Olfactory Dysfunction: A Complication of Diabetes or a Factor That Complicates Glucose Metabolism? A Narrative Review
Abstract
:1. Introduction
2. Search Strategy
3. Olfactory Dysfunction and Diabetes Mellitus
3.1. Olfactory Dysfunction and Type 1 Diabetes
3.2. Olfactory Dysfunction and Diabetic Complications
4. Potential Mechanisms Associating Diabetes with Olfactory Dysfunction
4.1. Olfactory Dysfunction and Macrovascular Diabetic Complications
4.2. Olfactory Dysfunction and Microvascular Diabetic Complications
- (a)
- Diabetic retinopathy
- (b)
- Diabetic nephropathy
- (c)
- Peripheral diabetic neuropathy
4.3. Olfactory Dysfunction and Central Diabetic Neuropathy
4.4. Olfactory Dysfunction and Glucose Metabolism
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hummel, T.; Nordin, S. Olfactory disorders and their consequences for quality of life. Acta Oto-Laryngol. 2005, 125, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, H.J.; Cruickshanks, K.J.; Davis, B. Perspectives on Population-based Epidemiological Studies of Olfactory and Taste Impairment. Ann. N. Y. Acad. Sci. 2009, 1170, 514–530. [Google Scholar] [CrossRef] [PubMed]
- Landis, B.N.; Konnerth, C.G.; Hummel, T. A Study on the Frequency of Olfactory Dysfunction. Laryngoscope 2004, 114, 1764–1769. [Google Scholar] [CrossRef] [PubMed]
- Gouveri, E.; Katotomichelakis, M.; Gouveris, H.; Danielides, V.; Maltezos, E.; Papanas, N. Olfactory Dysfunction in Type 2 Diabetes Mellitus. Angiology 2014, 65, 869–876. [Google Scholar] [CrossRef] [PubMed]
- Le Floch, J.-P.; Le Lièvre, G.; Labroue, M.; Paul, M.; Peynegre, R.; Perlemuter, L. Smell Dysfunction and Related Factors in Diabetic Patients. Diabetes Care 1993, 16, 934–937. [Google Scholar] [CrossRef]
- Weinstock, R.S.; Wright, H.N.; Smith, D.U. Olfactory dysfunction in diabetes mellitus. Physiol. Behav. 1993, 53, 17–21. [Google Scholar] [CrossRef]
- Brady, S.; Lalli, P.; Midha, N.; Chan, A.; Garven, A.; Chan, C.; Toth, C. Presence of Neuropathic Pain May Explain Poor Performances on Olfactory Testing in Diabetes Mellitus Patients. Chem. Senses 2013, 38, 497–507. [Google Scholar] [CrossRef] [Green Version]
- Gascón, C.; Santaolalla, F.; Martínez, A.; Del Rey, A.S. Usefulness of the BAST-24 smell and taste test in the study of diabetic patients: A new approach to the determination of renal function. Acta Oto-Laryngol. 2012, 133, 400–404. [Google Scholar] [CrossRef]
- Várkonyi, T.; Körei, A.; Putz, Z.; Kempler, P. Olfactory Dysfunction in Diabetes. Angiology 2014, 65, 857–860. [Google Scholar] [CrossRef] [Green Version]
- Atsmoni, S.C.; Brener, A.; Roth, Y. Diabetes in the practice of otolaryngology. Diabetes Metab. Syndr. Clin. Res. Rev. 2019, 13, 1141–1150. [Google Scholar] [CrossRef]
- Paulignan, B.; Lacroix, M.-C.; Aimé, P.; Baly, C.; Caillol, M.; Congar, P.; Julliard, A.K.; Tucker, K.; Fadool, D.A. Olfaction Under Metabolic Influences. Chem. Senses 2012, 37, 769–797. [Google Scholar] [CrossRef]
- Hummel, T.; Sekinger, B.; Wolf, S.; Pauli, E.; Kobal, G. ‘Sniffin’ Sticks’: Olfactory Performance Assessed by the Combined Testing of Odour Identification, Odor Discrimination and Olfactory Threshold. Chem. Senses 1997, 22, 39–52. [Google Scholar] [CrossRef] [PubMed]
