Beta-Endorphin and Oxytocin in Patients with Alcohol Use Disorder and Comorbid Depression
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Participants
2.3. Measurements
2.3.1. Phenotype Measures
2.3.2. Biomarkers
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Loonen, A.J.M.; Soudijn, W. Peptides with a dual function: Central neuroregulators and gut hormones. J. Physiol. 1979, 75, 831–850. [Google Scholar]
- Terenius, L. From opiate pharmacology to opioid peptide physiology. Ups. J. Med. Sci. 2000, 105, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Adan, R.A.; Gispen, W.H. Melanocortins and the brain: From effects via receptors to drug targets. Eur. J. Pharmacol. 2000, 405, 13–24. [Google Scholar] [CrossRef]
- De Kloet, E.R.; Palkovits, M.; Mezey, E. Opiocortin peptides: Localization, source and avenues of transport. Pharmacol. Ther. 1981, 12, 321–351. [Google Scholar] [CrossRef]
- Tranchand-Bunel, D.; Delbende, C.; Guy, J.; Jegou, S.; Jenks, B.J.; Mocaër, E.; Pelletier, G.; Vaudry, H. Les systèmes neuronaux à proopiomélanocortine. Rev. Neurol. 1987, 143, 471–489. [Google Scholar]
- Konturek, P.C.; Konturek, J.W.; Cześnikiewicz-Guzik, M.; Brzozowski, T.; Sito, E.; Konturek, S.J. Neuro-hormonal control of food intake: Basic mechanisms and clinical implications. J. Physiol. Pharmacol. 2005, 56, 5–25. [Google Scholar] [PubMed]
- Marinelli, P.W.; Quirion, R.; Gianoulakis, C. An in vivo profile of beta-endorphin release in the arcuate nucleus and nucleus accumbens following exposure to stress or alcohol. Neuroscience 2004, 127, 777–784. [Google Scholar] [CrossRef]
- Roth-Deri, I.; Green-Sadan, T.; Yadid, G. Beta-endorphin and drug-induced reward and reinforcement. Prog. Neurobiol. 2008, 86, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Van Ree, J.M.; Niesink, R.J.; Van Wolfswinkel, L.; Ramsey, N.F.; Kornet, M.M.; Van Furth, W.R.; Vanderschuren, L.J.; Gerrits, M.A.; Van den Berg, C.L. Endogenous opioids and reward. Eur. J. Pharmacol. 2000, 405, 89–101. [Google Scholar] [CrossRef]
- Grimmelikhuijzen, C.J.; Hauser, F. Mini-review: The evolution of neuropeptide signaling. Regul. Pept. 2012, 177, S6–S9. [Google Scholar] [CrossRef]
- Odekunle, E.A.; Elphick, M.R. Comparative and Evolutionary Physiology of Vasopressin/ Oxytocin-Type Neuropeptide Signaling in Invertebrates. Front. Endocrinol. 2020, 11, 225. [Google Scholar] [CrossRef]
- Dores, R.M.; Baron, A.J. Evolution of POMC: Origin, phylogeny, posttranslational processing, and the melanocortins. Ann. N. Y. Acad. Sci. 2011, 1220, 34–48. [Google Scholar] [CrossRef] [PubMed]
- Malagoli, D.; Accorsi, A.; Ottaviani, E. The evolution of pro-opiomelanocortin: Looking for the invertebrate fingerprints. Peptides 2011, 32, 2137–2140. [Google Scholar] [CrossRef]
- Stoop, R.; Hegoburu, C.; van den Burg, E. New opportunities in vasopressin and oxytocin research: A perspective from the amygdala. Annu. Rev. Neurosci. 2015, 38, 369–388. [Google Scholar] [CrossRef] [PubMed]
