Redefining Remission Induction Chemotherapy Ineligibility by Early Mortality in De Novo Acute Myeloid Leukemia
Abstract
:1. Introduction
2. Methods
2.1. Patients
2.2. Definitions and Outcome Measurements
2.3. Infection Prophylaxis
2.4. Statistical Analysis
3. Results
3.1. Patient Demographics
3.2. Patients with Age ≥ 65 Years, ECOG PS ≥ 2, and LDH ≥ 1000 U/L Had Higher Cumulative Early Mortality Rates
3.3. AML Patients with Two Risk Factors Had a Significantly Higher Early Mortality Rate Than Those with Fewer Than Two Risk Factors
3.4. Cause of Death Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De Kouchkovsky, I.; Abdul-Hay, M. Acute myeloid leukemia: A comprehensive review and 2016 update. Blood Cancer J. 2016, 6, e441. [Google Scholar] [CrossRef] [PubMed]
- Vardiman, J.W.; Thiele, J.; Arber, D.A.; Brunning, R.D.; Borowitz, M.J.; Porwit, A.; Harris, N.L.; Le Beau, M.M.; Hellstrom-Lindberg, E.; Tefferi, A.; et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: Rationale and important changes. Blood 2009, 114, 937–951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burnett, A.; Wetzler, M.; Lowenberg, B. Therapeutic advances in acute myeloid leukemia. J. Clin. Oncol. 2011, 29, 487–494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aldoss, I.; Pullarkat, V.; Stein, A.S. Venetoclax-containing regimens in acute myeloid leukemia. Ther. Adv. Hematol. 2021, 12, 2040620720986646. [Google Scholar] [CrossRef]
- Sekeres, M.A.; Guyatt, G.; Abel, G.; Alibhai, S.; Altman, J.K.; Buckstein, R.; Choe, H.; Desai, P.; Erba, H.; Hourigan, C.S.; et al. American Society of Hematology 2020 guidelines for treating newly diagnosed acute myeloid leukemia in older adults. Blood Adv. 2020, 4, 3528–3549. [Google Scholar] [CrossRef]
- Richard-Carpentier, G.; DiNardo, C.D. Venetoclax for the treatment of newly diagnosed acute myeloid leukemia in patients who are ineligible for intensive chemotherapy. Ther. Adv. Hematol. 2019, 10, 2040620719882822. [Google Scholar] [CrossRef] [Green Version]
- Chiu, Y.C.; Hsiao, T.H.; Tsai, J.R.; Wang, L.J.; Ho, T.C.; Hsu, S.L.; Teng, C.J. Integrating resistance functions to predict response to induction chemotherapy in de novo acute myeloid leukemia. Eur. J. Haematol. 2019, 103, 417–425. [Google Scholar] [CrossRef]
- Pettit, K.; Odenike, O. Defining and Treating Older Adults with Acute Myeloid Leukemia Who Are Ineligible for Intensive Therapies. Front. Oncol. 2015, 5, 280. [Google Scholar] [CrossRef] [Green Version]
- Schneider, F.; Hoster, E.; Schneider, S.; Dufour, A.; Benthaus, T.; Kakadia, P.M.; Bohlander, S.K.; Braess, J.; Heinecke, A.; Sauerland, M.C.; et al. Age-dependent frequencies of NPM1 mutations and FLT3-ITD in patients with normal karyotype AML (NK-AML). Ann. Hematol. 2012, 91, 9–18. [Google Scholar] [CrossRef]