- Brämerson, A.; Johansson, L.; Ek, L.; Nordin, S.; Bende, M. Prevalence of Olfactory Dysfunction: The Skövde Population-Based Study. Laryngoscope 2004, 114, 733–737. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, K.A.; Pearlson, G.D. Age and Gender but Not Common Chronic Illnesses Predict Odor Identification in Older African Americans. Am. J. Geriatr. Psychiatry 2011, 19, 777–782. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.Y.K.; García-Esquinas, E.; Ko, H.; Tong, M.C.F.; Lin, S.Y. The Association Between Diabetes and Olfactory Function in Adults. Chem. Senses 2017, 43, 59–64. [Google Scholar] [CrossRef] [Green Version]
- Min, J.-Y.; Min, K.-B. Insulin resistance and the increased risk for smell dysfunction in US adults. Laryngoscope 2018, 128, 1992–1996. [Google Scholar] [CrossRef]
- Mehdizadeh Seraj, J.; Mehdizadeh Seraj, S.; Zakeri, H.; Bidar, Z.; Hashemi, S.; Mahdavi Parsa, F.; Yazdani, N. Olfactory dys-function in Iranian diabetic patients. Acta Med. Iran. 2015, 53, 204–206. [Google Scholar]
- Turana, Y.; Lipnicki, D.M.; Handajani, Y.S.; Sani, T.P.; Widayanti, J.R.; Suswanti, I.; Kochan, N.A.; Brodaty, H.; Sachdev, P.S.; For Cohort Studies of Memory in an International Consortium (COSMIC). Factors associated with odour identification in older Indonesian and white Australian adults. Aging Clin. Exp. Res. 2020, 32, 215–221. [Google Scholar] [CrossRef]
- Roh, D.; Lee, D.-H.; Kim, S.W.; Kim, S.W.; Kim, B.-G.; Kim, D.H.; Shin, J.-H. The association between olfactory dysfunction and cardiovascular disease and its risk factors in middle-aged and older adults. Sci. Rep. 2021, 11, 1248. [Google Scholar] [CrossRef]
- Ekström, I.; Larsson, M.; Rizzuto, D.; Fastbom, J.; Bäckman, L.; Laukka, E.J. Predictors of Olfactory Decline in Aging: A Longitudinal Population-Based Study. J. Gerontol. Ser. A Boil. Sci. Med Sci. 2020, 75, 2441–2449. [Google Scholar] [CrossRef]
- Naka, A.; Riedl, M.; Luger, A.; Hummel, T.; Mueller, C.A. Clinical significance of smell and taste disorders in patients with diabetes mellitus. Eur. Arch. Oto-Rhino-Laryngol. 2010, 267, 547–550. [Google Scholar] [CrossRef] [PubMed]
- Duda-Sobczak, A.; Araszkiewicz, A.; Urbas, M.; Borucki, L.; Kulas, K.; Chudzinski, M.; Suwalska, A.; Zozulinska-Ziolkiewicz, D. Impaired olfactory function is related to the presence of neuropathy in adults with type 1 diabetes. Diabetes Vasc. Dis. Res. 2017, 14, 139–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altundag, A.; Ay, S.A.; Hira, S.; Salıhoglu, M.; Baskoy, K.; Denız, F.; Tekelı, H.; Kurt, O.; Yonem, A.; Hummel, T. Olfactory and gustatory functions in patients with non-complicated type 1 diabetes mellitus. Eur. Arch. Oto-Rhino-Laryngol. 2017, 6, 2621–2627. [Google Scholar] [CrossRef] [PubMed]
- Falkowski, B.; Chudziński, M.; Jakubowska, E.; Duda-Sobczak, A. Association of olfactory function with the intensity of self-reported physical activity in adults with type 1 diabetes. Pol. Arch. Intern. Med. 2017, 127, 476–480. [Google Scholar] [CrossRef] [Green Version]