- Grinevich, V.; Neumann, I.D. Brain oxytocin: How puzzle stones from animal studies translate into psychiatry. Mol. Psychiatry 2021, 26, 265–279. [Google Scholar] [CrossRef]
- Grinevich, V.; Ludwig, M. The multiple faces of the oxytocin and vasopressin systems in the brain. J. Neuroendocrinol. 2021, e13004. [Google Scholar] [CrossRef] [PubMed]
- Neumann, I.D. Brain oxytocin: A key regulator of emotional and social behaviours in both females and males. J. Neuroendocrinol. 2008, 20, 858–865. [Google Scholar] [CrossRef]
- Lee, H.J.; Macbeth, A.H.; Pagani, J.H.; Young, W.S., III. Oxytocin: The great facilitator of life. Prog. Neurobiol. 2009, 88, 127–151. [Google Scholar] [CrossRef] [Green Version]
- Neumann, I.D. Landgraf, R. Balance of brain oxytocin and vasopressin: Implications for anxiety, depression, and social behaviors. Trends Neurosci. 2012, 35, 649–659. [Google Scholar] [CrossRef] [PubMed]
- Carson, D.S.; Guastella, A.J.; Taylor, E.R.; McGregor, I.S. A brief history of oxytocin and its role in modulating psychostimulant effects. J. Psychopharmacol. 2013, 27, 231–247. [Google Scholar] [CrossRef] [PubMed]
- Kerem, L.; Lawson, E.A. The Effects of Oxytocin on Appetite Regulation, Food Intake and Metabolism in Humans. Int. J. Mol. Sci. 2021, 22, 7737. [Google Scholar] [CrossRef] [PubMed]
- Kovács, G.L.; Sarnyai, Z.; Szabó, G. Oxytocin and addiction: A review. Psychoneuroendocrinology 1998, 23, 945–962. [Google Scholar] [CrossRef]
- Baskerville, T.A.; Douglas, A.J. Dopamine and oxytocin interactions underlying behaviors: Potential contributions to behavioral disorders. CNS Neurosci. Ther. 2010, 16, e92–e123. [Google Scholar] [CrossRef]
- Bowen, M.T.; Carson, D.S.; Spiro, A.; Arnold, J.C.; McGregor, I.S. Adolescent oxytocin exposure causes persistent reductions in anxiety and alcohol consumption and enhances sociability in rats. PLoS ONE 2011, 6, e27237. [Google Scholar] [CrossRef] [Green Version]
- King, C.E.; Gano, A.; Becker, H.C. The role of oxytocin in alcohol and drug abuse. Brain Res. 2020, 1736, 146761. [Google Scholar] [CrossRef]
- Sanna, F.; De Luca, M.A. The potential role of oxytocin in addiction: What is the target process? Curr. Opin. Pharmacol. 2021, 58, 8–20. [Google Scholar] [CrossRef]
- Tunstall, B.J.; Kirson, D.; Zallar, L.J.; McConnell, S.A.; Vendruscolo, J.C.M.; Ho, C.P.; Oleata, C.S.; Khom, S.; Manning, M.; Lee, M.R.; et al. Oxytocin blocks enhanced motivation for alcohol in alcohol dependence and blocks alcohol effects on GABAergic transmission in the central amygdala. PLoS Biol. 2019, 17, e2006421. [Google Scholar] [CrossRef]
- World Health Organization. International Statistical Classification of Diseases and Health Related Problems ICD-10; World Health Organization: Geneva, Switzerland, 2004. [Google Scholar]
- Hamilton, M. A rating scale for depression. J. Neurol. Neurosurg. Psychiatry 1960, 23, 56–62. [Google Scholar] [CrossRef] [Green Version]
