Ventricular Assist Device-Specific Infections
Abstract
:1. Introduction
2. Definition and Epidemiological Profile of VAD-Specific Infections
2.1. Classification of VAD-Associated Infections
2.2. Prevalence of VAD-Specific Infections
2.3. Risk Factors of VAD-Specific Infections
3. Medical Significance of VAD-Specific Infections
3.1. VAD-Specific Infection, Heart Transplant, and Pre-Transplant and Post-Transplant Mortality
3.2. Pre-Transplant Infective Status Often Predicts Post-Transplant Infections
4. Microbiological Profile of VAD-Specific Infections
4.1. Bacterial, Fungal or Polymicrobial Origins
4.2. Microbial Pathogenesis: The Important Role of Biofilm Formation in VAD-Specific Infections
4.3. Microbial Route for VAD-Specific and VAD-Related Infections: The Important Role of Biofilm Migration
5. Diagnosis of VAD-Specific Infections
5.1. Clinical Evidence
5.2. Microbiological Evidence
5.3. Radiographic Investigations
6. Prevention of VAD-Specific Infections
6.1. Advances in VAD Design and Manufacturing
6.2. Driveline Care and Patient Education
6.3. Antimicrobial Prophylaxis
6.4. Surgical Prevention Strategies
7. Treatment of VAD-Specific Infections
7.1. Treatment of Uncomplicated Superficial Driveline Infections
7.2. Treatment of Deep VAD-Specific Infections
8. Conclusions and Prospective: Rethinking of Prevention and Treatment of Driveline Infections Based on the Biofilm-Growth Mode of Invading Microorganisms
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Savarese, G.; Lund, L.H. Global public health burden of heart failure. Card. Fail. Rev. 2017, 3, 7–11. [Google Scholar] [CrossRef]
- Marasco, S.F.; McDonald, C.; McGiffin, D.C. Surgical implantation. In Mechanical Circulatory and Respiratory Support; Gregory, S.D., Stevens, M.C., Fraser, J.F., Eds.; Academic Press: Cambridge, CA, USA, 2018. [Google Scholar]
- Zierer, A.; Melby, S.J.; Voeller, R.K.; Guthrie, T.J.; Ewald, G.A.; Shelton, K.; Pasque, M.K.; Moon, M.R.; Damiano, R.J., Jr.; Moazami, N. Late-onset driveline infections: The Achilles’ heel of prolonged left ventricular assist device support. Ann. Thorac. Surg. 2007, 84, 515–520. [Google Scholar] [CrossRef]
- De By, T.; Mohacsi, P.; Gahl, B.; Zittermann, A.; Krabatsch, T.; Gustafsson, F.; Leprince, P.; Meyns, B.; Netuka, I.; Caliskan, K.; et al. The European Registry for Patients with Mechanical Circulatory Support (EUROMACS) of the European Association for Cardio-Thoracic Surgery (EACTS): Second report. Eur. J. Cardio-Thorac. Surg. Off. J. Eur. Assoc. Cardio-Thorac. Surg. 2018, 53, 309–316. [Google Scholar] [CrossRef] [Green Version]
- Kormos, R.L.; Cowger, J.; Pagani, F.D.; Teuteberg, J.J.; Goldstein, D.J.; Jacobs, J.P.; Higgins, R.S.; Stevenson, L.W.; Stehlik, J.; Atluri, P.; et al. The Society of Thoracic Surgeons Intermacs Database Annual Report: Evolving indications, outcomes, and scientific partnerships. Ann. Thorac. Surg. 2019, 107, 341–353. [Google Scholar] [CrossRef]
- Koval, C.E.; Thuita, L.; Moazami, N.; Blackstone, E. Evolution and impact of drive-line infection in a large cohort of continuous-flow ventricular assist device recipients. J. Heart Lung Transplant. 2014, 33, 1164–1172. [Google Scholar] [CrossRef]
- Group, M.S. Nasal mupirocin prevents Staphylococcus aureus exit-site infection during peritoneal dialysis. J. Am. Soc. Nephrol. 1996, 7, 2403–2408. [Google Scholar]
- Qu, Y.; McGiffin, D.; Hayward, C.; McLean, J.; Duncan, C.; Robson, D.; Kure, C.; Shen, R.; Williams, H.; Mayo, S.; et al. Characterization of infected, explanted ventricular assist device drivelines: The role of biofilms and microgaps in the driveline tunnel. J. Heart Lung Transplant. 2020, 39, 1289–1299. [Google Scholar] [CrossRef]
