Effects on Lung Gas Volume, Respiratory Mechanics and Gas Exchange of a Closed-Circuit Suctioning System during Volume- and Pressure-Controlled Ventilation in ARDS Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Study Protocol
2.3. Data Analysis
2.4. Statistical Analysis
3. Results
3.1. Voume-Controlled Ventilation
3.2. Pressure-Controlled Ventilation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Kalil, A.C.; Metersky, M.L.; Klompas, M.; Muscedere, J.; Sweeney, D.A.; Palmer, L.B.; Napolitano, L.M.; O’Grady, N.P.; Bartlett, J.G.; Carratalà, J.; et al. Management of Adults with Hospital-acquired and Ventilator-associated Pneumonia: 2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin. Infect. Dis. 2016, 63, e61–e111. [Google Scholar] [CrossRef] [PubMed]
- Gattinoni, L.; Carlesso, E.; Valenza, F.; Chiumello, D.; Caspani, M.L. Acute respiratory distress syndrome, the critical care paradigm: What we learned and what we forgot. Curr. Opin. Crit. Care 2004, 10, 272–278. [Google Scholar] [CrossRef]
- AARC. AARC Clinical Practice Guidelines. Endotracheal suctioning of mechanically ventilated patients with artificial airways 2010. Respir. Care 2010, 55, 758–764. [Google Scholar]
- Caramez, M.P.; Schettino, G.; Suchodolski, K.; Nishida, T.; Harris, R.S.; Malhotra, A.; Kacmarek, R.M. The impact of endotracheal suctioning on gas exchange and hemodynamics during lung-protective ventilation in acute respiratory distress syndrome. Respir. Care 2006, 51, 497–502. [Google Scholar] [PubMed]
- Leur, J.P.; Zwaveling, J.H.; Loef, B.G.; Schans, C.P. Endotracheal suctioning versus minimally invasive airway suctioning in intubated patients: A prospective randomised controlled trial. Intensive Care Med. 2003, 29, 426–432. [Google Scholar] [CrossRef] [PubMed]
- Maggiore, S.M.; Lellouche, F.; Pignataro, C.; Girou, E.; Maitre, B.; Richard, J.C.M.; Lemaire, F.; Brun-Buisson, C.; Brochard, L. Decreasing the adverse effects of endotracheal suctioning during mechanical ventilation by changing practice. Respir. Care 2013, 58, 1588–1597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solà, I.; Benito, S. Closed tracheal susction systems versus open tracheal suction for mechanically ventilated adult patients. Cochrane Database Syst. Rev. 2007, 2007, CD004581. [Google Scholar] [CrossRef]
- Taggart, J.A.; Dorinsky, N.L.; Sheahan, J.S. Airway pressures during closed system suctioning. Heart Lung 1988, 17, 536–542. [Google Scholar]
- Fernández, M.D.M.; Piacentini, E.; Blanch, L.; Fernández, R. Changes in lung volume with three systems of endotracheal suctioning with and without pre-oxygenation in patients with mild-to-moderate lung failure. Intensive Care Med. 2004, 30, 2210–2215. [Google Scholar] [CrossRef]
- Heinze, H.; Sedemund-Adib, B.; Heringlake, M.; Gosch, U.W.; Eichler, W. Functional residual capacity changes after different endotracheal suctioning methods. Anesth. Analg. 2008, 107, 941–944. [Google Scholar] [CrossRef]
- Corley, A.; Spooner, A.J.; Barnett, A.G.; Caruana, L.R.; Hammond, N.E.; Fraser, J.F. End-expiratory lung volume recovers more slowly after closed endotracheal suctioning than after open suctioning: A randomized crossover study. J. Crit. Care 2012, 27, 742.e1–742.e7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dyhr, T.; Bonde, J.; Larsson, A. Lung recruitment manoeuvres are effective in regaining lung volume and oxygenation after open endotracheal suctioning in acute respiratory distress syndrome. Crit. Care 2003, 7, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Lasocki, S.; Lu, Q.; Soler, J.A.; Fouillat, D.; Remerand, F.; Rouby, J.-J. Open- and Closed-Circuit Endotracheal Suctioning in Acute Lung Injury. Anesthesiology 2006, 50, 223–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almgren, B.; Wickerts, C.J.; Heinonen, E.; Högman, M. Side effects of endotracheal suction in pressure- and volume-controlled ventilation. Chest 2004, 125, 1077–1080. [Google Scholar] [CrossRef] [Green Version]