- Williams, J.B.W.; Link, M.J.; Rosenthal, N.E.; Amira, L.; Terman, M. Structured Interview Guide for the Hamilton Depression Rating Scale—Seasonal Affective Disorder Version (SIGH-SAD); New York State Psychiatric Institute: New York, NY, USA, 1992. [Google Scholar]
- Levchuk, L.A.; Meeder, E.M.G.; Roschina, O.V.; Loonen, A.J.M.; Boiko, A.S.; Michalitskaya, E.V.; Epimakhova, E.V.; Losenkov, I.S.; Simutkin, G.G.; Bokhan, N.A.; et al. Exploring Brain Derived Neurotrophic Factor and Cell Adhesion Molecules as Biomarkers for the Transdiagnostic Symptom Anhedonia in Alcohol Use Disorder and Comorbid Depression. Front. Psychiatry 2020, 11, 296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Snaith, R.P.; Hamilton, M.; Morley, S.; Humayan, A.; Hargreaves, D.; Trigwell, P. A scale for the assessment of hedonic tone the Snaith-Hamilton Pleasure Scale. Br. J. Psychiatry 1995, 167, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Babor, T.F.; Higgins-Biddle, J.C.; Saunders, J.B.; Monteiro, M.G. The Alcohol Use Disorders Identification Test: Guidelines for Use in Primary Care World Health Organization (WHO Publication No. 01.6a); World Health Organization: Geneva, Switzerland, 2001. [Google Scholar]
- Anton, R.F.; Moak, D.H.; Latham, P. The Obsessive Compulsive Drinking Scale: A self-rated instrument for the quantification of thoughts about alcohol and drinking behavior. Alcohol Clin. Exp. Res. 1995, 19, 92–99. [Google Scholar] [CrossRef]
- Buss, A.H.; Durkee, A. An inventory for assessing different kinds of hostility. J. Consult. Psychol. 1957, 21, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Marchesi, C.; Chiodera, P.; Brusamonti, E.; Volpi, R.; Coiro, V. Abnormal plasma oxytocin and beta-endorphin levels in alcoholics after short and long term abstinence. Prog. Neuropsychopharmacol. Biol. Psychiatry 1997, 21, 797–807. [Google Scholar] [CrossRef]
- Haass-Koffler, C.L.; Perciballi, R.; Brown, Z.E.; Lee, M.R.; Zywiak, W.H.; Kurtis, J.; Swift, R.M.; Leggio, L. Brief Report: Relationship Between Cotinine Levels and Peripheral Endogenous Concentrations of Oxytocin, β-Endorphin, and Orexin in Individuals with Both Alcohol and Nicotine Use Disorders. Am. J. Addict. 2021, 30, 88–91. [Google Scholar] [CrossRef] [PubMed]
- Adinoff, B.; Iranmanesh, A.; Veldhuis, J.; Fisher, L. Disturbances of the stress response: The role of the HPA axis during alcohol withdrawal and abstinence. Alcohol Health Res. World 1998, 22, 67–72. [Google Scholar] [PubMed]
- Ball, R.; Howlett, T.; Silverstone, T.; Rees, L. The interrelationship of beta endorphin, ACTH and cortisol in depressive illness: A controlled study. Psychol. Med. 1987, 17, 31–37. [Google Scholar] [CrossRef]
- Gispen-de-Wied, C.C.; Westenberg, H.G.; Thijssen, J.H.; van Ree, J.M. The dexamethasone and cortisol suppression test in depression: Beta-endorphin as a useful marker. Psychoneuroendocrinology 1987, 12, 355–366. [Google Scholar] [CrossRef]
- Rupprecht, R.; Barocka, A.; Beck, G.; Schrell, U.; Pichl, J. Pre- and postdexamethasone plasma ACTH and beta-endorphin levels in endogenous and nonendogenous depression. Biol. Psychiatry 1988, 23, 531–535. [Google Scholar] [CrossRef]