- Qu, Y.; McGiffin, D.; Kure, C.; Ozcelik, B.; Fraser, J.; Thissen, H.; Peleg, A.Y. Biofilm formation and migration on ventricular assist device drivelines. J. Thorac. Cardiovasc. Surg. 2020, 159, 491–502. [Google Scholar] [CrossRef]
- Pereda, D.; Conte, J.V. Left ventricular assist device driveline infections. Cardiol. Clin. 2011, 29, 515–527. [Google Scholar] [CrossRef]
- Qu, Y.; Vilathgamuwa, M.; Bolle, E.; Jayathurathnage, P. Percutaneous and transcutaneous connections. In Mechanical Circulatory and Respiratory Support; Gregory, S.D., Stevens, M.C., Fraser, J.F., Eds.; Academic Press: Cambridge, CA, USA, 2018. [Google Scholar]
- Sinha, P.; Chen, J.M.; Flannery, M.; Scully, B.E.; Oz, M.C.; Edwards, N.M. Infections during left ventricular assist device support do not affect posttransplant outcomes. Circulation 2000, 102, i194–i199. [Google Scholar] [CrossRef] [PubMed]
- Koval, C. VAD infection during bridge-to-transplant, unique aspects of treatment and prevention. Curr. Opin. Organ Transplant. 2018, 23, 400–406. [Google Scholar] [CrossRef] [PubMed]
- Oz, M.C.; Gelijns, A.C.; Miller, L.; Wang, C.; Nickens, P.; Arons, R.; Aaronson, K.; Richenbacher, W.; van Meter, C.; Nelson, K.; et al. Left ventricular assist devices as permanent heart failure therapy: The price of progress. Ann. Surg. 2003, 238, 577–585. [Google Scholar] [CrossRef] [PubMed]
- Haglund, N.A.; Davis, M.E.; Tricarico, N.M.; Keebler, M.E.; Maltais, S. Readmissions after continuous flow left ventricular assist device implantation: Differences observed between two contemporary device types. ASAIO J. 2015, 61, 410–416. [Google Scholar] [CrossRef] [PubMed]
- Slaughter, M.S.; Bostic, R.; Tong, K.; Russo, M.; Rogers, J.G. Temporal changes in hospital costs for left ventricular assist device implantation. J. Card. Surg. 2011, 26, 535–541. [Google Scholar] [CrossRef]
- Nienaber, J.; Wilhelm, M.P.; Sohail, M.R. Current concepts in the diagnosis and management of left ventricular assist device infections. Expert Rev. Anti-Infect. Ther. 2013, 11, 201–210. [Google Scholar] [CrossRef]
- Hannan, M.M.; Husain, S.; Mattner, F.; Danziger-Isakov, L.; Drew, R.J.; Corey, G.R.; Schueler, S.; Holman, W.L.; Lawler, L.P.; Gordon, S.M.; et al. Working formulation for the standardization of definitions of infections in patients using ventricular assist devices. J. Heart Lung Transplant. 2011, 30, 375–384. [Google Scholar] [CrossRef]
- Schibilsky, D.; Benk, C.; Haller, C.; Berchtold-Herz, M.; Siepe, M.; Beyersdorf, F.; Schlensak, C. Double tunnel technique for the LVAD driveline: Improved management regarding driveline infections. J. Artif. Organs Off. J. Jpn. Soc. Artif. Organs 2012, 15, 44–48. [Google Scholar] [CrossRef]
- Monkowski, D.H.; Axelrod, P.; Fekete, T.; Hollander, T.; Furukawa, S.; Samuel, R. Infections associated with ventricular assist devices: Epidemiology and effect on prognosis after transplantation. Transpl. Infect. Dis. Off. J. Transplant. Soc. 2007, 9, 114–120. [Google Scholar] [CrossRef]
- Kirklin, J.K.; Naftel, D.C.; Kormos, R.L.; Stevenson, L.W.; Pagani, F.D.; Miller, M.A.; Baldwin, J.T.; Young, J.B. Fifth INTERMACS annual report: Risk factor analysis from more than 6000 mechanical circulatory support patients. J. Heart Lung Transplant. 2013, 32, 141–156. [Google Scholar] [CrossRef]
- Goldstein, D.J.; Meyns, B.; Xie, R.; Cowger, J.; Pettit, S.; Nakatani, T.; Netuka, I.; Shaw, S.; Yanase, M.; Kirklin, J.K. Third Annual Report From the ISHLT Mechanically Assisted Circulatory Support Registry: A comparison of centrifugal and axial continuous-flow left ventricular assist devices. J. Heart Lung Transplant. 2019, 38, 352–363. [Google Scholar] [CrossRef]