- Yazla, S.; Özmen, S.; Kıyıcı, S.; Yıldız, D.; Haksever, M.; Gencay, S. Evaluation of olfaction and taste function in type 2 diabetic patients with and without peripheral neuropathy. Diabetes/Metab. Res. Rev. 2018, 34, e2973. [Google Scholar] [CrossRef]
- Rasmussen, V.F.; Vestergaard, E.T.; Hejlesen, O.; Andersson, C.U.N.; Cichosz, S.L. Prevalence of taste and smell impairment in adults with diabetes: A cross-sectional analysis of data from the National Health and Nutrition Examination Survey (NHANES). Prim. Care Diabetes 2018, 12, 453–459. [Google Scholar] [CrossRef]
- Yilmaz, Y.; Polat, S.; Yildiz, M.; Turgut, S.B.; Topal, N.; Aydin, B.; Onal, H.; Tekeli, H.; Doty, R.L. Sense of smell and quality of life in children with diabetes mellitus. Int. J. Pediatr. Otorhinolaryngol. 2019, 123, 43–46. [Google Scholar] [CrossRef]
- Kaya, K.S.; Mazı, E.E.; Demir, S.T.; Tetik, F.; Tuna, M.; Turgut, S. Relationship between progression of type 2 diabetes mellitus and olfactory function. Am. J. Otolaryngol. 2020, 41, 102365. [Google Scholar] [CrossRef]
- Siegel, J.K.; Wroblewski, K.E.; McClintock, M.K.; Pinto, J.M. Olfactory dysfunction persists after smoking cessation and signals increased cardiovascular risk. Int. Forum Allergy Rhinol. 2019, 9, 977–985. [Google Scholar] [CrossRef]
- Liu, G.; Zong, G.; Doty, R.L.; Sun, Q. Prevalence and risk factors of taste and smell impairment in a nationwide representative sample of the US population: A cross-sectional study. BMJ Open 2016, 6, e013246. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Zhong, X.; Mai, N.; Peng, Q.; Zhang, M.; Chen, X.; Wu, Z.; Zou, L.; Liang, W.; Ouyang, C.; et al. Interactive Effect of Depression and Cognitive Impairment on Olfactory Identification in Elderly People. J. Alzheimer’s Dis. 2018, 66, 1645–1655. [Google Scholar] [CrossRef]
- Boulton, A.J.; Malik, R.A.; Arezzo, J.C.; Sosenko, J.M. Diabetic Somatic Neuropathies. Diabetes Care 2004, 27, 1458–1486. [Google Scholar] [CrossRef] [Green Version]
- Wakabayashi, T.; Hidaka, R.; Fujimaki, S.; Asashima, M.; Kuwabara, T. Diabetes Impairs Wnt3 Protein-induced Neurogenesis in Olfactory Bulbs via Glutamate Transporter 1 Inhibition. J. Biol. Chem. 2016, 291, 15196–15211. [Google Scholar] [CrossRef] [Green Version]
- Yin, J.; Jing, Y.-H.; Qi, C.-C.; Yuan, L.; Liu, X.-W.; Gao, L.-P. Adult neural stem cell dysfunction in the subventricular zone of the lateral ventricle leads to diabetic olfactory defects. Neural Regen. Res. 2017, 12, 1111–1118. [Google Scholar] [CrossRef]
- Jiménez, A.; Organista-Juárez, D.; Torres-Castro, A.; Guzmán-Ruíz, M.A.; Estudillo, E.; Guevara-Guzmán, R. Olfactory Dysfunction in Diabetic Rats is Associated with miR-146a Overexpression and Inflammation. Neurochem. Res. 2020, 45, 1781–1790. [Google Scholar] [CrossRef]
- Lietzau, G.; Davidsson, W.; Östenson, C.-G.; Chiazza, F.; Nathanson, D.; Pintana, H.; Skogsberg, J.; Klein, T.; Nyström, T.; Darsalia, V.; et al. Type 2 diabetes impairs odour detection, olfactory memory and olfactory neuroplasticity; effects partly reversed by the DPP-4 inhibitor Linagliptin. Acta Neuropathol. Commun. 2018, 6, 14. [Google Scholar] [CrossRef]
