]
- Hulshof, H.M.; Slot, E.M.; Lequin, M.; Breuillard, D.; Boddaert, N.; Jozwiak, S.; Kotulska, K.; Riney, K.; Feucht, M.; Samueli, S.; et al. Fetal Brain Magnetic Resonance Imaging Findings Predict Neurodevelopment in Children with Tuberous Sclerosis Complex. J. Pediatr. 2021, 233, 156–162.e2. [Google Scholar] [CrossRef]
- Słowińska, M.; Golec, W.; Jóźwiak, S. Prevention of epilepsy in humans—truth or myth? The experience from Sturge-Weber syndrome and Tuberous Sclerosis Complex. Neurol. Neurochir. Polska 2018, 53, 190–193. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Green, S. (Eds.) Assessing Risk of Bias in Non-Randomized Studies. Chapter 13.5.2.3. Available online: http://handbook-5-1.cochrane.org/ (accessed on 23 November 2021).
- Wells, G.A.; Shea, B.; O’Connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses. Available online: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed on 23 November 2021).
- Peron, A.; Au, K.S.; Northrup, H. Genetics, genomics, and genotype–phenotype correlations of TSC: Insights for clinical practice. Am. J. Med. Genet. Part C: Semin. Med. Genet. 2018, 178, 281–290. [Google Scholar] [CrossRef]
- Vignoli, A.; La Briola, F.; Turner, K.; Peron, A.; Vannicola, C.; Chiesa, V.; Zambrelli, E.; Bruschi, F.; Viganò, I.; Canevini, M.P. Epilepsy in adult patients with tuberous sclerosis complex. Acta Neurol. Scand. 2021, 144, 29–40. [Google Scholar] [CrossRef]
- Vignoli, A.; La Briola, F.; Turner, K.; Scornavacca, G.; Chiesa, V.; Zambrelli, E.; Piazzini, A.; Savini, M.N.; Alfano, R.M.; Canevini, M.P. Epilepsy in TSC: Certain etiology does not mean certain prognosis. Epilepsia 2013, 54, 2134–2142. [Google Scholar] [CrossRef]
- Benova, B.; Petrak, B.; Kyncl, M.; Jezdik, P.; Maulisova, A.; Jahodova, A.; Komarek, V.; Krsek, P. Early predictors of clinical and mental outcome in tuberous sclerosis complex: A prospective study. Eur. J. Paediatr. Neurol. 2018, 22, 632–641. [Google Scholar] [CrossRef]
- Chu-Shore, C.J.; Major, P.; Camposano, S.; Muzykewicz, D.; Thiele, E.A. The natural history of epilepsy in tuberous sclerosis complex. Epilepsia 2009, 51, 1236–1241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotulska, K.; Kwiatkowski, D.J.; Curatolo, P.; Weschke, B.; Riney, K.; Jansen, F.; Feucht, M.; Krsek, P.; Nabbout, R.; Jansen, A.C.; et al. Prevention of Epilepsy in Infants with Tuberous Sclerosis Complex in the EPISTOP Trial. Ann. Neurol. 2021, 89, 304–314. [Google Scholar] [CrossRef]
- Savini, M.N.; Mingarelli, A.; Peron, A.; La Briola, F.; Cervi, F.; Alfano, R.M.; Canevini, M.P.; Vignoli, A. Electro-clinical and neurodevelopmental outcome in six children with early diagnosis of tuberous sclerosis complex and role of the genetic background. Ital. J. Pediatr. 2020, 46, 36. [Google Scholar] [CrossRef]
- Mert, G.G.; Altunbaşak, Ş.; Hergüner, Ö.; Incecik, F.; Övetti, H.C.; Özcan, N.; Kuşçu, D.; Ünal, I. Factors affecting epilepsy prognosis in patients with tuberous sclerosis. Child’s Nerv. Syst. 2019, 35, 463–468. [Google Scholar] [CrossRef]
- Monteiro, T.; Garrido, C.; Pina, S.; Chorão, R.; Carrilho, I.; Figueiroa, S.; Santos, M.; Temudo, T. Tuberous Sclerosis: Clinical Characteristics and Their Relationship to Genotype/Phenotype [Esclerosis Tuberosa: Caracterización Clínica e Intento de Correlación Fenotipo/Genotipo]. An. Pediatr. 2014, 81, 289–296. [Google Scholar] [CrossRef]