- Tsiouris, A.; Paone, G.; Nemeh, H.W.; Borgi, J.; Williams, C.T.; Lanfear, D.E.; Morgan, J.A. Short and long term outcomes of 200 patients supported by continuous-flow left ventricular assist devices. World J. Cardiol. 2015, 7, 792–800. [Google Scholar] [CrossRef] [PubMed]
- Cagliostro, B.; Levin, A.P.; Fried, J.; Stewart, S.; Parkis, G.; Mody, K.P.; Garan, A.R.; Topkara, V.; Takayama, H.; Naka, Y.; et al. Continuous-flow left ventricular assist devices and usefulness of a standardized strategy to reduce driveline infections. J. Heart Lung Transplant. 2016, 35, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Kirklin, J.K.; Naftel, D.C.; Pagani, F.D.; Kormos, R.L.; Stevenson, L.W.; Blume, E.D.; Myers, S.L.; Miller, M.A.; Baldwin, J.T.; Young, J.B. Seventh INTERMACS annual report: 15,000 patients and counting. J. Heart Lung Transplant. 2015, 34, 1495–1504. [Google Scholar] [CrossRef] [PubMed]
- Stulak, J.M.; Davis, M.E.; Haglund, N.; Dunlay, S.; Cowger, J.; Shah, P.; Pagani, F.D.; Aaronson, K.D.; Maltais, S. Adverse events in contemporary continuous-flow left ventricular assist devices: A multi-institutional comparison shows significant differences. J. Thorac. Cardiovasc. Surg. 2016, 151, 177–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ammirati, E.; Brambatti, M.; Braun, O.; Shah, P.; Cipriani, M.; Bui, Q.M.; Veenis, J.; Lee, E.; Xu, R.; Hong, K.N.; et al. Outcome of patients on heart transplant list treated with a continuous-flow left ventricular assist device: Insights from the TRans-Atlantic registry on VAd and TrAnsplant (TRAViATA). Int. J. Cardiol. 2020, 324, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, D.J.; Naftel, D.; Holman, W.; Bellumkonda, L.; Pamboukian, S.V.; Pagani, F.D.; Kirklin, J. Continuous-flow devices and percutaneous site infections: Clinical outcomes. J. Heart Lung Transplant. 2012, 31, 1151–1157. [Google Scholar] [CrossRef]
- Blanco-Guzman, M.O.; Wang, X.; Vader, J.M.; Olsen, M.A.; Dubberke, E.R. Epidemiology of Left Ventricular Assist Device infections: Findings from a large non-registry cohort. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2020. [Google Scholar] [CrossRef]
- Nienaber, J.J.; Kusne, S.; Riaz, T.; Walker, R.C.; Baddour, L.M.; Wright, A.J.; Park, S.J.; Vikram, H.R.; Keating, M.R.; Arabia, F.A.; et al. Clinical manifestations and management of left ventricular assist device-associated infections. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2013, 57, 1438–1448. [Google Scholar] [CrossRef]
- Sharma, V.; Deo, S.V.; Stulak, J.M.; Durham, L.A., III; Daly, R.C.; Park, S.J.; Baddour, L.M.; Mehra, K.; Joyce, L.D. Driveline infections in left ventricular assist devices: Implications for destination therapy. Ann. Thorac. Surg. 2012, 94, 1381–1386. [Google Scholar] [CrossRef]
- Gordon, R.J.; Weinberg, A.D.; Pagani, F.D.; Slaughter, M.S.; Pappas, P.S.; Naka, Y.; Goldstein, D.J.; Dembitsky, W.P.; Giacalone, J.C.; Ferrante, J.; et al. Prospective, multicenter study of ventricular assist device infections. Circulation 2013, 127, 691–702. [Google Scholar] [CrossRef] [Green Version]
- Schaffer, J.M.; Allen, J.G.; Weiss, E.S.; Arnaoutakis, G.J.; Patel, N.D.; Russell, S.D.; Shah, A.S.; Conte, J.V. Infectious complications after pulsatile-flow and continuous-flow left ventricular assist device implantation. J. Heart Lung Transplant. 2011, 30, 164–174. [Google Scholar] [CrossRef] [PubMed]
- Martin, B.J.; Luc, J.G.Y.; Maruyama, M.; MacArthur, R.; Bates, A.R.; Buchholz, H.; Freed, D.H.; Conway, J. Driveline site is not a predictor of infection after Ventricular Assist Device implantation. ASAIO J. 2018, 64, 616–622. [Google Scholar] [CrossRef] [PubMed]
- Hannan, M.M.; Xie, R.; Cowger, J.; Schueler, S.; de By, T.; Dipchand, A.I.; Chu, V.H.; Cantor, R.S.; Koval, C.E.; Krabatsch, T.; et al. Epidemiology of infection in mechanical circulatory support: A global analysis from the ISHLT Mechanically Assisted Circulatory Support Registry. J. Heart Lung Transplant. 2019, 38, 364–373. [Google Scholar] [CrossRef] [PubMed]