- Maes, M.; Vandervorst, C.; Suy, E.; Minner, B.; Raus, J. A multivariate study of simultaneous escape from suppression by dexamethasone of urinary free cortisol, plasma cortisol, adrenocorticotropic hormone and beta-endorphin in melancholic patients. Acta Psychiatr. Scand. 1991, 83, 480–491. [Google Scholar] [CrossRef]
- Maes, M.; Meltzer, H.; Cosyns, P.; Calabrese, J.; D’Hondt, P.; Blockx, P. Adrenocorticotropic hormone, beta-endorphin and cortisol responses to oCRH in unipolar depressed patients pretreated with dexamethasone. Prog. Neuropsychopharmacol. Biol. Psychiatry 1994, 18, 1273–1292. [Google Scholar] [CrossRef]
- Aguirre, J.C.; Del Arbol, J.L.; Raya, J.; Ruiz-Requena, M.E.; Rico Irles, J. Plasma beta-endorphin levels in chronic alcoholics. Alcohol 1990, 7, 409–412. [Google Scholar] [CrossRef]
- del Arbol, J.L.; Aguirre, J.C.; Raya, J.; Rico, J.; Ruiz-Requena, M.E.; Miranda, M.T. Plasma concentrations of beta-endorphin, adrenocorticotropic hormone, and cortisol in drinking and abstinent chronic alcoholics. Alcohol 1995, 12, 525–529. [Google Scholar] [CrossRef] [Green Version]
- Gianoulakis, C.; Béliveau, D.; Angelogianni, P.; Meaney, M.; Thavundayil, J.; Tawar, V.; Dumas, M. Different pituitary beta-endorphin and adrenal cortisol response to ethanol in individuals with high and low risk for future development of alcoholism. Life Sci. 1989, 45, 1097–1109. [Google Scholar] [CrossRef]
- Kiefer, F.; Horntrich, M.; Jahn, H.; Wiedemann, K. Is withdrawal-induced anxiety in alcoholism based on beta-endorphin deficiency? Psychopharmacology 2002, 162, 433–437. [Google Scholar] [CrossRef]
- Inder, W.J.; Joyce, P.R.; Ellis, M.J.; Evans, M.J.; Livesey, J.H.; Donald, R.A. The effects of alcoholism on the hypothalamic-pituitary-adrenal axis: Interaction with endogenous opioid peptides. Clin. Endocrinol. 1995, 43, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Inder, W.J.; Livesey, J.H.; Donald, R.A. Peripheral plasma levels of beta-endorphin in alcoholics and highly trained athletes and the relationship to a measure of central opioid tone. Horm. Metab. Res. 1998, 30, 523–525. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Thavundayil, J.; Gianoulakis, C. Differences in the peripheral levels of beta-endorphin in response to alcohol and stress as a function of alcohol dependence and family history of alcoholism. Alcohol. Clin. Exp. Res. 2005, 29, 1965–1975. [Google Scholar] [CrossRef]
- Bershad, A.K.; Kirkpatrick, M.G.; Seiden, J.A.; de Wit, H. Effects of acute doses of prosocial drugs methamphetamine and alcohol on plasma oxytocin levels. J. Clin. Psychopharmacol. 2015, 35, 308–312. [Google Scholar] [CrossRef] [Green Version]
- Lenz, B.; Weinland, C.; Bach, P.; Kiefer, F.; Grinevich, V.; Zoicas, I.; Kornhuber, J.; Mühle, C. Oxytocin blood concentrations in alcohol use disorder: A cross-sectional, longitudinal, and sex-separated study. Eur. Neuropsychopharmacol. 2021, 51, 55–67. [Google Scholar] [CrossRef]