- Ogórek, B.; EPISTOP Consortium Members; Hamieh, L.; Hulshof, H.M.; Ba, K.L.; Klonowska, K.; Kuijf, H.; Moavero, R.; Hertzberg, C.; Weschke, B.; et al. TSC2 pathogenic variants are predictive of severe clinical manifestations in TSC infants: Results of the EPISTOP study. Genet. Med. 2020, 22, 1489–1497. [Google Scholar] [CrossRef]
- Jozwiak, S.; Słowińska, M.; Borkowska, J.; Sadowski, K.; Łojszczyk, B.; Domańska-Pakieła, D.; Chmielewski, D.; Kaczorowska-Frontczak, M.; Głowacka, J.; Sijko, K.; et al. Preventive Antiepileptic Treatment in Tuberous Sclerosis Complex: A Long-Term, Prospective Trial. Pediatr. Neurol. 2019, 101, 18–25. [Google Scholar] [CrossRef] [Green Version]
- Jóźwiak, S.; Kotulska, K.; Domańska-Pakieła, D.; Łojszczyk, B.; Syczewska, M.; Chmielewski, D.; Dunin-Wąsowicz, D.; Kmiec, T.; Szymkiewicz-Dangel, J.; Kornacka, M.; et al. Antiepileptic treatment before the onset of seizures reduces epilepsy severity and risk of mental retardation in infants with tuberous sclerosis complex. Eur. J. Paediatr. Neurol. 2011, 15, 424–431. [Google Scholar] [CrossRef] [Green Version]
- Winterkorn, E.B.; Pulsifer, M.B.; Thiele, E.A. Cognitive prognosis of patients with tuberous sclerosis complex. Neurology 2007, 68, 62–64. [Google Scholar] [CrossRef]
- Zhang, M.-N.; Zou, L.-P.; Wang, Y.-Y.; Pang, L.-Y.; Ma, S.-F.; Huang, L.-L.; Gao, Y.; Lu, Q.; Franz, D.N. Calcification in cerebral parenchyma affects pharmacoresistant epilepsy in tuberous sclerosis. Seizure 2018, 60, 86–90. [Google Scholar] [CrossRef] [Green Version]
- De Ridder, J.; Verhelle, B.; Vervisch, J.; Lemmens, K.; Kotulska, K.; Moavero, R.; Curatolo, P.; Weschke, B.; Riney, K.; Feucht, M.; et al. Early epileptiform EEG activity in infants with tuberous sclerosis complex predicts epilepsy and neurodevelopmental outcomes. Epilepsia 2021, 62, 1208–1219. [Google Scholar] [CrossRef] [PubMed]
- Wong, M. Mechanisms of Epileptogenesis in Tuberous Sclerosis Complex and Related Malformations of Cortical Development with Abnormal Glioneuronal Proliferation. Epilepsia 2007, 49, 8–21. [Google Scholar] [CrossRef] [PubMed]
- Jansen, F.E.; Braams, O.; van Nieuwenhuizen, O.; Nellist, M.; Vincken, K.L.; Algra, A.; Anbeek, P.; Jennekens-Schinkel, A.; Halley, D.; Zonnenberg, B.A.; et al. Overlapping neurologic and cognitive phenotypes in patients with TSC1 or TSC2 mutations. Neurology 2008, 70, 908–915. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.C.; Shyamsundar, M.M.; Thomas, M.W.; Maynard, J.; Idziaszczyk, S.; Tomkins, S.; Sampson, J.R.; Cheadle, J.P. Comprehensive Mutation Analysis of TSC1 and TSC2—and Phenotypic Correlations in 150 Families with Tuberous Sclerosis. Am. J. Hum. Genet. 1999, 64, 1305–1315. [Google Scholar] [CrossRef] [Green Version]
- Dabora, S.L.; Jozwiak, S.; Franz, D.N.; Roberts, P.S.; Nieto, A.; Chung, J.; Choy, Y.-S.; Reeve, M.P.; Thiele, E.; Egelhoff, J.C.; et al. Mutational Analysis in a Cohort of 224 Tuberous Sclerosis Patients Indicates Increased Severity of TSC2, Compared with TSC1, Disease in Multiple Organs. Am. J. Hum. Genet. 2001, 68, 64–80. [Google Scholar] [CrossRef] [Green Version]
