Postpartum Gray Matter Changes in the Auditory Cortex
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. Direction and Location of the Effect
4.2. Possible Functional Links
4.3. Hemispheric Differences
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sander, K.; Frome, Y.; Scheich, H. FMRI activations of amygdala, cingulate cortex, and auditory cortex by infant laughing and crying. Hum. Brain Mapp. 2007, 28, 1007–1022. [Google Scholar] [CrossRef] [PubMed]
- Young, K.; Parsons, C.; Elmholdt, E.-M.J.; Woolrich, M.W.; van Hartevelt, T.; Stevner, A.B.A.; Stein, A.; Kringelbach, M.L. Evidence for a Caregiving Instinct: Rapid Differentiation of Infant from Adult Vocalizations Using Magnetoencephalography. Cereb. Cortex 2015, 26, 1309–1321. [Google Scholar] [CrossRef]
- Seifritz, E.; Esposito, F.; Neuhoff, J.; Lüthi, A.; Mustovic, H.; Dammann, G.; von Bardeleben, U.; Radue, E.W.; Cirillo, S.; Tedeschi, G.; et al. Differential sex-independent amygdala response to infant crying and laughing in parents versus nonparents. Biol. Psychiatry 2003, 54, 1367–1375. [Google Scholar] [CrossRef]
- Bornstein, M.H.; Putnick, D.L.; Rigo, P.; Esposito, G.; Swain, J.; Suwalsky, J.T.D.; Su, X.; Du, X.; Zhang, K.; Cote, L.R.; et al. Neurobiology of culturally common maternal responses to infant cry. Proc. Natl. Acad. Sci. USA 2017, 114, E9465–E9473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelson, E.; Panksepp, J. Brain Substrates of Infant–Mother Attachment: Contributions of Opioids, Oxytocin, and Norepinephrine. Neurosci. Biobehav. Rev. 1998, 22, 437–452. [Google Scholar] [CrossRef]
- Marlin, B.J.; Mitre, M.; D’Amour, J.A.; Chao, M.; Froemke, R.C. Oxytocin enables maternal behaviour by balancing cortical inhibition. Nat. Cell Biol. 2015, 520, 499–504. [Google Scholar] [CrossRef] [Green Version]
- Luders, E.; Kurth, F.; Gingnell, M.; Engman, J.; Yong, E.-L.; Poromaa, I.S.; Gaser, C. From baby brain to mommy brain: Widespread gray matter gain after giving birth. Cortex 2020, 126, 334–342. [Google Scholar] [CrossRef]
- Kim, P.; Leckman, J.F.; Mayes, L.C.; Feldman, R.; Wang, X.; Swain, J.E. The plasticity of human maternal brain: Longitudinal changes in brain anatomy during the early postpartum period. Behav. Neurosci. 2010, 124, 695–700. [Google Scholar] [CrossRef] [Green Version]
- Morosan, P.; Rademacher, J.; Schleicher, A.; Amunts, K.; Schormann, T.; Zilles, K. Human Primary Auditory Cortex: Cytoarchitectonic Subdivisions and Mapping into a Spatial Reference System. NeuroImage 2001, 13, 684–701. [Google Scholar] [CrossRef] [Green Version]
- Zachlod, D.; Rüttgers, B.; Bludau, S.; Mohlberg, H.; Langner, R.; Zilles, K.; Amunts, K. Four new cytoarchitectonic areas surrounding the primary and early auditory cortex in human brains. Cortex 2020, 128, 1–21. [Google Scholar] [CrossRef]
- Morosan, P.; Schleicher, A.; Amunts, K.; Zilles, K. Multimodal architectonic mapping of human superior temporal gyrus. Z. Anat. Entwickl. 2005, 210, 401–406. [Google Scholar] [CrossRef]
- Binder, J.R. The Wernicke area: Modern evidence and a reinterpretation. Neurology 2015, 85, 2170–2175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luders, E.; Gaser, C.; Gingnell, M.; Engman, J.; Poromaa, I.S.; Kurth, F. Significant increases of the amygdala between immediate and late postpartum: Pronounced effects within the superficial subregion. J. Neurosci. Res. 2021, 99, 2261–2270. [Google Scholar] [CrossRef]
- Kurth, F.; Jancke, L.; Luders, E. Integrating cytoarchitectonic tissue probabilities with MRI-based signal intensities to calculate volumes of interest. In Brain Morphometry: Methods and Clinical Applications; Spalletta, G., Gili, T., Piras, F., Eds.; Springer: New York, NY, USA; pp. 121–129.
