ADORA2A rs5760423 and CYP1A2 rs762551 Polymorphisms as Risk Factors for Parkinson’s Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Molecular Genetics
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kalia, L.V.; Lang, A.E. Parkinson’s disease. Lancet 2015, 386, 896–912. [Google Scholar] [CrossRef]
- Dickson, D.W.; Braak, H.; Duda, J.E.; Duyckaerts, C.; Gasser, T.; Halliday, G.M.; Hardy, J.; Leverenz, J.B.; Del Tredici, K.; Wszolek, Z.K.; et al. Neuropathological assessment of Parkinson’s disease: Refining the diagnostic criteria. Lancet Neurol. 2009, 8, 1150–1157. [Google Scholar] [CrossRef]
- Braak, H.; Del Tredici, K.; Rüb, U.; de Vos, R.A.; Steur, E.N.J.; Braak, E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging 2003, 24, 197–211. [Google Scholar] [CrossRef]
- Goedert, M.; Spillantini, M.G.; Del Tredici, K.; Braak, H. 100 years of Lewy pathology. Nat. Rev. Neurol. 2013, 9, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Dorsey, E.R.; Constantinescu, R.; Thompson, J.P.; Biglan, K.M.; Holloway, R.G.; Kieburtz, K.; Marshall, F.J.; Ravina, B.M.; Schifitto, G.; Siderowf, A.; et al. Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology 2007, 68, 384–386. [Google Scholar] [CrossRef]
- Twelves, D.; Perkins, K.S.; Counsell, C. Systematic review of incidence studies of Parkinson’s disease. Mov. Disord. 2003, 18, 19–31. [Google Scholar] [CrossRef]
- Sveinbjornsdottir, S. The clinical symptoms of Parkinson’s disease. J. Neurochem. 2016, 139, 318–324. [Google Scholar] [CrossRef] [Green Version]
- Jankovic, J. Parkinson’s disease: Clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatry 2008, 79, 368–376. [Google Scholar] [CrossRef] [Green Version]
- Hely, M.A.; Morris, J.G.; Reid, W.G.; Trafficante, R. Sydney Multicenter Study of Parkinson’s disease: Non-L-dopa-responsive problems dominate at 15 years. Mov. Disord. 2005, 20, 190–199. [Google Scholar] [CrossRef]
- van den Bos, M.A.J.; Geevasinga, N.; Higashihara, M.; Menon, P.; Vucic, S. Pathophysiology and Diagnosis of ALS: Insights from Advances in Neurophysiological Techniques. Int. J. Mol. Sci. 2019, 20, 2818. [Google Scholar] [CrossRef] [Green Version]
- Poewe, W.; Seppi, K.; Tanner, C.M.; Halliday, G.M.; Brundin, P.; Volkmann, J.; Schrag, A.-E.; Lang, A.E. Parkinson disease. Nat. Rev. Dis. Primers 2017, 3, 17013. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Liu, Z.; Zhang, Z.; Li, Y.; Fang, R.; Li, F.; Zhang, J. A Scientometric Analysis and Visualization of Research on Parkinson’s Disease Associated With Pesticide Exposure. Front. Public Health 2020, 8, 91. [Google Scholar] [CrossRef] [PubMed]
- Noyce, A.J.; Bestwick, J.P.; Silveira-Moriyama, L.; Hawkes, C.H.; Giovannoni, G.; Lees, A.J.; Schrag, A. Meta-analysis of early nonmotor features and risk factors for Parkinson disease. Ann. Neurol. 2012, 72, 893–901. [Google Scholar] [CrossRef] [PubMed]
- Dardiotis, E.; Aloizou, A.M.; Sakalakis, E.; Siokas, V.; Koureas, M.; Xiromerisiou, G.; Petinaki, E.; Wilks, M.; Tsatsakis, A.; Hadjichristodoulou, C.; et al. Organochlorine pesticide levels in Greek patients with Parkinson’s disease. Toxicol. Rep. 2020, 7, 596–601. [Google Scholar] [CrossRef]