- Daulatzai, M.A. Dysfunctional Sensory Modalities, Locus Coeruleus, and Basal Forebrain: Early Determinants that Promote Neuropathogenesis of Cognitive and Memory Decline and Alzheimer’s Disease. Neurotox. Res. 2016, 30, 295–337. [Google Scholar] [CrossRef] [PubMed]
- Cross, D.J.; Anzai, Y.; Petrie, E.C.; Martin, N.; Richards, T.L.; Maravilla, K.R.; Peskind, E.R.; Minoshima, S. Loss of Olfactory Tract Integrity Affects Cortical Metabolism in the Brain and Olfactory Regions in Aging and Mild Cognitive Impairment. J. Nucl. Med. 2013, 54, 1278–1284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yulug, B.; Saatci, O.; Işıklar, A.; Hanoglu, L.; Kilic, U.; Ozansoy, M.; Cankaya, S.; Cankaya, B.; Kilic, E. The Association between HbA1c Levels, Olfactory Memory and Cognition in Normal, Pre-Diabetic and Diabetic Persons. Endocr. Metab. Immune Disord.—Drug Targets 2020, 20, 198–212. [Google Scholar] [CrossRef] [PubMed]
- Sanke, H.; Mita, T.; Yoshii, H.; Someya, Y.; Yamashiro, K.; Shimizu, T.; Ohmura, C.; Onuma, T.; Watada, H. Olfactory dysfunction predicts the development of dementia in older patients with type 2 diabetes. Diabetes Res. Clin. Pr. 2021, 174, 108740. [Google Scholar] [CrossRef]
- Chung, H.J.; Lim, H.S.; Lee, K.; Choi, H.S.; Jeong, J.; Shin, H.A.; Kim, C.-H.; Chang, J.H. Incidence of Olfactory Dysfunction and Associated Factors: A Nationwide Cohort Study From South Korea. Ear Nose Throat J. 2021, 1455613211012906. [Google Scholar] [CrossRef] [PubMed]
- Ni, W.; Zhang, Z.; Zhang, B.; Zhang, W.; Cheng, H.; Miao, Y.; Chen, W.; Liu, J.; Zhu, D.; Bi, Y. Connecting Peripheral to Central Neuropathy: Examination of Nerve Conduction Combined with Olfactory Tests in Patients with Type 2 Diabetes. Diabetes Metab. Syndr. Obes. Targets Ther. 2021, 14, 3097–3107. [Google Scholar] [CrossRef] [PubMed]
- Lushchak, O.V.; Carlsson, M.A.; Nässel, D.R. Food odors trigger an endocrine response that affects food ingestion and metabolism. Cell. Mol. Life Sci. 2015, 72, 3143–3155. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, T.; Tanaka, S.; Bakhshishayan, S.; Kogo, M.; Yamamoto, T. Olfactory stimulation modulates the blood glucose level in rats. Int. J. Med Sci. 2018, 15, 269–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lacroix, M.-C.; Badonnel, K.; Meunier, N.; Tan, F.; Poupon, C.S.-L.; Durieux, D.; Monnerie, R.; Baly, C.; Congar, P.; Salesse, R.; et al. Expression of Insulin System in the Olfactory Epithelium: First Approaches to its Role and Regulation. J. Neuroendocrinol. 2008, 20, 1176–1190. [Google Scholar] [CrossRef] [PubMed]
- Kershaw, J.C.; Mattes, R.D. Nutrition and taste and smell dysfunction. World J. Otorhinolaryngol.—Head Neck Surg. 2018, 4, 3–10. [Google Scholar] [CrossRef]
- Syed, Q.; Hendler, K.T.; Koncilja, K. The Impact of Aging and Medical Status on Dysgeusia. Am. J. Med. 2016, 129, 753. [Google Scholar] [CrossRef] [Green Version]
- Schubert, C.R.; Cruickshanks, K.J.; Fischer, M.E.; Huang, G.-H.; Klein, B.E.K.; Klein, R.; Pankow, J.; Nondahl, D.M. Olfactory Impairment in an Adult Population: The Beaver Dam Offspring Study. Chem. Senses 2011, 37, 325–334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mattes, R.D.; Cowart, B.J. Dietary assessment of patients with chemosensotyr disorders. J. Am. Diet. Assoc. 1994, 94, 50–56. [Google Scholar] [CrossRef]