- Bell, C.J.; Nicholson, H.; Mulder, R.T.; Luty, S.E.; Joyce, P.R. Plasma oxytocin levels in depression and their correlation with the temperament dimension of reward dependence. J. Psychopharmacol. 2006, 20, 656–660. [Google Scholar] [CrossRef] [PubMed]
- Scantamburlo, G.; Ansseau, M.; Geenen, V.; Legros, J.J. Oxytocin: From milk ejection to maladaptation in stress response and psychiatric disorders. A psychoneuroendocrine perspective. Ann. Endocrinol. 2009, 70, 449–454. [Google Scholar] [CrossRef] [PubMed]
- Cyranowski, J.M.; Hofkens, T.L.; Frank, E.; Seltman, H.; Cai, H.M.; Amico, J.A. Evidence of dysregulated peripheral oxytocin release among depressed women. Psychosom. Med. 2008, 70, 967–975. [Google Scholar] [CrossRef] [Green Version]
- Ozsoy, S.; Esel, E.; Kula, M. Serum oxytocin levels in patients with depression and the effects of gender and antidepressant treatment. Psychiatry Res. 2009, 169, 249–252. [Google Scholar] [CrossRef]
- Parker, K.J.; Kenna, H.A.; Zeitzer, J.M.; Keller, J.; Blasey, C.M.; Amico, J.A.; Schatzberg, A.F. Preliminary evidence that plasma oxytocin levels are elevated in major depression. Psychiatry Res. 2010, 178, 359–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuen, K.W.; Garner, J.P.; Carson, D.S.; Keller, J.; Lembke, A.; Hyde, S.A.; Kenna, H.A.; Tennakoon, L.; Schatzberg, A.F.; Parker, K.J. Plasma oxytocin concentrations are lower in depressed vs. healthy control women and are independent of cortisol. J. Psychiatr. Res. 2014, 51, 30–36. [Google Scholar] [CrossRef]
- Sasaki, T.; Hashimoto, K.; Oda, Y.; Ishima, T.; Yakita, M.; Kurata, T.; Kunou, M.; Takahashi, J.; Kamata, Y.; Kimura, A.; et al. Increased Serum Levels of Oxytocin in ‘Treatment Resistant Depression in Adolescents (TRDIA)’ Group. PLoS ONE 2016, 11, e0160767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Massey, S.H.; Backes, K.A.; Schuette, S.A. Plasma oxytocin concentration and depressive symptoms: A review of current evidence and directions for future research. Depress. Anxiety 2016, 33, 316–322. [Google Scholar] [CrossRef] [Green Version]
- Turan, T.; Uysal, C.; Asdemir, A.; Kılıç, E. May oxytocin be a trait marker for bipolar disorder? Psychoneuroendocrinology 2013, 38, 2890–2896. [Google Scholar] [CrossRef]
- Lien, Y.J.; Chang, H.H.; Tsai, H.C.; Kuang Yang, Y.; Lu, R.B.; Chen, P. Plasma oxytocin levels in major depressive and bipolar II disorders. Psychiatry Res. 2017, 258, 402–406. [Google Scholar] [CrossRef]
- Guintivano, J.; Manuck, T.; Meltzer-Brody, S. Predictors of Postpartum Depression: A Comprehensive Review of the Last Decade of Evidence. Clin. Obstet. Gynecol. 2018, 61, 591–603. [Google Scholar] [CrossRef]
- Thul, T.A.; Corwin, E.J.; Carlson, N.S.; Brennan, P.A.; Young, L.J. Oxytocin and postpartum depression: A systematic review. Psychoneuroendocrinology 2020, 120, 104793. [Google Scholar] [CrossRef] [PubMed]