- Dardiotis, E.; Tsouris, Z.; Mentis, A.A.; Siokas, V.; Michalopoulou, A.; Sokratous, M.; Dastamani, M.; Bogdanos, D.P.; Deretzi, G.; Kountouras, J.H. pylori and Parkinson’s disease: Meta-analyses including clinical severity. Clin. Neurol. Neurosurg. 2018, 175, 16–24. [Google Scholar] [CrossRef]
- Aloizou, A.; Siokas, V.; Sapouni, E.-M.; Sita, N.; Liampas, I.; Brotis, A.; Rakitskii, V.; Burykina, T.; Aschner, M.; Bogdanos, D.; et al. Parkinson’s disease and pesticides: Are microRNAs the missing link? Sci. Total Environ. 2020, 744, 140591. [Google Scholar] [CrossRef]
- Dardiotis, E.; Xiromerisiou, G.; Hadjichristodoulou, C.; Tsatsakis, A.M.; Wilks, M.F.; Hadjigeorgiou, G.M. The interplay between environmental and genetic factors in Parkinson’s disease susceptibility: The evidence for pesticides. Toxicology 2013, 307, 17–23. [Google Scholar] [CrossRef]
- Docea, A.O.; Vassilopoulou, L.; Fragou, D.; Arsene, A.L.; Fenga, C.; Kovatsi, L.; Petrakis, D.; Rakitskii, V.N.; Nosyrev, A.E.; Izotov, B.N.; et al. CYP polymorphisms and pathological conditions related to chronic exposure to organochlorine pesticides. Toxicol. Rep. 2017, 4, 335–341. [Google Scholar] [CrossRef]
- Polymeropoulos, M.H.; Lavedan, C.; Leroy, E.; Ide, S.E.; Dehejia, A.; Dutra, A.; Pike, B.; Root, H.; Rubenstein, J.; Boyer, R.; et al. Mutation in the α-synuclein gene identified in families with Parkinson’s disease. Science 1997, 276, 2045–2047. [Google Scholar] [CrossRef] [Green Version]
- Kuhlenbäumer, G.; Berg, D. Parkinson disease genetics: Too early to predict progression? Nat. Rev. Neurol. 2019, 15, 625–626. [Google Scholar] [CrossRef]
- Del Rey, N.L.-G.; Quiroga-Varela, A.; Garbayo, E.; Carballo-Carbajal, I.; Fernández-Santiago, R.; Monje, M.H.G.; Trigo-Damas, I.; Blanco-Prieto, M.J.; Blesa, J. Advances in Parkinson’s Disease: 200 Years Later. Front. Neuroanat. 2018, 12, 113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lill, C.M. Genetics of Parkinson’s disease. Mol. Cell. Probes 2016, 30, 386–396. [Google Scholar] [CrossRef] [PubMed]
- Bandres-Ciga, S.; Diez-Fairen, M.; Kim, J.J.; Singleton, A.B. Genetics of Parkinson’s disease: An introspection of its journey towards precision medicine. Neurobiol. Dis. 2020, 137, 104782. [Google Scholar] [CrossRef] [PubMed]
- Horgusluoglu-Moloch, E.; Nho, K.; Risacher, S.L.; Kim, S.; Foroud, T.; Shaw, L.M.; Trojanowski, J.Q.; Aisen, P.S.; Petersen, R.C.; Jack, C.R., Jr.; et al. Targeted neurogenesis pathway-based gene analysis identifies ADORA2A associated with hippocampal volume in mild cognitive impairment and Alzheimer’s disease. Neurobiol. Aging 2017, 60, 92–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morelli, M.; Di Paolo, T.; Wardas, J.; Calon, F.; Xiao, D.; Schwarzschild, M.A. Role of adenosine A2A receptors in parkinsonian motor impairment and l-DOPA-induced motor complications. Prog. Neurobiol. 2007, 83, 293–309. [Google Scholar] [CrossRef] [PubMed]