- Bolton, P.F.; Clifford, M.; Tye, C.; Maclean, C.; Humphrey, A.; le Maréchal, K.; Higgins, J.N.P.; Neville, B.G.R.; Rijsdjik, F.; The Tuberous Sclerosis 2000 Study Group; et al. Intellectual abilities in tuberous sclerosis complex: Risk factors and correlates from the Tuberous Sclerosis 2000 Study. Psychol. Med. 2015, 45, 2321–2331. [Google Scholar] [CrossRef]
- Sancak, O.; Nellist, M.; Goedbloed, M.; Elfferich, P.; Wouters, C.; Maat-Kievit, A.; Zonnenberg, B.; Verhoef, S.; Halley, D.; Ouweland, A.V.D. Mutational analysis of the TSC1 and TSC2 genes in a diagnostic setting: Genotype—phenotype correlations and comparison of diagnostic DNA techniques in Tuberous Sclerosis Complex. Eur. J. Hum. Genet. 2005, 13, 731–741. [Google Scholar] [CrossRef] [Green Version]
- Van Eeghen, A.M.; Black, M.; Pulsifer, M.B.; Kwiatkowski, D.J.; Thiele, E. Genotype and cognitive phenotype of patients with tuberous sclerosis complex. Eur. J. Hum. Genet. 2011, 20, 510–515. [Google Scholar] [CrossRef]
- Au, K.S.; Williams, A.T.; Roach, E.S.; Batchelor, L.; Sparagana, S.; Delgado, M.R.; Wheless, J.W.; Baumgartner, J.E.; Roa, B.B.; Wilson, C.M.; et al. Genotype/phenotype correlation in 325 individuals referred for a diagnosis of tuberous sclerosis complex in the United States. Genet. Med. 2007, 9, 88–100. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.-D.; Ma, M.-Y.; Hu, X.-B.; Yan, H.; Zhang, Y.-K.; Yang, H.-X.; Feng, J.-H.; Wang, L.; Zhang, H.; Zhang, B.; et al. Brain Proteomic Profiling in Intractable Epilepsy Caused by TSC1 Truncating Mutations: A Small Sample Study. Front. Neurol. 2020, 11, 475. [Google Scholar] [CrossRef]
- Rosset, C.; Vairo, F.; Bandeira, I.C.; Correia, R.L.; De Goes, F.V.; Da Silva, R.T.B.; Bueno, L.S.M.; Gomes, M.C.S.D.M.; Galvão, H.D.C.R.; Neri, J.I.C.F.; et al. Molecular analysis of TSC1 and TSC2 genes and phenotypic correlations in Brazilian families with tuberous sclerosis. PLoS ONE 2017, 12, e0185713. [Google Scholar] [CrossRef]
- Berg, A.T.; Zelko, F.A.; Levy, S.R.; Testa, F.M. Age at onset of epilepsy, pharmacoresistance, and cognitive outcomes: A prospective cohort study. Neurology 2012, 79, 1384–1391. [Google Scholar] [CrossRef]
- Wu, J.Y.; Goyal, M.; Peters, J.M.; Krueger, D.; Sahin, M.; Northrup, H.; Au, K.S.; O’Kelley, S.; Williams, M.; Pearson, D.A.; et al. Scalp EEG spikes predict impending epilepsy in TSC infants: A longitudinal observational study. Epilepsia 2019, 60, 2428–2436. [Google Scholar] [CrossRef]
- Domańska-Pakieła, D.; Kaczorowska-Frontczak, M.; Jurkiewicz, E.; Kotulska, K.; Dunin-Wasowicz, D.; Jozwiak, S. EEG abnormalities preceding the epilepsy onset in tuberous sclerosis complex patients—A prospective study of 5 patients. Eur. J. Paediatr. Neurol. 2014, 18, 458–468. [Google Scholar] [CrossRef]
- Curatolo, P.; Nabbout, R.; Lagae, L.; Aronica, E.; Ferreira, J.C.; Feucht, M.; Hertzberg, C.; Jansen, A.C.; Jansen, F.; Kotulska, K.; et al. Management of epilepsy associated with tuberous sclerosis complex: Updated clinical recommendations. Eur. J. Paediatr. Neurol. 2018, 22, 738–748. [Google Scholar] [CrossRef]