- Schoch, C.; Kern, W.; Schnittger, S.; Buchner, T.; Hiddemann, W.; Haferlach, T. The influence of age on prognosis of de novo acute myeloid leukemia differs according to cytogenetic subgroups. Haematologica 2004, 89, 1082–1090. [Google Scholar]
- Creutzig, U.; Zimmermann, M.; Reinhardt, D.; Dworzak, M.; Stary, J.; Lehrnbecher, T. Early deaths and treatment-related mortality in children undergoing therapy for acute myeloid leukemia: Analysis of the multicenter clinical trials AML-BFM 93 and AML-BFM 98. J. Clin. Oncol. 2004, 22, 4384–4393. [Google Scholar] [CrossRef]
- Palmieri, R.; Othus, M.; Halpern, A.B.; Percival, M.M.; Godwin, C.D.; Becker, P.S.; Walter, R.B. Accuracy of SIE/SIES/GITMO Consensus Criteria for Unfitness to Predict Early Mortality After Intensive Chemotherapy in Adults With AML or Other High-Grade Myeloid Neoplasm. J. Clin. Oncol. 2020, 38, 4163–4174. [Google Scholar] [CrossRef]
- Kantarjian, H.; Ravandi, F.; O’Brien, S.; Cortes, J.; Faderl, S.; Garcia-Manero, G.; Jabbour, E.; Wierda, W.; Kadia, T.; Pierce, S.; et al. Intensive chemotherapy does not benefit most older patients (age 70 years or older) with acute myeloid leukemia. Blood 2010, 116, 4422–4429. [Google Scholar] [CrossRef]
- Appelbaum, F.R.; Gundacker, H.; Head, D.R.; Slovak, M.L.; Willman, C.L.; Godwin, J.E.; Anderson, J.E.; Petersdorf, S.H. Age and acute myeloid leukemia. Blood 2006, 107, 3481–3485. [Google Scholar] [CrossRef]
- Malfuson, J.V.; Etienne, A.; Turlure, P.; de Revel, T.; Thomas, X.; Contentin, N.; Terre, C.; Rigaudeau, S.; Bordessoule, D.; Vey, N.; et al. Risk factors and decision criteria for intensive chemotherapy in older patients with acute myeloid leukemia. Haematologica 2008, 93, 1806–1813. [Google Scholar] [CrossRef] [Green Version]
- Valcarcel, D.; Montesinos, P.; Sanchez-Ortega, I.; Brunet, S.; Esteve, J.; Martinez-Cuadron, D.; Ribera, J.M.; Tormo, M.; Bueno, J.; Duarte, R.; et al. A scoring system to predict the risk of death during induction with anthracycline plus cytarabine-based chemotherapy in patients with de novo acute myeloid leukemia. Cancer 2012, 118, 410–417. [Google Scholar] [CrossRef]
- Giles, F.J.; Borthakur, G.; Ravandi, F.; Faderl, S.; Verstovsek, S.; Thomas, D.; Wierda, W.; Ferrajoli, A.; Kornblau, S.; Pierce, S.; et al. The haematopoietic cell transplantation comorbidity index score is predictive of early death and survival in patients over 60 years of age receiving induction therapy for acute myeloid leukaemia. Br. J. Haematol. 2007, 136, 624–627. [Google Scholar] [CrossRef]
- Liu, C.J.; Hong, Y.C.; Kuan, A.S.; Yeh, C.M.; Tsai, C.K.; Liu, Y.C.; Hsiao, L.T.; Wang, H.Y.; Ko, P.S.; Chen, P.M.; et al. The risk of early mortality in elderly patients with newly diagnosed acute myeloid leukemia. Cancer Med. 2020, 9, 1572–1580. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.C.; Wang, R.C.; Lin, Y.H.; Chang, K.H.; Hung, L.Y.; Teng, C.J. Posaconazole for the prophylaxis of invasive aspergillosis in acute myeloid leukemia: Is it still useful outside the clinical trial setting? Ther. Adv. Hematol. 2020, 11, 2040620720965846. [Google Scholar] [CrossRef]