- Bertsch, K.; Schmidinger, I.; Neumann, I.D.; Herpertz, S.C. Reduced plasma oxytocin levels in female patients with borderli ne personality disorder. Horm. Behav. 2013, 63, 424–429. [Google Scholar] [CrossRef]
- Demirci, E.; Ozmen, S.; Kilic, E.; Oztop, D.B. The relationship between aggression, empathy skills and serum oxytocin levels in male children and adolescents with attention deficit and hyperactivity disorder. Behav. Pharmacol. 2016, 27, 681–688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerra, L.M.; Gerra, G.; Mercolini, L.; Manfredini, M.; Somaini, L.; Pieri, C.M.; Antonioni, M.; Protti, M.; Ossola, P.; Marchesi, C. Increased oxytocin levels among abstinent heroin addicts: Association with aggressiveness, psychiatric symptoms and perceived childhood neglect. Prog. Neuropsychopharmacol. Biol. Psychiatry 2017, 75, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Işık, Ü.; Bilgiç, A.; Toker, A.; Kılınç, I. Serum levels of cortisol, dehydroepiandrosterone, and oxytocin in children with attention-deficit/hyperactivity disorder combined presentation with and without comorbid conduct disorder. Psychiatry Res. 2018, 261, 212–219. [Google Scholar] [CrossRef] [PubMed]
Index | AUD Patients (n = 45) | AUD-MD Comorbidity (n = 35) | Control Group (n = 23) | Statistical Significance |
---|---|---|---|---|
Age (years) | 45 (40; 54) | 44 (36.75; 48.25) | 40 (25; 50) | p = 0.166, Kruskal–Wallis test |
Sex (Female/Male) | 18.6%/81.4% | 35.3%/64.7% | 47.8%/52.5% | p = 0.065, chi-squared test |
Clinical Scale | AUD Group | AUD-MD Group | p (U-Test) |
---|---|---|---|
HAMD-17 | 11 (6.5; 15) | 21 (18; 27) | 0.001 |
AUDIT-C | 30 (23; 34) | 21 (18; 27) | 0.171 |
OCDC | 35 (30; 45) | 35 (22; 42) | 0.440 |
SHAPS | 1 (0; 3) | 1 (0; 3) | 0.922 |
Buss–Durkee Index | AUD Patients | AUD-MD Patients | Controls | p (Kruskal–Wallis Test) ¶ |
---|---|---|---|---|
Physical aggression (assault) | 4 (3–8) # p = 0.023 | 7 (5–9) * p = 0.023 | 4.5 (3–7) | 0.028 |
Indirect hostility | 4 (3–6) | 5 (4–6) | 4 (2.75–4.25) | 0.161 |
Irritability | 5 (3–7) | 6 (4.25-7) * p = 0.015 | 4 (2.75–4.25) | 0.06 |
Negativism | 3 (2–3) | 2 (1–3) | 1.5 (1–3) | 0.183 |
Resentment | 5 (2–6) * p = 0.035 | 5 (3.25-6) * p = 0.011 | 2.5 (1–4) | 0.048 |
Suspicion | 5 (4–7) * p = 0.001 | 5 (3.25–7.75) * p = 0.004 | 2 (2–4) | 0.004 |
Verbal hostility | 7 (4–10) | 7.5 (5.25-9) | 7 (4–7.25) | 0.349 |
Guilt | 7 (5–8) * p = 0.016 | 7 (5–8) * p = 0.006 | 4 (2.5–6.25) | 0.018 |
Aggressiveness Index | 21 (17–28) # p = 0.039 | 24 (21–28.75) | 18 (14–23) | 0.047 |
Hostility Index | 10 (6–13) * p = 0.003 | 9 (7.25–11.75) * p = 0.003 | 4.5 (3–7.75) | 0.006 |
Biological Marker | AUD Patients (n = 45) | AUD-MD Patients (n = 35) | Control Group (n = 23) | p (Kruskal–Wallis Test) ¶ |
---|---|---|---|---|
β-endorphin | 295.71 (220.36–413.5) | 239.29 (180.42–306.04) * p = 0.005 | 368.22 (215.98–595.21) | 0.011 |
Oxytocin | 180.24 (112.55–267.13) # p = 0.017 | 135.19 (90.27–195.56) * p = 0.004 | 265.23 (111.73–499.66) | 0.005 |
Research Criteria | AUD Group | AUD-MD Group | ||
---|---|---|---|---|