- John, R.; Aaronson, K.D.; Pae, W.E.; Acker, M.A.; Hathaway, D.R.; Najarian, K.B.; Slaughter, M.S. Drive-line infections and sepsis in patients receiving the HVAD system as a left ventricular assist device. J. Heart Lung Transplant. 2014, 33, 1066–1073. [Google Scholar] [CrossRef]
- Belz, S.; Fisquet, S.; Ahuja, A.; Hay, K.; Lavana, J. Incidence of infection and antimicrobial consumption in ventricular assist device (vad) recipients at the prince charles hospital (tpch): A retrospective analysis. Heartlung Circ. 2020, 29, 1234–1240. [Google Scholar] [CrossRef]
- Tong, M.Z.; Smedira, N.G.; Soltesz, E.G.; Starling, R.C.; Koval, C.E.; Porepa, L.; Moazami, N. Outcomes of heart transplant after Left Ventricular Assist Device specific and related infection. Ann. Thorac. Surg. 2015, 100, 1292–1297. [Google Scholar] [CrossRef] [Green Version]
- Schulman, A.R.; Martens, T.P.; Russo, M.J.; Christos, P.J.; Gordon, R.J.; Lowy, F.D.; Oz, M.C.; Naka, Y. Effect of left ventricular assist device infection on post-transplant outcomes. J. Heart Lung Transplant. 2009, 28, 237–242. [Google Scholar] [CrossRef]
- Topkara, V.K.; Kondareddy, S.; Malik, F.; Wang, I.W.; Mann, D.L.; Ewald, G.A.; Moazami, N. Infectious complications in patients with left ventricular assist device: Etiology and outcomes in the continuous-flow era. Ann. Thorac. Surg. 2010, 90, 1270–1277. [Google Scholar] [CrossRef]
- Toda, K.; Yonemoto, Y.; Fujita, T.; Shimahara, Y.; Sato, S.; Nakatani, T.; Kobayashi, J. Risk analysis of bloodstream infection during long-term left ventricular assist device support. Ann. Thorac. Surg. 2012, 94, 1387–1393. [Google Scholar] [CrossRef]
- Wang, S.S.; Chou, N.K.; Hsu, R.B.; Ko, W.J.; Yu, H.Y.; Chen, Y.S.; Huang, S.C.; Chi, N.H.; Liau, C.S.; Lee, Y.T. Heart transplantation in the patient under ventricular assist complicated with device-related infection. Transplant. Proc. 2004, 36, 2377–2379. [Google Scholar] [CrossRef]
- Angleitner, P.; Matic, A.; Kaider, A.; Dimitrov, K.; Sandner, S.; Wiedemann, D.; Riebandt, J.; Schlöglhofer, T.; Laufer, G.; Zimpfer, D. Blood stream infection and outcomes in recipients of a left ventricular assist device. Eur. J. Cardio-Thorac. Surg. Off. J. Eur. Assoc. Cardio-Thorac. Surg. 2020, 58, 907–914. [Google Scholar] [CrossRef] [PubMed]
- Gordon, S.M.; Schmitt, S.K.; Jacobs, M.; Smedira, N.M.; Goormastic, M.; Banbury, M.K.; Yeager, M.; Serkey, J.; Hoercher, K.; McCarthy, P.M. Nosocomial bloodstream infections in patients with implantable left ventricular assist devices. Ann. Thorac. Surg. 2001, 72, 725–730. [Google Scholar] [CrossRef]
- Ekkelenkamp, M.B.; Vervoorn, M.T.; Bayjanov, J.R.; Fluit, A.C.; Benaissa-Trouw, B.J.; Ramjankhan, F.Z. Therapy and outcome of Staphylococcus aureus infections of intracorporeal Ventricular Assist Devices. Artif. Organs 2018, 42, 983–991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrmann, M.; Weyand, M.; Greshake, B.; von Eiff, C.; Proctor, R.A.; Scheld, H.H.; Peters, G. Left ventricular assist device infection is associated with increased mortality but is not a contraindication to transplantation. Circulation 1997, 95, 814–817. [Google Scholar] [CrossRef] [PubMed]
- Yuan, N.; Arnaoutakis, G.J.; George, T.J.; Allen, J.G.; Ju, D.G.; Schaffer, J.M.; Russell, S.D.; Shah, A.S.; Conte, J.V. The spectrum of complications following left ventricular assist device placement. J. Card. Surg. 2012, 27, 630–638. [Google Scholar] [CrossRef]
- Aggarwal, A.; Gupta, A.; Kumar, S.; Baumblatt, J.A.; Pauwaa, S.; Gallagher, C.; Treitman, A.; Pappas, P.; Tatooles, A.; Bhat, G. Are blood stream infections associated with an increased risk of hemorrhagic stroke in patients with a left ventricular assist device? ASAIO J. 2012, 58, 509–513. [Google Scholar] [CrossRef]