- Schiffmann, S.N.; Fisone, G.; Moresco, R.; Cunha, R.A.; Ferré, S. Adenosine A2A receptors and basal ganglia physiology. Prog. Neurobiol. 2007, 83, 277–292. [Google Scholar] [CrossRef] [Green Version]
- Alsene, K.; Deckert, J.; Sand, P.; de Wit, H. Association between A2a receptor gene polymorphisms and caffeine-induced anxiety. Neuropsychopharmacology 2003, 28, 1694–1702. [Google Scholar] [CrossRef]
- Rétey, J.V.; Adam, M.; Khatami, R.; Luhmann, U.F.; Jung, H.H.; Berger, W.; Landolt, H.P. A genetic variation in the adenosine A2A receptor gene (ADORA2A) contributes to individual sensitivity to caffeine effects on sleep. Clin. Pharmacol. Ther. 2007, 81, 692–698. [Google Scholar] [CrossRef]
- Chen, J.F.; Xu, K.; Petzer, J.P.; Staal, R.; Xu, Y.H.; Beilstein, M.; Sonsalla, P.K.; Castagnoli, K.; Castagnoli, N., Jr.; Schwarzschild, M.A. Neuroprotection by caffeine and A(2A) adenosine receptor inactivation in a model of Parkinson’s disease. J. Neurosci. 2001, 21, Rc143. [Google Scholar] [CrossRef] [Green Version]
- Koonrungsesomboon, N.; Khatsri, R.; Wongchompoo, P.; Teekachunhatean, S. The impact of genetic polymorphisms on CYP1A2 activity in humans: A systematic review and meta-analysis. Pharm. J. 2018, 18, 760–768. [Google Scholar] [CrossRef]
- Sridhar, J.; Goyal, N.; Liu, J.; Foroozesh, M. Review of Ligand Specificity Factors for CYP1A Subfamily Enzymes from Molecular Modeling Studies Reported to-Date. Molecules 2017, 22, 1143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stiborová, M.; Levová, K.; Bárta, F.; Shi, Z.; Frei, E.; Schmeiser, H.H.; Nebert, D.W.; Phillips, D.H.; Arlt, V.M. Bioactivation versus detoxication of the urothelial carcinogen aristolochic acid I by human cytochrome P450 1A1 and 1A2. Toxicol. Sci. 2012, 125, 345–358. [Google Scholar] [CrossRef] [PubMed]
- Sachse, C.; Brockmoller, J.; Bauer, S.; Roots, I. Functional significance of a C → A polymorphism in intron 1 of the cytochrome P450 CYP1A2 gene tested with caffeine. Br. J. Clin. Pharmacol. 1999, 47, 445–449. [Google Scholar] [CrossRef] [Green Version]
- Palacios, N.; Weisskopf, M.; Simon, K.; Gao, X.; Schwarzschild, M.; Ascherio, A. Polymorphisms of caffeine metabolism and estrogen receptor genes and risk of Parkinson’s disease in men and women. Parkinsonism Relat. Disord. 2010, 16, 370–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chuang, Y.H.; Lill, C.M.; Lee, P.C.; Hansen, J.; Lassen, C.F.; Bertram, L.; Greene, N.; Sinsheimer, J.S.; Ritz, B. Gene-Environment Interaction in Parkinson’s Disease: Coffee, ADORA2A, and CYP1A2. Neuroepidemiology 2016, 47, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Dardiotis, E.; Rikos, D.; Siokas, V.; Aloizou, A.M.; Tsouris, Z.; Sakalakis, E.; Brotis, A.G.; Bogdanos, D.P.; Hadjigeorgiou, G.M. Assessment of TREM2 rs75932628 variant’s association with Parkinson’s disease in a Greek population and Meta-analysis of current data. Int. J. Neurosci. 2020, 1–5. [Google Scholar] [CrossRef]