- Słowińska, M.; Kotulska, K.; Szymańska, S.; Roberds, S.L.; Fladrowski, C.; Jóźwiak, S. Approach to Preventive Epilepsy Treatment in Tuberous Sclerosis Complex and Current Clinical Practice in 23 Countries. Pediatr. Neurol. 2021, 115, 21–27. [Google Scholar] [CrossRef]
- Northrup, H.; Krueger, D.A.; Roberds, S.; Smith, K.; Sampson, J.; Korf, B.; Kwiatkowski, D.J.; Mowat, D.; Nellist, M.; Povey, S.; et al. Tuberous Sclerosis Complex Diagnostic Criteria Update: Recommendations of the 2012 International Tuberous Sclerosis Complex Consensus Conference. Pediatr. Neurol. 2013, 49, 243–254. [Google Scholar] [CrossRef] [Green Version]
- Chung, C.W.; Lawson, J.; Sarkozy, V.; Riney, K.; Wargon, O.; Shand, A.W.; Cooper, S.; King, H.; Kennedy, S.E.; Mowat, D. Early Detection of Tuberous Sclerosis Complex: An Opportunity for Improved Neurodevelopmental Outcome. Pediatr. Neurol. 2017, 76, 20–26. [Google Scholar] [CrossRef]
- Kilinçaslan, A.; Kök, B.E.; Tekturk, P.; Yalcinkaya, C.; Ozkara, Ç.; Yapıcı, Z.; Yapici, Z. Beneficial Effects of Everolimus on Autism and Attention-Deficit/Hyperactivity Disorder Symptoms in a Group of Patients with Tuberous Sclerosis Complex. J. Child Adolesc. Psychopharmacol. 2017, 27, 383–388. [Google Scholar] [CrossRef]
- Mizuguchi, M.; Ikeda, H.; Kagitani-Shimono, K.; Yoshinaga, H.; Suzuki, Y.; Aoki, M.; Endo, M.; Yonemura, M.; Kubota, M. Everolimus for epilepsy and autism spectrum disorder in tuberous sclerosis complex: EXIST-3 substudy in Japan. Brain Dev. 2019, 41, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Lechuga, L.; Franz, D.N. Everolimus as adjunctive therapy for tuberous sclerosis complex-associated partial-onset seizures. Expert Rev. Neurother. 2019, 19, 913–925. [Google Scholar] [CrossRef]
- Saffari, A.; Brösse, I.; Wiemer-Kruel, A.; Wilken, B.; Kreuzaler, P.; Hahn, A.; Bernhard, M.K.; Van Tilburg, C.M.; Hoffmann, G.F.; Gorenflo, M.; et al. Safety and efficacy of mTOR inhibitor treatment in patients with tuberous sclerosis complex under 2 years of age—a multicenter retrospective study. Orphanet J. Rare Dis. 2019, 14, 96. [Google Scholar] [CrossRef]
- Caban, C.; Khan, N.; Hasbani, D.M.; Crino, P.B. Genetics of tuberous sclerosis complex: Implications for clinical practice. Appl. Clin. Genet. 2016, 10, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Monteagudo-Gimeno, E.; Sánchez-González, R.; Rodríguez-Urrutia, A.; Fonseca-Casals, F.; Pérez-Sola, V.; Bulbena-Vilarrasa, A.; Pintor-Pérez, L. Relationship between cognition and psychopathology in drug-resistant epilepsy: A systematic review. Eur. J. Psychiatry 2020, 34, 109–119. [Google Scholar] [CrossRef]
- Bjørnæs, H.; Stabell, K.; Henriksen, O.; Løyning, Y. The effects of refractory epilepsy on intellectual functioning in children and adults. A longitudinal study. Seizure 2001, 10, 250–259. [Google Scholar] [CrossRef] [Green Version]
- Kramer, U.; Fattal, A.; Nevo, Y.; Leitner, Y.; Harel, S. Mental retardation subsequent to refractory partial seizures in infancy. Brain Dev. 2000, 22, 31–34. [Google Scholar] [CrossRef]
- Jansen, F.E.; Vincken, K.L.; van Huffelen, A.C.; van Nieuwenhuizen, O.; Algra, A.; Anbeek, P.; Braams, O.; Nellist, M.; Zonnenberg, B.A.; Jennekens-Schinkel, A.; et al. Cognitive impairment in tuberous sclerosis complex is a multifactorial condition. Neurology 2008, 70, 916–923. [Google Scholar] [CrossRef]