- Lindgren, S.; Odenstedt, H.; Olegård, C.; Söndergaard, S.; Lundin, S.; Stenqvist, O. Regional lung derecruitment after endotracheal suction during volume- or pressure-controlled ventilation: A study using electric impedance tomography. Intensive Care Med. 2007, 33, 172–180. [Google Scholar] [CrossRef] [Green Version]
- Ranieri, V.M.; Rubenfeld, G.D.; Thompson, B.T.; Ferguson, N.D.; Caldwell, E.; Fan, E.; Camporota, L.; Slutsky, A.S. Acute respiratory distress syndrome: The Berlin definition. JAMA—J. Am. Med. Assoc. 2012, 307, 2526–2533. [Google Scholar] [CrossRef]
- Gattinoni, L.; Caironi, P.; Cressoni, M.; Chiumello, D.; Ranieri, V.M.; Quintel, M.; Russo, S. Lung Recruitment in Patients with ARDS. N. Engl. J. Med. 2006, 354, 1775–1786. [Google Scholar] [CrossRef]
- Bachmann, M.C.; Morais, C.; Bugedo, G.; Bruhn, A.; Morales, A.; Borges, J.B.; Costa, E.; Retamal, J. Electrical impedance tomography in acute respiratory distress syndrome. Crit. Care 2018, 22, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Silva, P.L.; Rocco, P.R.M. The basics of respiratory mechanics: Ventilator-derived parameters. Ann. Transl. Med. 2018, 6, 376. [Google Scholar] [CrossRef]
- Cereda, M.; Villa, F.; Colombo, E.; Greco, G.; Nacoti, M.; Pesenti, A. Closed system endotracheal suctioning maintains lung volume during volume-controlled mechanical ventilation. Intensive Care Med. 2001, 27, 648–654. [Google Scholar] [CrossRef]
- Maggiore, S.M.; Lellouche, F.; Pigeot, J.; Taille, S.; Deye, N.; Durrmeyer, X.; Richard, J.C.; Mancebo, J.; Lemaire, F.; Brochard, L. Prevention of endotracheal suctioning-induced alveolar derecruitment in acute lung injury. Am. J. Respir. Crit. Care Med. 2003, 167, 1215–1224. [Google Scholar] [CrossRef] [PubMed]
- Stenqvist, O.; Lindgren, S.; Kárason, S.; Söndergaard, S.; Lundin, S. Warning! Suctioning. A lung model evaluation of closed suctioning systems. Acta Anaesthesiol. Scand. 2001, 45, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Lindgren, S.; Almgren, B.; Högman, M.; Lethvall, S.; Houltz, E.; Lundin, S.; Stenqvist, O. Effectiveness and side effects of closed and open suctioning: An experimental evaluation. Intensive Care Med. 2004, 30, 1630–1637. [Google Scholar] [CrossRef] [PubMed]
Characteristics | n = 18 |
---|---|
Age, years | 68 ± 16 |
Male sex, % (n) | 61 (11) |
Weight, kg | 73 ± 13 |
Height, cm | 170 (163–178) |
BMI, kg/m2 | 25 ± 4 |
Pulmonary ARDS, % (n) | 71 (10) |
Extraulmonary ARDS, % (n) | 29 (8) |
Mild–moderate ARDS, % (n) | 62 (11) |
Moderate–severe ARDS, % (n) | 38 (7) |
Time from ICU admission to study day, days | 2 (2–3) |
Tube diameter, mm | 7.5 (7.5–8.0) |
Tidal volume, mL | 477 ± 64 |
Tidal volume per ideal body weight, mL/kg | 7.2 ± 0.4 |
Respiratory rate, bpm | 17 ± 3 |
Minute ventilation, L/min | 8.0 ± 2.0 |
Peak pressure, cmH2O | 30 ± 6 |
Plateau pressure, cmH2O | 21 ± 4 |
PEEP, cmH2O | 10 ± 3 |
Driving pressure, cmH2O | 11 (8–13) |
Respiratory system elastance, cmH2O/L | 21 (18–26) |
PaCO2, mmHg | 45 (41–47) |
PaO2, mmHg | 77 ± 8 |
PaO2/FiO2 | 161 ± 36 |
Characteristics | Before Suctioning | 5 Min after Suctioning | 15 Min after Suctioning | 30 Min after Suctioning | p-Value |
---|---|---|---|---|---|
Tidal volume, mL | 489 ± 60 | 489 ± 60 | 489 ± 60 | 489 ± 60 | ------- |