- Hahn, A.; Giri, S.; Yaghmour, G.; Martin, M.G. Early mortality in acute myeloid leukemia. Leuk. Res. 2015, 39, 505–509. [Google Scholar] [CrossRef]
- Walter, R.B.; Othus, M.; Borthakur, G.; Ravandi, F.; Cortes, J.E.; Pierce, S.A.; Appelbaum, F.R.; Kantarjian, H.A.; Estey, E.H. Prediction of early death after induction therapy for newly diagnosed acute myeloid leukemia with pretreatment risk scores: A novel paradigm for treatment assignment. J. Clin. Oncol. 2011, 29, 4417–4423. [Google Scholar] [CrossRef]
- DiNardo, C.D.; Jonas, B.A.; Pullarkat, V.; Thirman, M.J.; Garcia, J.S.; Wei, A.H.; Konopleva, M.; Dohner, H.; Letai, A.; Fenaux, P.; et al. Azacitidine and Venetoclax in Previously Untreated Acute Myeloid Leukemia. N. Engl. J. Med. 2020, 383, 617–629. [Google Scholar] [CrossRef]
- Wei, A.H.; Montesinos, P.; Ivanov, V.; DiNardo, C.D.; Novak, J.; Laribi, K.; Kim, I.; Stevens, D.A.; Fiedler, W.; Pagoni, M.; et al. Venetoclax plus LDAC for newly diagnosed AML ineligible for intensive chemotherapy: A phase 3 randomized placebo-controlled trial. Blood 2020, 135, 2137–2145. [Google Scholar] [CrossRef]
- Taplitz, R.A.; Kennedy, E.B.; Bow, E.J.; Crews, J.; Gleason, C.; Hawley, D.K.; Langston, A.A.; Nastoupil, L.J.; Rajotte, M.; Rolston, K.V.; et al. Antimicrobial Prophylaxis for Adult Patients With Cancer-Related Immunosuppression: ASCO and IDSA Clinical Practice Guideline Update. J. Clin. Oncol. 2018, 36, 3043–3054. [Google Scholar] [CrossRef]
- Redgrave, L.S.; Sutton, S.B.; Webber, M.A.; Piddock, L.J. Fluoroquinolone resistance: Mechanisms, impact on bacteria, and role in evolutionary success. Trends Microbiol. 2014, 22, 438–445. [Google Scholar] [CrossRef]
All Patients | Without Early Mortality | With Early Mortality | p-Value | ||||
---|---|---|---|---|---|---|---|
(n = 153) | (n = 124) | (n = 29) | |||||
Age, n (%) | 0.009 a | ||||||
<65 | 128 | (83.7%) | 109 | (87.9%) | 19 | (65.5%) | |
≥65 | 25 | (16.3%) | 15 | (12.1%) | 10 | (34.5%) | |
Gender, n (%) | 0.074 b | ||||||
Male | 91 | (59.5%) | 69 | (55.7%) | 22 | (75.9%) | |
Female | 62 | (40.5%) | 55 | (44.3%) | 7 | (24.1%) | |
ECOG performance status, n (%) | 0.001 a | ||||||
<2 | 128 | (83.7%) | 110 | (88.7%) | 18 | (62.1%) | |
≥2 | 25 | (16.3%) | 14 | (11.3%) | 11 | (37.9%) | |
Risk of Cytogenetics, n (%) | 0.255 a | ||||||
Unfavorable | 32 | (20.9%) | 25 | (20.2%) | 7 | (24.1%) | |
Non-unfavorable | 102 | (66.7%) | 89 | (71.8%) | 13 | (44.8%) | |
Undetermined | 19 | (12.4%) | 10 | (8.1%) | 9 | (31.0%) | |
Leukocyte (uL), median (range) | 41,100 | (790–433,220) | 40,465 | (790–433,220) | 41,100 | (1000–421,370) | 0.798 c |