- Samir, H.; Ghaffar, H.A.; Nasr, M. Seizures and intellectual outcome: Clinico-radiological study of 30 Egyptian cases of tuberous sclerosis complex. Eur. J. Paediatr. Neurol. 2011, 15, 131–137. [Google Scholar] [CrossRef]
- Tye, C.; McEwen, F.S.; Liang, H.; Underwood, L.; Woodhouse, E.; Barker, E.D.; Sheerin, F.; Yates, J.R.W.; Bolton, P.F.; Higgins, N.; et al. Long-term cognitive outcomes in tuberous sclerosis complex. Dev. Med. Child Neurol. 2019, 62, 322–329. [Google Scholar] [CrossRef]
- Goh, S.; Kwiatkowski, D.J.; Dorer, D.J.; Thiele, E.A. Infantile spasms and intellectual outcomes in children with tuberous sclerosis complex. Neurology 2005, 65, 235–238. [Google Scholar] [CrossRef] [PubMed]
- Specchio, N.; Pietrafusa, N.; Trivisano, M.; Moavero, R.; De Palma, L.; Ferretti, A.; Vigevano, F.; Curatolo, P. Autism and Epilepsy in Patients With Tuberous Sclerosis Complex. Front. Neurol. 2020, 11, 639. [Google Scholar] [CrossRef] [PubMed]
- Wilbur, C.; Sanguansermsri, C.; Chable, H.; Anghelina, M.; Peinhof, S.; Anderson, K.; Steinbok, P.; Singhal, A.; Datta, A.; Connolly, M.B. Manifestations of Tuberous Sclerosis Complex: The Experience of a Provincial Clinic. Can. J. Neurol. Sci. 2017, 44, 35–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Numis, A.L.; Major, P.; Montenegro, M.A.; Muzykewicz, D.A.; Pulsifer, M.B.; Thiele, E.A. Identification of risk factors for autism spectrum disorders in tuberous sclerosis complex. Neurology 2011, 76, 981–987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruppe, V.; Dilsiz, P.; Reiss, C.; Carlson, C.; Devinsky, O.; Zagzag, D.; Weiner, H.L.; Talos, D.M. Developmental brain abnormalities in tuberous sclerosis complex: A comparative tissue analysis of cortical tubers and perituberal cortex. Epilepsia 2014, 55, 539–550. [Google Scholar] [CrossRef]
- Rocamora, R.; Sánchez-Álvarez, J.C.; Salas-Puig, J. The Relationship Between Sleep and Epilepsy. Neurologist 2008, 14, S35–S43. [Google Scholar] [CrossRef]
- Kotagal, P.; Yardi, N. The Relationship Between Sleep and Epilepsy. Semin. Pediatr. Neurol. 2008, 15, 42–49. [Google Scholar] [CrossRef]
- Winsor, A.A.; Richards, C.; Bissell, S.; Seri, S.; Liew, A.; Bagshaw, A.P. Sleep disruption in children and adolescents with epilepsy: A systematic review and meta-analysis. Sleep Med. Rev. 2021, 57, 101416. [Google Scholar] [CrossRef]
- van Eeghen, A.M.; Numis, A.; Staley, B.A.; Therrien, S.E.; Thibert, R.L.; Thiele, E.A. Characterizing sleep disorders of adults with tuberous sclerosis complex: A questionnaire-based study and review. Epilepsy Behav. 2011, 20, 68–74. [Google Scholar] [CrossRef] [Green Version]
- Zambrelli, E.; Turner, K.; Peron, A.; Leidi, A.; La Briola, F.; Vignoli, A.; Canevini, M.P. Sleep and behavior in children and adolescents with tuberous sclerosis complex. Am. J. Med. Genet. Part A 2021, 185, 1421–1429. [Google Scholar] [CrossRef]
Author, Year | DRE 1 Definition | Participants Included | Inclusion and Exclusion Criteria | Factors Associated with DRE | Factors Not Associated with DRE |
---|---|---|---|---|---|
Benova et al., 2018 [22] | Authors did not provide DRE definition. However, the following variables were considered markers of DRE:
| 22 | Inclusion: pre/perinatal diagnosis of cardiac rhabdomyomas | Higher number of areas with FCD-like 3 features (uncorrected p < 0.0001, FDR 4 < 0.01) ID 5 (uncorrected p < 0.001, FDR < 0.05) TSC2 (uncorrected p < 0.01, FDR < 0.05) | - |
Chu-Shore et al., 2009 [2] | uncontrolled seizures after more than three AED (not including treatment for infantile spasms) | 173 (2 months to 73 years, median 13 years) | - | At least one cyst-like cortical tuber (p = 0.0007) FCD | - |
Chu-Shore et al., 2010 [23] | uncontrolled seizures after at least three first-line AED trials | 291 | - | Infantile spasms (p < 0.0001) | TSC2 vs. TSC1, TSC2 vs. NMI 6 (p = 0.169) |
Hulshof et al., 2021 [14] | ILAE, 2010 7, at 2 years | 41 | Inclusion: Fetal MRI of sufficient quality and available neurologic outcome data at the age of 2 years Exclusion: Epilepsy surgery before the age of 2 years. | - | Fetal (sub)cortical lesion sum score—4.89 vs. 4.41 in DRE and non-refractory epilepsy, respectively (p = 0.62) |
Jeong et al., 2017 [12] | ILAE, 2010 | 1546 (9.6 to 25.5 years, median 16.0 years) 21.4%—TSC1 67.9%—TSC2 10.7%—NMI | Exclusion: if date fields were missing and age of onset and symptom duration could not be calculated | Onset of focal seizures prior to 1 year of age (p < 0.001) TSC2 (TSC2 vs. TSC1 (p < 0.001)) Infantile spasms (p < 0.001) Drug-resistant infantile spasms (p < 0.001) ASD 8 (p < 0.001) Mild to moderate intellectual disability - ID (p < 0.001) and severe to profound ID (p < 0.001) ADHD 9 (p < 0.001) Anxiety (p = 0.02) Periungual fibromas (p = 0.02)—lower odds of DRE | Male vs. female (p = 0.94) Race (p = 0.40) TSC2 vs. NMI (p = 0.84) TSC1 vs. NMI (p = 0.12) Duration of infantile spasms (p = 0.90) Depression (p = 0.08) SEGA 10, SEN 11, cortical tubers, cerebral white matter migration lines Anxiety after adjusting for TSC mutation (p = 0.69) |
Jozwiak et al., 2011 [30] | two or more seizures per month despite the use of two or more AED | 45—total 35—standard treatment (AEDs within a week after the onset of seizures), 14—preventive treatment (AEDs within a week after appearance of active epileptic discharges on consecutive EEG, but before clinical seizures) | Inclusion: Diagnosis of TSC until the end of second month of life, follow-up till the end of 24 month of life Exclusion: children presenting with seizures | Standard treatment vs. preventive treatment (p = 0.021) | - |
Jóźwiak et al., 2019 [29] | two or more seizures a month despite the use of two or more antiepileptic therapies, including AEDs, ketogenic diet, vagus nerve stimulation, and epilepsy surgery | 39—total 25—standard treatment (vigabatrin within a week after first clinical seizures), 14-preventive treatment (vigabatrin introduced within a week after epileptiform discharges, before clinical seizure). | Inclusion: Diagnosis of TSC until the end of second month of life, follow-up till the end of 24 month of life Exclusion: children presenting with seizures | - | Standard treatment vs. preventive treatment (p = 0.5) |
Kotulska et al., 2014 [10] | ILAE, 2010 | 21 | Inclusion: Epilepsy onset within 4 weeks of life. | Presence of FCD | - |