- Siokas, V.; Kardaras, D.; Aloizou, A.M.; Asproudis, I.; Boboridis, K.G.; Papageorgiou, E.; Hadjigeorgiou, G.M.; Tsironi, E.E.; Dardiotis, E. BDNF rs6265 (Val66Met) Polymorphism as a Risk Factor for Blepharospasm. Neuromolecular Med. 2019, 21, 68–74. [Google Scholar] [CrossRef]
- Siokas, V.; Kardaras, D.; Aloizou, A.M.; Asproudis, I.; Boboridis, K.G.; Papageorgiou, E.; Spandidos, D.A.; Tsatsakis, A.; Tsironi, E.E.; Dardiotis, E. Lack of Association of the rs11655081 ARSG Gene with Blepharospasm. J. Mol. Neurosci. 2019, 67, 472–476. [Google Scholar] [CrossRef]
- Dardiotis, E.; Siokas, V.; Zafeiridis, T.; Paterakis, K.; Tsivgoulis, G.; Dardioti, M.; Grigoriadis, S.; Simeonidou, C.; Deretzi, G.; Zintzaras, E.; et al. Integrins AV and B8 Gene Polymorphisms and Risk for Intracerebral Hemorrhage in Greek and Polish Populations. Neuromolecular Med. 2017, 19, 69–80. [Google Scholar] [CrossRef]
- Siokas, V.; Tsouris, Z.; Aloizou, A.M.; Bakirtzis, C.; Liampas, I.; Koutsis, G.; Anagnostouli, M.; Bogdanos, D.P.; Grigoriadis, N.; Hadjigeorgiou, G.M.; et al. Multiple Sclerosis: Shall We Target CD33? Genes 2020, 11, 1334. [Google Scholar] [CrossRef]
- Skol, A.D.; Scott, L.J.; Abecasis, G.R.; Boehnke, M. Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies. Nat. Genet. 2006, 38, 209–213. [Google Scholar] [CrossRef] [PubMed]
- Sole, X.; Guino, E.; Valls, J.; Iniesta, R.; Moreno, V. SNPStats: A web tool for the analysis of association studies. Bioinformatics 2006, 22, 1928–1929. [Google Scholar] [CrossRef] [Green Version]
- Popat, R.A.; Van Den Eeden, S.K.; Tanner, C.M.; Kamel, F.; Umbach, D.M.; Marder, K.; Mayeux, R.; Ritz, B.; Ross, G.W.; Petrovitch, H.; et al. Coffee, ADORA2A, and CYP1A2: The caffeine connection in Parkinson’s disease. Eur. J. Neurol. 2011, 18, 756–765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, E.K.; Chua, E.; Fook-Chong, S.M.; Teo, Y.Y.; Yuen, Y.; Tan, L.; Zhao, Y. Association between caffeine intake and risk of Parkinson’s disease among fast and slow metabolizers. Pharm. Genom. 2007, 17, 1001–1005. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.Y.; O’Reilly, É.J.; Hughes, K.C.; Gao, X.; Schwarzschild, M.A.; McCullough, M.L.; Hannan, M.T.; Betensky, R.A.; Ascherio, A. Interaction between caffeine and polymorphisms of glutamate ionotropic receptor NMDA type subunit 2A (GRIN2A) and cytochrome P450 1A2 (CYP1A2) on Parkinson’s disease risk. Mov. Disord. 2018, 33, 414–420. [Google Scholar] [CrossRef]
- Cochran, W.G. The combination of estimates from different experiments. Biometrics 1954, 10, 101–129. [Google Scholar] [CrossRef]
- Higgins, J.P.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef] [Green Version]
- Siokas, V.; Dardiotis, E.; Tsironi, E.E.; Tsivgoulis, G.; Rikos, D.; Sokratous, M.; Koutsias, S.; Paterakis, K.; Deretzi, G.; Hadjigeorgiou, G.M. The Role of TOR1A Polymorphisms in Dystonia: A Systematic Review and Meta-Analysis. PLoS ONE 2017, 12, e0169934. [Google Scholar] [CrossRef]
- DerSimonian, R.; Laird, N. Meta-analysis in clinical trials. Control. Clin. Trials 1986, 7, 177–188. [Google Scholar] [CrossRef]