- Cameron, J.D.; Goldfield, G.S.; Doucet, É. Fasting for 24 h improves nasal chemosensory performance and food palatability in a related manner. Appetite 2012, 58, 978–981. [Google Scholar] [CrossRef]
- Fernández-Aranda, F.; Agüera, Z.; Fernández-García, J.C.; Garrido-Sanchez, L.; Alcaide-Torres, J.; Tinahones, F.J.; Giner-Bartolomé, C.; Baños, R.M.; Botella, C.; Cebolla, A.; et al. Smell—Taste dysfunctions in extreme weight/eating conditions: Analysis of hormonal and psychological interactions. Endocrine 2016, 51, 256–267. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, B.; Wang, X.; Zhang, X.; Yang, Q.X.; Qing, Z.; Zhang, W.; Zhu, D.; Bi, Y. Olfactory Dysfunction Mediates Adiposity in Cognitive Impairment of Type 2 Diabetes: Insights From Clinical and Functional Neuroimaging Studies. Diabetes Care 2019, 42, 1274–1283. [Google Scholar] [CrossRef]
- Roxbury, C.R.; Bernstein, I.A.; Lin, S.Y.; Rowan, N.R. Association Between Chemosensory Dysfunction and Diet Quality in United States Adults. Am. J. Rhinol. Allergy 2021. [Google Scholar] [CrossRef] [PubMed]
- Kong, I.G.; Kim, S.Y.; Kim, M.-S.; Park, B.; Kim, J.-H.; Choi, H.G. Olfactory Dysfunction Is Associated with the Intake of Macronutrients in Korean Adults. PLoS ONE 2016, 11, e0164495. [Google Scholar] [CrossRef]
- Thiebaud, N.; Johnson, M.C.; Butler, J.L.; Bell, G.A.; Ferguson, K.L.; Fadool, A.R.; Fadool, J.C.; Gale, A.M.; Gale, D.S.; Fadool, D.A. Hyperlipidemic Diet Causes Loss of Olfactory Sensory Neurons, Reduces Olfactory Discrimination, and Disrupts Odor-Reversal Learning. J. Neurosci. 2014, 34, 6970–6984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poessel, M.; Freiherr, J.; Wiencke, K.; Villringer, A.; Horstmann, A. Insulin Resistance Is Associated with Reduced Food Odor Sensitivity across a Wide Range of Body Weights. Nutrients 2020, 12, 2201. [Google Scholar] [CrossRef]
- Riera, C.E.; Tsaousidou, E.; Halloran, J.; Follett, P.; Hahn, O.; Pereira, M.M.; Ruud, L.E.; Alber, J.; Tharp, K.; Anderson, C.M.; et al. The Sense of Smell Impacts Metabolic Health and Obesity. Cell Metab. 2017, 26, 198–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melis, M.; Pintus, S.; Mastinu, M.; Fantola, G.; Moroni, R.; Pepino, M.Y.; Barbarossa, I.T. Changes of Taste, Smell and Eating Behavior in Patients Undergoing Bariatric Surgery: Associations with PROP Phenotypes and Polymorphisms in the Odorant-Binding Protein OBPIIa and CD36 Receptor Genes. Nutrients 2021, 13, 250. [Google Scholar] [CrossRef]
- Mutlu, A.S.; Gao, S.M.; Zhang, H.; Wang, M.C. Olfactory specificity regulates lipid metabolism through neuroendocrine signaling in Caenorhabditis elegans. Nat. Commun. 2020, 11, 1450. [Google Scholar] [CrossRef] [Green Version]
Study/(First Author, Year) | Sample Size DM/C | Type of DM | Method for Assessment of OD | Association of OD with DM | OD Associated with Diabetic Complications |
---|---|---|---|---|---|
Le Floch et al., 1993 [5] | 60 DM/30 C | T2DM and T1DM | Smell recognition score | Yes | Nephropathy, neuropathy |