- Shah, P.; Birk, S.E.; Cooper, L.B.; Psotka, M.A.; Kirklin, J.K.; Barnett, S.D.; Katugaha, S.B.; Phillips, S.; Looby, M.M.; Pagani, F.D.; et al. Stroke and death risk in ventricular assist device patients varies by ISHLT infection category: An INTERMACS analysis. J. Heart Lung Transplant. 2019, 38, 721–730. [Google Scholar] [CrossRef]
- Yoshioka, D.; Okazaki, S.; Toda, K.; Murase, S.; Saito, S.; Domae, K.; Miyagawa, S.; Yoshikawa, Y.; Daimon, T.; Sakaguchi, M.; et al. Prevalence of Cerebral Microbleeds in Patients With Continuous-Flow Left Ventricular Assist Devices. J. Am. Heart Assoc. 2017, 6, e005955. [Google Scholar] [CrossRef]
- Hequet, D.; Kralidis, G.; Carrel, T.; Cusini, A.; Garzoni, C.; Hullin, R.; Meylan, P.R.; Mohacsi, P.; Mueller, N.J.; Ruschitzka, F.; et al. Ventricular assist devices as bridge to heart transplantation: Impact on post-transplant infections. BMC Infect. Dis. 2016, 16, 321. [Google Scholar] [CrossRef] [Green Version]
- Varr, B.C.; Restaino, S.W.; Farr, M.; Scully, B.; Colombo, P.C.; Naka, Y.; Mancini, D.M. Infectious complications after cardiac transplantation in patients bridged with mechanical circulatory support devices versus medical therapy. J. Heart Lung Transplant. 2016, 35, 1116–1123. [Google Scholar] [CrossRef]
- Weyand, M.; Hermann, M.; Kondruweit, M.; Deng, M.C.; Schmid, C.; Peters, G.; Scheld, H.H. Clinical impact of infections in left ventricular assist device recipients: The importance of site and organism. Transplant. Proc. 1997, 29, 3327–3329. [Google Scholar] [CrossRef]
- Toba, F.A.; Akashi, H.; Arrecubieta, C.; Lowy, F.D. Role of biofilm in Staphylococcus aureus and Staphylococcus epidermidis ventricular assist device driveline infections. J. Thorac. Cardiovasc. Surg. 2011, 141, 1259–1264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aslam, S.; Hernandez, M.; Thornby, J.; Zeluff, B.; Darouiche, R.O. Risk factors and outcomes of fungal ventricular-assist device infections. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2010, 50, 664–671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lehnert, A.L.; Hart, A.; Brouse, S.D.; Charnigo, R.J.; Branam, S.; Guglin, M.E. Left ventricular assist device-related infections: Does the time of onset matter? J. Artif. Organs Off. J. Jpn. Soc. Artif. Organs 2019, 22, 98–103. [Google Scholar] [CrossRef]
- Shoham, S.; Shaffer, R.; Sweet, L.; Cooke, R.; Donegan, N.; Boyce, S. Candidemia in patients with ventricular assist devices. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2007, 44, e9–e12. [Google Scholar] [CrossRef]
- Bagdasarian, N.G.; Malani, A.N.; Pagani, F.D.; Malani, P.N. Fungemia associated with left ventricular assist device support. J. Card. Surg. 2009, 24, 763–765. [Google Scholar] [CrossRef] [Green Version]
- Maly, J.; Szarszoi, O.; Netuka, I.; Dorazilova, Z.; Pirk, J. Fungal infections associated with long-term mechanical circulatory support-diagnosis and management. J. Card. Surg. 2014, 29, 95–100. [Google Scholar] [CrossRef]
- Nurozler, F.; Argenziano, M.; Oz, M.C.; Naka, Y. Fungal left ventricular assist device endocarditis. Ann. Thorac. Surg. 2001, 71, 614–618. [Google Scholar] [CrossRef]
- Harriott, M.M.; Noverr, M.C. Candida albicans and Staphylococcus aureus form polymicrobial biofilms: Effects on antimicrobial resistance. Antimicrob. Agents Chemother. 2009, 53, 3914–3922. [Google Scholar] [CrossRef] [Green Version]
- Costerton, J.W.; Stewart, P.S.; Greenberg, E.P. Bacterial biofilms: A common cause of persistent infections. Science 1999, 284, 1318–1322. [Google Scholar] [CrossRef] [Green Version]