Kotulska et al., 2021 [24] | ILAE, 2010 | 94 (both groups underwent careful EEG surveillance) | Inclusion: TSC diagnosis within first 4 months of life, no history of clinical seizures or epileptiform abnormalities in EEG. | Lower odds of DRE if preventive treatment (p = 0.047) | - |
Mert et al., 2019 [26] | seizures once a month or more for at least 1 year, while using at least two AED at the appropriate dose | 83 | Inclusion: At least 1 year follow-up. | Seizures in the neonatal period Age of onset of seizure less than 2 years of age ASD Status epilepticus Infantile spasms Generalization of EEG finding Tuber count of more than 3 (p < 0.001) IQ < 70 | Sex Consanguinity Family history of TSC Attention-deficit and hyperactivity disorder SEN SEGA White matter dysplasia (p > 0.05) |
Monteiro et al., 2014 [27] | ILAE, 2010 | 35 | - | TSC2 mutation | - |
Ogórek et al., 2020 [28] | ILAE, 2010 | 94 | Inclusion: Age ≤ 4 months, no prior seizures, no clinical seizures on baseline video EEG Exclusion: any condition considered by the investigator to hinder participation in the study or affect primary outcome. | TSC2 (TSC2 vs. TSC1 mutation (p = 0.0245)) | - |
Peron et al., 2018 [19] | - | 240 | Inclusion: 0–80 years of age, conventional molecular analysis available for both TSC1 and TSC2, complete clinical and imaging data available and updated to the latest follow-up encounter. Exclusion: (1) Possible clinical diagnosis or (2) Insufficient clinical records. | - | TSC1 vs. NMI (p = 1) TSC2 vs. NMI (p = 0.7) |
Savini et al., 2020 [25] | - | 6 | - | ID Pathogenic variants in the GAP domain of TSC2 (no p-value, just case reports) | - |
de Ridder et al., 2021 [33] | ILAE, 2010 | 83—total 51—standard (S; clinical and EEG follow-up and start of vigabatrin after seizure onset) 23—preventive (P; follow-up and introduction of vigabatrin once EEG criteria met—focal IED for >10% of the recording time, multifocal IED, generalized IED, or hypsarrhythmia—and before seizure onset) | - | S group: Younger age of first IED 12 on EEG (p = 0.019). Multifocal IED on the first EEG compared to focal IED (OR 4.4, 95% CI 1.1–16, p =0.026). | S group: Younger age of first IED on EEG in a multivariable model (p = 0.429). Multifocal IED on the first EEG compared to focal IED in a multivariable model (p = 0.058). P group: None of the features of the first EEG with epileptiform discharges. |
Vignoli et al., 2013 [21] | ILAE, 2010 | 160 | Inclusion: At least 1 year follow-up | Cognitive impairment (p < 0.05) TSC2 mutation More than 6 cortical tubers SEN or SEGA Lower educational level Psychiatric disorder Earlier mean age of epilepsy onset (3.3 vs. 5.3 years, p > 0.05) Status epilepticus (p < 0.05) Younger age at TSC diagnosis (7.6 vs. 13.2 years, p < 0.05) | Infantile spasms (p > 0.05) Epilepsy onset in the first year of life |
Vignoli et al., 2021 [20] | ILAE, 2010 | 257 (>18 years old) | - | ID (p < 0.001) Psychiatric disorders (p = 0.004) No family history of TSC (p = 0.010) Younger age of seizure (6 vs. 27 months, p = 0.001) Higher rate of spasms (27.1% vs. 48.8%, p = 0.007) Less frequently focal epilepsy (p = 0.029) Lower level of education (p = 0.002) | Age Sex Mutation Tubers SEN |
Winterkorn et al., 2007 [31] | one of the following criteria met: more than three AED, epilepsy surgery was performed, or one or more seizures per day continued despite therapy | 208 | - | Family history of TSC—lower odds of DRE (p = 0.003) low IQ/DQ (p < 0.0005) | - |