Weinstock et al., 1993 [6] | 111 DM | 73% T2DM, 27% T1DM | Odorant confusion matrix | Macrovascular disease (CAD, PAD) | |
Brämerson et al., 2004 [13] | 1387 adults random sample (DM+C) | DM self-reported | Scandinavian odour identification test (16 odours) | DM a risk factor for anosmia | |
Naka et al., 2010 [21] | 76 DM/29 C | T2DM and T1DM | 5-item smell identification test | Yes | |
Hawkins et al., 2011 [14] | 63 DM/225 C older adults | T2DM | Brief smell identification test | No | |
Brady et al., 2013 [7] | 51 DM/19 C | T2DM | Sniffin’ Sticks (TDI) | Yes | Neuropathy with neuropathic pain |
Gascón et al., 2013 [8] | 61 DM | Unspecified | Barcelona smell-taste test-24 | Nephropathy | |
Gouveri et al., 2014 [4] | 119 DM/35 C | T2DM | Sniffin’ Sticks (TDI) | Yes | Retinopathy, neuropathy |
Mehdizadeh Seraj et al., 2015 [17] | 30 DM/30 C | Unspecified | Absorbent perfumer’s paper strips (8 concentrations) | Yes | No |
Duda-Sobczak et al., 2017 [22] | 106 DM/30 C | T1DM | Sniffin’ Sticks | Yes | Retinopathy, neuropathy |
Altundag et al., 2017 [23] | 39 DM/31 C | T1DM without complications | Sniffin’ Sticks | No | |
Falkowski et al., 2017 [24] | 120 DM/22 C | T1DM | Sniffin’ Sticks | Yes | |
Chan et al., 2017 [15] | 3151 participants (DM +C) | Unspecified | Self-reported and 8-item pocket smell test | No | |
Yazla, 2018 [25] | 60 DM/30 C | T2DM | Sniffin’ Sticks, butanol- and sucrose-thresholds | Yes | No difference among DM with and without neuropathy |
Rasmussen et al., 2018 [26] | 428 DM/2776 C | 8 odours pocket smell test | Yes | No | |
Yilmaz et al., 2019 [27] | 30 DM/30 C | T1DM- children | Paediatric smell wheel | Lower scores in DM but within normal range | |
Ekström et al., 2020 [20] | 1780 older adults, 7.6% DM | T2DM (only 5 with T1DM) | Sniffin’ Sticks (16-item identification) | Yes | |
Turana et al., 2020 [18] | Two cohorts: 470 Indonesians, 819 white Australians | Unspecified | 10-item identification test and 12-item Brief Smell | No Yes | |
Kaya et al., 2020 [28] | 85 DM | T2DM | Connecticut Chemosensory clinical research centre olfactory test | No |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gouveri, E.; Papanas, N. Olfactory Dysfunction: A Complication of Diabetes or a Factor That Complicates Glucose Metabolism? A Narrative Review. J. Clin. Med. 2021, 10, 5637. https://doi.org/10.3390/jcm10235637
Gouveri E, Papanas N. Olfactory Dysfunction: A Complication of Diabetes or a Factor That Complicates Glucose Metabolism? A Narrative Review. Journal of Clinical Medicine. 2021; 10(23):5637. https://doi.org/10.3390/jcm10235637
Chicago/Turabian StyleGouveri, Evanthia, and Nikolaos Papanas. 2021. "Olfactory Dysfunction: A Complication of Diabetes or a Factor That Complicates Glucose Metabolism? A Narrative Review" Journal of Clinical Medicine 10, no. 23: 5637. https://doi.org/10.3390/jcm10235637
APA StyleGouveri, E., & Papanas, N. (2021). Olfactory Dysfunction: A Complication of Diabetes or a Factor That Complicates Glucose Metabolism? A Narrative Review. Journal of Clinical Medicine, 10(23), 5637. https://doi.org/10.3390/jcm10235637