- Qu, Y.; Daley, A.J.; Istivan, T.S.; Rouch, D.A.; Deighton, M.A. Densely adherent growth mode, rather than extracellular polymer substance matrix build-up ability, contributes to high resistance of Staphylococcus epidermidis biofilms to antibiotics. J. Antimicrob. Chemother. 2010, 65, 1405–1411. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Hay, I.D.; Cameron, D.R.; Speir, M.; Cui, B.; Su, F.; Peleg, A.Y.; Lithgow, T.; Deighton, M.A.; Qu, Y. Antibiotic regimen based on population analysis of residing persister cells eradicates Staphylococcus epidermidis biofilms. Sci. Rep. 2015, 5, 18578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qu, Y.; Daley, A.J.; Istivan, T.S.; Garland, S.M.; Deighton, M.A. Antibiotic susceptibility of coagulase-negative staphylococci isolated from very low birth weight babies: Comprehensive comparisons of bacteria at different stages of biofilm formation. Ann. Clin. Microbiol. Antimicrob. 2010, 9, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arrecubieta, C.; Toba, F.A.; von Bayern, M.; Akashi, H.; Deng, M.C.; Naka, Y.; Lowy, F.D. SdrF, a Staphylococcus epidermidis surface protein, contributes to the initiation of ventricular assist device driveline-related infections. PLoS Pathog. 2009, 5, e1000411. [Google Scholar] [CrossRef] [Green Version]
- Pinninti, M.; Thohan, V.; Sulemanjee, N.Z. Driveline insulation as a conduit for left ventricular assist device pocket infection. J. Thorac. Cardiovasc. Surg. 2014, 148, e135–e136. [Google Scholar] [CrossRef] [Green Version]
- Toda, K.; Sawa, Y. Clinical management for complications related to implantable LVAD use. Gen. Thorac. Cardiovasc. Surg. 2015, 63, 1–7. [Google Scholar] [CrossRef]
- Bernhardt, A.M.; Schlöglhofer, T.; Lauenroth, V.; Mueller, F.; Mueller, M.; Schoede, A.; Klopsch, C. Prevention and early treatment of driveline infections in ventricular assist device patients—The DESTINE staging proposal and the first standard of care protocol. J. Crit. Care 2020, 56, 106–112. [Google Scholar] [CrossRef]
- Akiyama, M.; Hayatsu, Y.; Sakatsume, K.; Fujiwara, H.; Shimizu, T.; Akamatsu, D.; Kakuta, R.; Gu, Y.; Kaku, M.; Kumagai, K.; et al. Graft placement with an omental flap for ruptured infective common iliac aneurysm in a patient with a continuous flow left ventricular assist device: Alternative surgical approach avoiding driveline injury and pathogen identification by 16S ribosomal DNA gene analysis. J. Artif. Organs Off. J. Jpn. Soc. Artif. Organs 2016, 19, 383–386. [Google Scholar] [CrossRef]
- Kiernan, M.S.; Delbeke, D. What lies within?: Imaging to detect ventricular assist device infection. JACC Cardiovasc. Imaging 2019, 12, 730–732. [Google Scholar] [CrossRef]
- Kusne, S.; Mooney, M.; Danziger-Isakov, L.; Kaan, A.; Lund, L.H.; Lyster, H.; Wieselthaler, G.; Aslam, S.; Cagliostro, B.; Chen, J.; et al. An ISHLT consensus document for prevention and management strategies for mechanical circulatory support infection. J. Heart Lung Transplant. 2017, 36, 1137–1153. [Google Scholar] [CrossRef]
- Akin, S.; Muslem, R.; Constantinescu, A.A.; Manintveld, O.C.; Birim, O.; Brugts, J.J.; Maat, A.; Froberg, A.C.; Bogers, A.; Caliskan, K. 18F-FDG PET/CT in the diagnosis and management of continuous flow left ventricular assist device infections: A case series and review of the literature. ASAIO J. 2018, 64, e11–e19. [Google Scholar] [CrossRef] [PubMed]
- Erba, P.A.; Sollini, M.; Conti, U.; Bandera, F.; Tascini, C.; De Tommasi, S.M.; Zucchelli, G.; Doria, R.; Menichetti, F.; Bongiorni, M.G.; et al. Radiolabeled WBC scintigraphy in the diagnostic workup of patients with suspected device-related infections. JACC Cardiovasc. Imaging 2013, 6, 1075–1086. [Google Scholar] [CrossRef] [PubMed]