Zhang et al., 2018 [32] | ILAE, 2010 | 108 (3 months to 10 years, mean 2.2 years, median 1.4 years) | Inclusion: Taking rapamycin > 1 year | Calcification in the cerebral parenchyma (p < 0.006) | Patient’s age (p = 0.745) Seizure type (p = 0.788) Genetic mutation (p = 0.204) Family history (p = 0.927) |
Author, Year | Study Design | Risk of Bias Assessment | ||||
---|---|---|---|---|---|---|
The Newcastle–Ottawa Scale | The Cochrane Tool | |||||
Selection (0–3) | Comparability (0–2) | Outcome (0–3) | Total (Risk of Bias) | Risk of Bias | ||
Benova et al., 2018 [22] | prospective | 4 | 2 | 2 | 8 (Low) | |
Chu-Shore et al., 2009 [2] | retrospective, comparative | 4 | 2 | 3 | 9 (Low) | |
Chu-Shore et al., 2010 [23] | retrospective comparative | 4 | 2 | 3 | 9 (Low) | |
Hulshof et al., 2021 [14] | retrospective cohort | 4 | 2 | 3 | 9 (Low) | |
Jeong et al., 2017 [12] | retrospective, multicenter, from TSC Natural History Database Project | 4 | 2 | 3 | 9 (Low) | |
Jozwiak et al., 2011 [30] | prospective, nonrandomized clinical trial | 4 | 2 | 3 | 9 (Low) | |
Jóźwiak et al., 2019 [29] | prospective, nonrandomized clinical trial | 3 | 2 | 3 | 8 (Low) | |
Kotulska et al., 2014 [10] | retrospective | 4 | 2 | 3 | 9 (Low) | |
Kotulska et al., 2021 [24] | multicenter, prospective, randomized clinical trial and partially open-label | - | - | - | - | Low |
Mert et al., 2019 [26] | retrospective | 4 | 2 | 3 | 9 (Low) | |
Monteiro et al., 2014 [27] | retrospective | 3 | 0 | 2 | 5 (Moderate) | |
Ogórek et al., 2020 [28] | randomised control and non-randomised open-label | - | - | - | - | Low |
Peron et al., 2018 [19] | retrospective | 4 | 2 | 3 | 9 (Low) | |
Savini et al., 2020 [25] | retrospective | 3 | 1 | 3 | 7 (Low) | |
de Ridder et al., 2021 [33] | multicenter, prospective, randomized | - | - | - | - | Low |
Vignoli et al., 2013 [21] | retrospective | 4 | 2 | 3 | 9 (Low) | |
Vignoli et al., 2021 [20] | retrospective | 4 | 2 | 3 | 9 (Low) | |
Winterkorn et al., 2007 [31] | retrospective | 4 | 2 | 3 | 9 (Low) | |
Zhang et al., 2018 [32] | retrospective | 4 | 2 | 3 | 9 (Low) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miszewska, D.; Sugalska, M.; Jóźwiak, S. Risk Factors Associated with Refractory Epilepsy in Patients with Tuberous Sclerosis Complex: A Systematic Review. J. Clin. Med. 2021, 10, 5495. https://doi.org/10.3390/jcm10235495
Miszewska D, Sugalska M, Jóźwiak S. Risk Factors Associated with Refractory Epilepsy in Patients with Tuberous Sclerosis Complex: A Systematic Review. Journal of Clinical Medicine. 2021; 10(23):5495. https://doi.org/10.3390/jcm10235495
Chicago/Turabian StyleMiszewska, Dominika, Monika Sugalska, and Sergiusz Jóźwiak. 2021. "Risk Factors Associated with Refractory Epilepsy in Patients with Tuberous Sclerosis Complex: A Systematic Review" Journal of Clinical Medicine 10, no. 23: 5495. https://doi.org/10.3390/jcm10235495
APA StyleMiszewska, D., Sugalska, M., & Jóźwiak, S. (2021). Risk Factors Associated with Refractory Epilepsy in Patients with Tuberous Sclerosis Complex: A Systematic Review. Journal of Clinical Medicine, 10(23), 5495. https://doi.org/10.3390/jcm10235495