- Mantel, N.; Haenszel, W. Statistical Aspects of the Analysis of Data From Retrospective Studies of Disease. J. Natl. Cancer Inst. 1959, 22, 719–748. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, I. CD14 C260T promoter polymorphism and the risk of cerebrovascular diseases: A meta-analysis. J. Appl. Genet. 2009, 50, 153–157. [Google Scholar] [CrossRef] [PubMed]
- Negida, A.; Elfil, M.; Attia, A.; Farahat, E.; Gabr, M.; Essam, A.; Attia, D.; Ahmed, H. Caffeine; the Forgotten Potential for Parkinson’s Disease. CNS Neurol. Disord. Drug Targets 2017, 16, 652–657. [Google Scholar] [CrossRef] [PubMed]
- Ascherio, A.; Schwarzschild, M.A. The epidemiology of Parkinson’s disease: Risk factors and prevention. Lancet Neurol. 2016, 15, 1257–1272. [Google Scholar] [CrossRef]
- Kolahdouzan, M.; Hamadeh, M.J. The neuroprotective effects of caffeine in neurodegenerative diseases. CNS Neurosci. Ther. 2017, 23, 272–290. [Google Scholar] [CrossRef]
- Tan, E.K.; Tan, C.; Fook-Chong, S.; Lum, S.Y.; Chai, A.; Chung, H.; Shen, H.; Zhao, Y.; Teoh, M.L.; Yih, Y.; et al. Dose-dependent protective effect of coffee, tea, and smoking in Parkinson’s disease: A study in ethnic Chinese. J. Neurol. Sci. 2003, 216, 163–167. [Google Scholar] [CrossRef]
- Facheris, M.F.; Schneider, N.K.; Lesnick, T.G.; de Andrade, M.; Cunningham, J.M.; Rocca, W.A.; Maraganore, D.M. Coffee, caffeine-related genes, and Parkinson’s disease: A case-control study. Mov. Disord. 2008, 23, 2033–2040. [Google Scholar] [CrossRef] [Green Version]
- Hill-Burns, E.M.; Hamza, T.H.; Zabetian, C.P.; Factor, S.A.; Payami, H. An attempt to replicate interaction between coffee and CYP1A2 gene in connection to Parkinson’s disease. Eur. J. Neurol. 2011, 18, e107–e109. [Google Scholar] [CrossRef] [Green Version]
- Fujimaki, M.; Saiki, S.; Li, Y.; Kaga, N.; Taka, H.; Hatano, T.; Ishikawa, K.I.; Oji, Y.; Mori, A.; Okuzumi, A.; et al. Serum caffeine and metabolites are reliable biomarkers of early Parkinson disease. Neurology 2018, 90, e404–e411. [Google Scholar] [CrossRef] [Green Version]
- Rieck, M.; Schumacher-Schuh, A.F.; Callegari-Jacques, S.M.; Altmann, V.; Medeiros, M.S.; Rieder, C.R.; Hutz, M.H. Is there a role for ADORA2A polymorphisms in levodopa-induced dyskinesia in Parkinson’s disease patients? Pharmacogenomics 2015, 16, 573–582. [Google Scholar] [CrossRef]
- Siokas, V.; Karampinis, E.; Aloizou, A.M.; Mentis, A.A.; Liakos, P.; Papadimitriou, D.; Liampas, I.; Nasios, G.; Bogdanos, D.P.; Hadjigeorgiou, G.M.; et al. CYP1A2 rs762551 polymorphism and risk for amyotrophic lateral sclerosis. Neurol. Sci. 2020. [Google Scholar] [CrossRef]
- Siokas, V.; Kardaras, D.; Aloizou, A.M.; Liampas, I.; Papageorgiou, E.; Drakoulis, N.; Tsatsakis, A.; Mitsias, P.D.; Hadjigeorgiou, G.M.; Tsironi, E.E.; et al. CYP1A2 rs762551 and ADORA2A rs5760423 Polymorphisms in Patients with Blepharospasm. J. Mol. Neurosci. 2020, 70, 1370–1375. [Google Scholar] [CrossRef] [PubMed]
PD | |
---|---|
n | 358 |
Male, n (%) | 172 |
Female, n (%) | 186 |