- De Vaugelade, C.; Mesguich, C.; Nubret, K.; Camou, F.; Greib, C.; Dournes, G.; Debordeaux, F.; Hindie, E.; Barandon, L.; Tlili, G. Infections in patients using ventricular-assist devices: Comparison of the diagnostic performance of 18F-FDG PET/CT scan and leucocyte-labeled scintigraphy. J. Nucl. Cardiol. Off. Publ. Am. Soc. Nucl. Cardiol. 2019, 26, 42–55. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Basu, S.; Torigian, D.; Anand, V.; Zhuang, H.; Alavi, A. Role of modern imaging techniques for diagnosis of infection in the era of 18f-fluorodeoxyglucose positron emission tomography. Clin. Microbiol. Rev. 2008, 21, 209–224. [Google Scholar] [CrossRef] [Green Version]
- Tam, M.C.; Patel, V.N.; Weinberg, R.L.; Hulten, E.A.; Aaronson, K.D.; Pagani, F.D.; Corbett, J.R.; Murthy, V.L. Diagnostic accuracy of FDG PET/CT in suspected LVAD Infections: A case series, systematic review, and Meta-analysis. JACC Cardiovasc. Imaging 2020, 13, 1191–1202. [Google Scholar] [CrossRef]
- Ten Hove, D.; Treglia, G.; Slart, R.; Damman, K.; Wouthuyzen-Bakker, M.; Postma, D.F.; Gheysens, O.; Borra, R.J.H.; Mecozzi, G.; van Geel, P.P.; et al. The value of (18)F-FDG PET/CT for the diagnosis of device-related infections in patients with a left ventricular assist device: A systematic review and meta-analysis. Eur. J. Nucl. Med. Mol. Imaging 2020, 1–3. [Google Scholar] [CrossRef]
- Tanis, W.; Scholtens, A.; Habets, J.; van den Brink, R.B.; van Herwerden, L.A.; Chamuleau, S.A.; Budde, R.P. CT angiography and ¹⁸F-FDG-PET fusion imaging for prosthetic heart valve endocarditis. JACC Cardiovasc. Imaging 2013, 6, 1008–1013. [Google Scholar] [CrossRef] [Green Version]
- Dell’Aquila, A.M.; Mastrobuoni, S.; Alles, S.; Wenning, C.; Henryk, W.; Schneider, S.R.; Deschka, H.; Sindermann, J.R.; Scherer, M. Contributory role of Fluorine 18-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography in the diagnosis and clinical management of infections in patients supported with a continuous-flow Left Ventricular Assist Device. Ann. Thorac. Surg. 2016, 101, 87–94, discussion 94. [Google Scholar] [CrossRef] [Green Version]
- Hata, H.; Fujita, T.; Shimahara, Y.; Sato, S.; Yanase, M.; Seguchi, O.; Sato, T.; Nakatani, T.; Kobayashi, J. Early and mid-term outcomes of left ventricular assist device implantation and future prospects. Gen. Thorac. Cardiovasc. Surg. 2015, 63, 557–564. [Google Scholar] [CrossRef]
- Mehra, M.R.; Uriel, N.; Naka, Y.; Cleveland, J.C., Jr.; Yuzefpolskaya, M.; Salerno, C.T.; Walsh, M.N.; Milano, C.A.; Patel, C.B.; Hutchins, S.W.; et al. A fully magnetically levitated left ventricular assist device—Final report. N. Engl. J. Med. 2019, 380, 1618–1627. [Google Scholar] [CrossRef]
- Schramm, R.; Zittermann, A.; Morshuis, M.; Schoenbrodt, M.; von Roessing, E.; von Dossow, V.; Koster, A.; Fox, H.; Hakim-Meibodi, K.; Gummert, J.F. Comparing short-term outcome after implantation of the HeartWare® HVAD® and the Abbott® HeartMate 3®. ESC Heart Fail. 2020, 7, 908–914. [Google Scholar] [CrossRef] [PubMed]
- Coyle, L.; Gallagher, C.; Kukla, L.; Paliga, R.; Siemeck, R.; Yost, G.; Dia, M.; Tatooles, A. Two-year outcomes in HeartMate 3 versus HeartWare HVAD patients implanted as destination therapy. J. Heart Lung Transplant. 2020, 39, S411. [Google Scholar] [CrossRef]
- Tuncer, O.N.; Kemaloglu, C.; Erbasan, O.; Golbasi, I.; Turkay, C.; Bayezid, O. Outcomes and readmissions after continuous flow left ventricular assist device: Heartmate II versus Heartware ventricular assist device. Transplant. Proc. 2016, 48, 2157–2161. [Google Scholar] [CrossRef] [PubMed]
- Sabashnikov, A.; Mohite, P.N.; Zych, B.; Popov, A.F.; Fatullayev, J.; Zeriouh, M.; Hards, R.; Sáez, D.G.; Capoccia, M.; Choi, Y.H.; et al. Outcomes in patients receiving HeartMate II versus HVAD left ventricular assist device as a bridge to transplantation. Transplant. Proc. 2014, 46, 1469–1475. [Google Scholar] [CrossRef]