eGFR (ml/min/1.73 m2), median (range) | 88 | (6.6–203.0) | 90 | (44.0–203.0) | 84 | (6.6–145.0) | 0.113 c |
ALT (U/L), median (range) | 25 | (7–653) | 23 | (7–653) | 30 | (9–203) | 0.016 c |
LDH (U/L), median (range) | 563 | (146–18,575) | 561.5 | (155–2919) | 761 | (146–18,575) | 0.159 c |
Univariate Analysis | Multivariate Analysis | |||||
---|---|---|---|---|---|---|
OR | 95% CI | p-Value | OR | 95% CI | p-Value | |
Age ≥ 65 | 3.82 | (1.50–9.76) | 0.005 | 3.15 | (1.05–9.44) | 0.041 |
ECOG performance status ≥ 2 | 4.80 | (1.89–12.22) | 0.001 | 4.87 | (1.77–13.41) | 0.002 |
Leukocyte count ≥ 100,000 uL | 1.09 | (0.42–2.82) | 0.857 | |||
eGFR < 60 mL/min/1.73 m2 | 2.78 | (1.04–7.14) | 0.041 | 0.63 | (0.20–1.98) | 0.433 |
ALT ≥ 100 U/L | 0.60 | (0.07–5.05) | 0.636 | |||
LDH ≥ 1000 U/L | 3.00 | (1.24–7.26) | 0.015 | 4.20 | (1.57–11.23) | 0.004 |
Poor cytogenetic risks | 1.92 | (0.69–5.32) | 0.211 |
Patients with Mortality | With Early Mortality | Without Early Mortality | ||||
---|---|---|---|---|---|---|
(n = 95) | (n = 29) | (n = 66) | ||||
n | (%) | n | (%) | n | (%) | |
Acute myeloid leukemia | 46 | 48.4 | 4 | 13.8 | 42 | 63.6 |
Sepsis | 32 | 33.7 | 19 | 65.5 | 13 | 19.7 |
Graft-versus-host disease | 6 | 6.3 | 0 | 0.0 | 6 | 9.1 |
Pneumonia | 5 | 5.3 | 2 | 6.9 | 3 | 4.6 |
Intracranial hemorrhage | 4 | 4.2 | 3 | 10.3 | 1 | 1.5 |
Cytomegalovirus infection | 1 | 1.1 | 0 | 0.0 | 1 | 1.5 |
Gastrointestinal bleeding | 1 | 1.1 | 1 | 3.5 | 0 | 0.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.-C.; Shih, Y.-H.; Chen, T.-C.; Gau, J.-P.; Su, Y.-C.; Chen, M.-H.; Hsu, C.-Y.; Liao, C.-S.; Teng, C.-L.J. Redefining Remission Induction Chemotherapy Ineligibility by Early Mortality in De Novo Acute Myeloid Leukemia. J. Clin. Med. 2021, 10, 5768. https://doi.org/10.3390/jcm10245768
Li Y-C, Shih Y-H, Chen T-C, Gau J-P, Su Y-C, Chen M-H, Hsu C-Y, Liao C-S, Teng C-LJ. Redefining Remission Induction Chemotherapy Ineligibility by Early Mortality in De Novo Acute Myeloid Leukemia. Journal of Clinical Medicine. 2021; 10(24):5768. https://doi.org/10.3390/jcm10245768
Chicago/Turabian StyleLi, You-Cheng, Yu-Hsuan Shih, Tsung-Chih Chen, Jyh-Pyng Gau, Yu-Chen Su, Mei-Hui Chen, Chiann-Yi Hsu, Cai-Sian Liao, and Chieh-Lin Jerry Teng. 2021. "Redefining Remission Induction Chemotherapy Ineligibility by Early Mortality in De Novo Acute Myeloid Leukemia" Journal of Clinical Medicine 10, no. 24: 5768. https://doi.org/10.3390/jcm10245768
APA StyleLi, Y.-C., Shih, Y.-H., Chen, T.-C., Gau, J.-P., Su, Y.-C., Chen, M.-H., Hsu, C.-Y., Liao, C.-S., & Teng, C.-L. J. (2021). Redefining Remission Induction Chemotherapy Ineligibility by Early Mortality in De Novo Acute Myeloid Leukemia. Journal of Clinical Medicine, 10(24), 5768. https://doi.org/10.3390/jcm10245768