- Amunts, K.; Mohlberg, H.; Bludau, S.; Zilles, K. Julich-Brain: A 3D probabilistic atlas of the human brain’s cytoarchitecture. Science 2020, 369, 988–992. [Google Scholar] [CrossRef] [PubMed]
- Benjamini, Y.; Yekutieli, D. The control of the false discovery rate in multiple testing under dependency. Ann. Stat. 2001, 29, 1165–1188. [Google Scholar] [CrossRef]
- Hochberg, Y.; Benjamini, Y. More powerful procedures for multiple significance testing. Stat. Med. 1990, 9, 811–818. [Google Scholar] [CrossRef] [PubMed]
- Oatridge, A.; Holdcroft, A.; Saeed, N.; Hajnal, J.V.; Puri, B.K.; Fusi, L.; Bydder, G.M. Change in Brain Size during and after Pregnancy: Study in Healthy Women and Women with Preeclampsia. Am. J. Neuroradiol. 2002, 23, 19–26. [Google Scholar] [PubMed]
- Luders, E.; Gingnell, M.; Poromaa, I.S.; Engman, J.; Kurth, F.; Gaser, C. Potential Brain Age Reversal after Pregnancy: Younger Brains at 4–6 Weeks Postpartum. Neuroscience 2018, 386, 309–314. [Google Scholar] [CrossRef]
- Lisofsky, N.; Gallinat, J.; Lindenberger, U.; Kühn, S. Postpartal Neural Plasticity of the Maternal Brain: Early Renormalization of Pregnancy-Related Decreases? Neurosignals 2019, 27, 12–24. [Google Scholar] [CrossRef]
- Luders, E.; Gaser, C.; Gingnell, M.; Engman, J.; Poromaa, I.S.; Kurth, F. Gray matter increases within subregions of the hippocampal complex after pregnancy. Brain Imaging Behav. 2021. [Google Scholar] [CrossRef]
- Caras, M.L. Estrogenic modulation of auditory processing: A vertebrate comparison. Front. Neuroendocr. 2013, 34, 285–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Formby, D. Maternal recognition of infant’s cry. Dev. Med. Child Neurol. 1967, 9, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Bouchet, H.; Plat, A.; Levréro, F.; Reby, D.; Patural, H.; Mathevon, N. Baby cry recognition is independent of motherhood but improved by experience and exposure. Proc. R. Soc. B: Boil. Sci. 2020, 287, 20192499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoekzema, E.; Barba-Müller, E.; Pozzobon, C.; Picado, M.; Lucco, F.; García-García, D.; Soliva, J.C.; Tobena, A.; Desco, M.; Crone, E.; et al. Pregnancy leads to long-lasting changes in human brain structure. Nat. Neurosci. 2017, 20, 287–296. [Google Scholar] [CrossRef] [Green Version]
Region | Left Hemisphere | Right Hemisphere | ||||
---|---|---|---|---|---|---|
Cohen’s d | T | q 1 | Cohen’s d | T | q 1 | |
Te1 | 2.9346 | 5.2904 | 0.0002 * | 2.5234 | 4.5491 | 0.0004 * |
Te1.1 | 2.5349 | 4.5699 | 0.0004 * | 2.9113 | 5.2485 | 0.0002 * |
Te1.0 | 1.214 | 2.1885 | 0.0237 * | 1.4394 | 2.595 | 0.0118 * |
Te1.2 | 2.6764 | 4.8249 | 0.0003 * | 2.7033 | 4.8734 | 0.0003 * |
Te2 | 3.6535 | 6.5864 | 0.0001 * | 2.5808 | 4.6527 | 0.0004 * |
Te2.1 | 3.1287 | 5.6404 | 0.0002 * | 3.9615 | 7.1416 | 0.0001 * |
TE2.2 | 3.5196 | 6.3451 | 0.0001 * | 2.1455 | 3.8679 | 0.0012 * |
Te3 | 2.078 | 3.7462 | 0.0014 * | 2.7147 | 4.894 | 0.0003 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luders, E.; Gaser, C.; Gingnell, M.; Engman, J.; Sundström Poromaa, I.; Kurth, F. Postpartum Gray Matter Changes in the Auditory Cortex. J. Clin. Med. 2021, 10, 5616. https://doi.org/10.3390/jcm10235616
Luders E, Gaser C, Gingnell M, Engman J, Sundström Poromaa I, Kurth F. Postpartum Gray Matter Changes in the Auditory Cortex. Journal of Clinical Medicine. 2021; 10(23):5616. https://doi.org/10.3390/jcm10235616
Chicago/Turabian StyleLuders, Eileen, Christian Gaser, Malin Gingnell, Jonas Engman, Inger Sundström Poromaa, and Florian Kurth. 2021. "Postpartum Gray Matter Changes in the Auditory Cortex" Journal of Clinical Medicine 10, no. 23: 5616. https://doi.org/10.3390/jcm10235616
APA StyleLuders, E., Gaser, C., Gingnell, M., Engman, J., Sundström Poromaa, I., & Kurth, F. (2021). Postpartum Gray Matter Changes in the Auditory Cortex. Journal of Clinical Medicine, 10(23), 5616. https://doi.org/10.3390/jcm10235616