Respiratory rate, bpm | 17 ± 3 | 17 ± 3 | 17 ± 3 | 17 ± 3 | ------- |
Minute ventilation, L/min | 8.2 ± 1.7 | 8.2 ± 1.7 | 8.2 ± 1.7 | 8.2 ± 1.7 | ------- |
Peak pressure, cmH2O | 29 ± 5 | 30 ± 5 | 29 ± 6 | 29 ± 5 | 0.505 |
Plateau pressure, cmH2O | 22 ± 4 | 22 ± 4 | 22 ± 4 | 22 ± 4 | 0.699 |
Driving pressure, cmH2O | 11 (8–13) | 11 (8–13) | 11 (8–12) | 11 (8–13) | 0.607 |
Mean airway pressure, cmH2O | 15 (14–16) | 14 (14–17) | 14 (14–16) | 14 (14–16) | 0.758 |
Respiratory system elastance, cmH2O/L | 22 (17–26) | 22 (16–27) | 21 (16–27) | 22 (17–27) | 0.531 |
Mechanical power, J/min | 15.5 ± 5.4 | 15.9 ± 5.3 | 15.6 ± 5.4 | 15.9 ± 5.2 | 0.403 |
PaCO2, mmHg | 47 ± 9 | 49 ± 10 | 49 ± 10 | 50 ± 11 | 0.091 |
Ventilatory Ratio | 1.4 (1.2–2.0) | 1.6 (1.3–2.0) | 1.6 (1.3–2.0) | 1.6 (1.3–1.9) | 0.085 |
PaO2, mmHg | 77 (71–84) | 78 (73–91) | 80 (74–93) * | 77 (75–88) | 0.020 |
PaO2/ FiO2, mmHg | 168 (132–184) | 170 (134–189) | 177 (140–196) * | 178 (134–198) | 0.011 |
EELV variations from baseline, mL | −31 ± 23 | −32 ± 16 | −31 ± 22 | 0.876 |
Characteristics | Before Suctioning | 5 Min after Suctioning | 15 Min after Suctioning | 30 Min after Suctioning | p-Value |
---|---|---|---|---|---|
Tidal volume, mL | 480 ± 60 | 480 ± 65 | 485 ± 56 | 485 ± 51 | 0.680 |
Respiratory rate, bpm | 17 ± 3 | 17 ± 3 | 17 ± 3 | 17 ± 3 | ------- |
Minute ventilation, L/min | 8.0 ± 1.7 | 8.0 ± 1.5 | 8.1 ± 1.6 | 8.1 ± 1.6 | 0.928 |
Δ Pressure over PEEP, cmH2O | 17 ± 4 | 17 ± 4 | 17 ± 4 | 17 ± 4 | ------- |
Mean airway pressure, cmH2O | 15 ± 3 | 15 ± 3 | 15 ± 3 | 15 ± 3 | 0.820 |
Respiratory system elastance, cmH2O/L | 24 ± 7 | 24 ± 8 | 24 ± 8 | 23 ± 7 | 0.493 |
Mechanical power, J/min | 22.0 ± 5.6 | 21.8 ± 5.7 | 22.4 ± 5.7 | 22.5 ± 5.8 | 0.408 |
PaCO2, mmHg | 45 (40–51] | 48 (43–52) * | 47 (42–50) | 47 (42–54) * | 0.004 |
Ventilatory Ratio | 1.4 (1.2–2.0] | 1.6 (1.3–2.0) | 1.6 (1.3–2.0) | 1.6 (1.3–1.9) | 0.078 |
PaO2, mmHg | 84 (76–93] | 79 (74–9) | 80 (75–93) | 79 (76–91) | 0.419 |
PaO2/ FiO2, mmHg | 174 ± 38 | 172 ± 43 | 171 ± 36 | 171 ± 36 | 0.410 |
EELV variations from baseline, mL | −35 (−46–−26) | −27 (−36–−23) | −35 (−43–−21) | 0.908 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiumello, D.; Bolgiaghi, L.; Formenti, P.; Pozzi, T.; Lucenteforte, M.; Coppola, S. Effects on Lung Gas Volume, Respiratory Mechanics and Gas Exchange of a Closed-Circuit Suctioning System during Volume- and Pressure-Controlled Ventilation in ARDS Patients. J. Clin. Med. 2021, 10, 5657. https://doi.org/10.3390/jcm10235657
Chiumello D, Bolgiaghi L, Formenti P, Pozzi T, Lucenteforte M, Coppola S. Effects on Lung Gas Volume, Respiratory Mechanics and Gas Exchange of a Closed-Circuit Suctioning System during Volume- and Pressure-Controlled Ventilation in ARDS Patients. Journal of Clinical Medicine. 2021; 10(23):5657. https://doi.org/10.3390/jcm10235657
Chicago/Turabian StyleChiumello, Davide, Luca Bolgiaghi, Paolo Formenti, Tommaso Pozzi, Manuela Lucenteforte, and Silvia Coppola. 2021. "Effects on Lung Gas Volume, Respiratory Mechanics and Gas Exchange of a Closed-Circuit Suctioning System during Volume- and Pressure-Controlled Ventilation in ARDS Patients" Journal of Clinical Medicine 10, no. 23: 5657. https://doi.org/10.3390/jcm10235657
APA StyleChiumello, D., Bolgiaghi, L., Formenti, P., Pozzi, T., Lucenteforte, M., & Coppola, S. (2021). Effects on Lung Gas Volume, Respiratory Mechanics and Gas Exchange of a Closed-Circuit Suctioning System during Volume- and Pressure-Controlled Ventilation in ARDS Patients. Journal of Clinical Medicine, 10(23), 5657. https://doi.org/10.3390/jcm10235657