Male:Female ratio | 0.92 |
Age at time of analysis, mean ± SD (y) | 68.07 ± 9.55 |
Age at onset, mean ± SD (y) | 63.01 ± 10.12 |
Variant | Genotypes/ Alleles | Healthy Controls n = 358 | PD n = 358 | Whole Sample n = 716 |
---|---|---|---|---|
ADORA2A rs5760423 | n (%) | n (%) | n (%) | |
Genotype | G/G | 108 (0.31) | 121 (0.35) | 229 (0.33) |
G/T | 182 (0.52) | 158 (0.45) | 340 (0.48) | |
T/T | 62 (0.18) | 71 (0.20) | 133 (0.19) | |
Missing | 6 | 8 | 14 | |
Allele | G | 398 (0.57) | 400 (0.57) | 798 (0.57) |
T | 306 (0.43) | 300 (0.43) | 606 (0.43) | |
CYP1A2 rs762551 | ||||
Genotype | A/A | 144 (0.41) | 150 (0.42) | 294 (0.41) |
A/C | 163 (0.46) | 168 (0.47) | 331 (0.47) | |
C/C | 47 (0.13) | 37 (0.10) | 84 (0.12) | |
Missing | 4 | 3 | 7 | |
Allele | A | 451 (0.64) | 468 (0.66) | 919 (0.65) |
C | 257 (0.36) | 242 (0.34) | 499 (0.35) |
Variant/Mode | Genotype | OR (95 %CI) | p-Value |
---|---|---|---|
ADORA2A rs5760423 | |||
Codominant | G/G | 1.00 | 0.22 |
T/G | 0.77 (0.55–1.08) | ||
T/T | 1.02 (0.67–1.57) | ||
Dominant | G/G | 1.00 | 0.27 |
T/G-T/T | 0.84 (0.61–1.15) | ||
Recessive | G/G-T/G | 1.00 | 0.37 |
T/T | 1.19 (0.82–1.74) | ||
Over-dominant | G/G-T/T | 1.00 | 0.082 |
T/G | 0.77 (0.57–1.03) | ||
Log-additive | – | 0.98 (0.79–1.20) | 0.82 |
CYP1A2 rs762551 | |||
Codominant | A/A | 1.00 | 0.5 |
C/A | 0.99 (0.72–1.35) | ||
C/C | 0.76 (0.46–1.23) | ||
Dominant | A/A | 1.00 | 0.67 |
C/A-C/C | 0.94 (0.70–1.26) | ||
Recessive | A/A-C/A | 1.00 | 0.24 |
C/C | 0.76 (0.48–1.20) | ||
Over-dominant | A/A-C/C | 1.00 | 0.73 |
C/A | 1.05 (0.78–1.41) | ||
Log-additive | – | 0.91 (0.73–1.13) | 0.38 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siokas, V.; Aloizou, A.-M.; Tsouris, Z.; Liampas, I.; Liakos, P.; Calina, D.; Docea, A.O.; Tsatsakis, A.; Bogdanos, D.P.; Hadjigeorgiou, G.M.; et al. ADORA2A rs5760423 and CYP1A2 rs762551 Polymorphisms as Risk Factors for Parkinson’s Disease. J. Clin. Med. 2021, 10, 381. https://doi.org/10.3390/jcm10030381
Siokas V, Aloizou A-M, Tsouris Z, Liampas I, Liakos P, Calina D, Docea AO, Tsatsakis A, Bogdanos DP, Hadjigeorgiou GM, et al. ADORA2A rs5760423 and CYP1A2 rs762551 Polymorphisms as Risk Factors for Parkinson’s Disease. Journal of Clinical Medicine. 2021; 10(3):381. https://doi.org/10.3390/jcm10030381
Chicago/Turabian StyleSiokas, Vasileios, Athina-Maria Aloizou, Zisis Tsouris, Ioannis Liampas, Panagiotis Liakos, Daniela Calina, Anca Oana Docea, Aristidis Tsatsakis, Dimitrios P. Bogdanos, Georgios M. Hadjigeorgiou, and et al. 2021. "ADORA2A rs5760423 and CYP1A2 rs762551 Polymorphisms as Risk Factors for Parkinson’s Disease" Journal of Clinical Medicine 10, no. 3: 381. https://doi.org/10.3390/jcm10030381
APA StyleSiokas, V., Aloizou, A.-M., Tsouris, Z., Liampas, I., Liakos, P., Calina, D., Docea, A. O., Tsatsakis, A., Bogdanos, D. P., Hadjigeorgiou, G. M., & Dardiotis, E. (2021). ADORA2A rs5760423 and CYP1A2 rs762551 Polymorphisms as Risk Factors for Parkinson’s Disease. Journal of Clinical Medicine, 10(3), 381. https://doi.org/10.3390/jcm10030381