β-Endorphin | Oxytocin | β-Endorphin | Oxytocin | |
MD duration | r = −0.267 p = 0.12 | r = −0.252 p = 0.144 | ||
AUD duration | r = 0.005 p = 0.972 | r = −0.184 p = 0.243 | r = −0.087 p = 0.62 | r = −0.082 p = 0.642 |
Alcohol tolerance | r = −0.006 p = 0.968 | r = −0.104 p = 0.51 | r = 0.029 p = 0.868 | r = −0.114 p = 0.514 |
Number heavy drinking days | r = 0.119 p = 0.442 | r = 0.085 p = 0.593 | r = 0.1 p = 0.575 | r = −0.104 p = 0.557 |
Withdrawal duration | r = 0.117 p = 0.445 | r = 0.035 p = 0.825 | r = 0.246 p = 0.154 | r = 0.042 p = 0.811 |
HDRS-17 | r = −0.045 p = 0.767 | r = −0.043 p = 0.784 | r = −0.102 p = 0.561 | r = 0.021 p = 0.903 |
AUDIT-C | r = 0.035 p = 0.82 | r = −0.052 p = 0.74 | r = −0.075 p = 0.669 | r = −0.114 p = 0.513 |
OCDS | r = 0.072 p = 0.64 | r = −0.019 p = 0.903 | r = 0.203 p = 0.243 | r = −0.052 p = 0.768 |
SHAPS | r = −0.046 p = 0.796 | r = −0.183 p = 0.309 | r = −0.195 p = 0.33 | r = −0.355 p = 0.069 |
Buss–Durkee Index | AUD Group | AUD-MD Group | ||
---|---|---|---|---|
β-Endorphin | Oxytocin | β-Endorphin | Oxytocin | |
Physical aggression | r = −0.161 p = 0.354 | r = −0.214 p = 0.225 | r = −420 * p = 0.026 | r = −0.293 p = 0.13 |
Indirect hostility | r = −0.243 p = 0.16 | r = −0.211 p = 0.23 | r = −0.122 p = 0.535 | r = −0.001 p = 0.997 |
Irritability | r = −0.064 p = 0.713 | r = −0.076 p = 0.671 | r = −0.156 p = 0.429 | r = −0.091 p = 0.645 |
Negativism | r = −0.045 p = 0.798 | r = −0.102 p = 0.565 | r = −0.114 p = 0.562 | r = −0.039 p = 0.845 |
Resentment | r = −0.183 p = 0.292 | r = −0.176 p = 0.32 | r = −0.105 p = 0.593 | r = −0.036 p = 0.855 |
Suspicion | r = −0.044 p = 0.803 | r = −0.029 p = 0.872 | r = 0.12 p = 0.542 | r = 0.182 p = 0.353 |
Verbal hostility | r = −0.027 p = 0.88 | r = −0.089 p = 0.617 | r = −0.307 p = 0.112 | r = −0.028 p = 0.887 |
Guilt | r = −0.179 p = 0.304 | r = −0.111 p = 0.533 | r = 0.152 p = 0.44 | r = −0.063 p = 0.75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roschina, O.V.; Levchuk, L.A.; Boiko, A.S.; Michalitskaya, E.V.; Epimakhova, E.V.; Losenkov, I.S.; Simutkin, G.G.; Loonen, A.J.M.; Bokhan, N.A.; Ivanova, S.A. Beta-Endorphin and Oxytocin in Patients with Alcohol Use Disorder and Comorbid Depression. J. Clin. Med. 2021, 10, 5696. https://doi.org/10.3390/jcm10235696
Roschina OV, Levchuk LA, Boiko AS, Michalitskaya EV, Epimakhova EV, Losenkov IS, Simutkin GG, Loonen AJM, Bokhan NA, Ivanova SA. Beta-Endorphin and Oxytocin in Patients with Alcohol Use Disorder and Comorbid Depression. Journal of Clinical Medicine. 2021; 10(23):5696. https://doi.org/10.3390/jcm10235696
Chicago/Turabian StyleRoschina, Olga V., Lyudmila A. Levchuk, Anastasiia S. Boiko, Ekaterina V. Michalitskaya, Elena V. Epimakhova, Innokentiy S. Losenkov, German G. Simutkin, Anton J. M. Loonen, Nikolay A. Bokhan, and Svetlana A. Ivanova. 2021. "Beta-Endorphin and Oxytocin in Patients with Alcohol Use Disorder and Comorbid Depression" Journal of Clinical Medicine 10, no. 23: 5696. https://doi.org/10.3390/jcm10235696