- Imamura, T.; Murasawa, T.; Kawasaki, H.; Kashiwa, K.; Kinoshita, O.; Nawata, K.; Ono, M. Correlation between driveline features and driveline infection in left ventricular assist device selection. J. Artif. Organs Off. J. Jpn. Soc. Artif. Organs 2017, 20, 34–41. [Google Scholar] [CrossRef]
- Pascual, A. Pathogenesis of catheter-related infections: Lessons for new designs. Clin. Microbiol. Infect. 2002, 8, 256–264. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Lopez, G.; Pascual, A.; Perea, E.J. Effect of plastic catheter material on bacterial adherence and viability. J. Med. Microbiol. 1991, 34, 349–353. [Google Scholar] [CrossRef] [Green Version]
- Qu, Y.; Li, Y.; Cameron, D.R.; Easton, C.D.; Zhu, X.; Zhu, M.; Salwiczek, M.; Muir, B.W.; Thissen, H.; Daley, A.; et al. Hyperosmotic infusion and oxidized surfaces are essential for biofilm formation of Staphylococcus capitis from the neonatal intensive care unit. Front Microbiol 2020, 11, 920. [Google Scholar] [CrossRef]
- Mattner, F.; Chaberny, I.F.; Mattner, L.; Gastmeier, P.; Tessmann, R.; Struber, M. Infection control measures and surveillance of patients with ventricular assist devices. Der Anaesthesist 2007, 56, 429–436. [Google Scholar] [CrossRef]
- Cannon, A.; Elliott, T.; Ballew, C.; Cavey, J.; O’Shea, G.; Franzwa, J.; Puhlman, M.; Bennett, J.; Ryan, T.; Lockard, K.; et al. Variability in infection control measures for the percutaneous lead among programs implanting long-term ventricular assist devices in the United States. Prog. Transplant. 2012, 22, 351–359. [Google Scholar] [CrossRef]
- Lander, M.M.; Kunz, N.; Dunn, E.; Althouse, A.D.; Lockard, K.; Shullo, M.A.; Kormos, R.L.; Teuteberg, J.J. Substantial reduction in driveline infection rates with the modification of driveline dressing protocol. J. Card. Fail. 2018, 24, 746–752. [Google Scholar] [CrossRef] [PubMed]
- Percival, S.L.; Bowler, P.G.; Russell, D. Bacterial resistance to silver in wound care. J. Hosp. Infect. 2005, 60, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Yarboro, L.T.; Bergin, J.D.; Kennedy, J.L.; Ballew, C.C.; Benton, E.M.; Ailawadi, G.; Kern, J.A. Technique for minimizing and treating driveline infections. Ann. Cardiothorac. Surg. 2014, 3, 557–562. [Google Scholar] [CrossRef] [PubMed]
- Baronetto, A.; Centofanti, P.; Attisani, M.; Ricci, D.; Mussa, B.; Devotini, R.; Simonato, E.; Rinaldi, M. A simple device to secure ventricular assist device driveline and prevent exit-site infection. Interact. Cardiovasc. Thorac. Surg. 2014, 18, 415–417. [Google Scholar] [CrossRef] [Green Version]
- Barber, J.; Leslie, G. A simple education tool for ventricular assist device patients and their caregivers. J. Cardiovasc. Nurs. 2015, 30, e1–e10. [Google Scholar] [CrossRef]
- Smith, E.M.; Franzwa, J. Chronic outpatient management of patients with a left ventricular assist device. J. Thorac. Dis. 2015, 7, 2112–2124. [Google Scholar] [CrossRef]
- Ballew, C.; Young, M.; Burns, E.; Mazimba, S. Showering with the driveline exit site exposed to well water does not increase rates of driveline exit site infection. J. Heart Lung Transplant. 2019, 38, S299–S300. [Google Scholar] [CrossRef]
- Aburjania, N.; Sherazi, S.; Tchantchaleishvili, V.; Alexis, J.D.; Hay, C.M. Stopping conventional showering decreases Pseudomonas infections in left ventricular assist device patients. Int. J. Artif. Organs 2017, 40, 282–285. [Google Scholar] [CrossRef]
- Acharya, M.N.; Som, R.; Tsui, S. What is the optimum antibiotic prophylaxis in patients undergoing implantation of a left ventricular assist device? Interact. Cardiovasc. Thorac. Surg. 2012, 14, 209–214. [Google Scholar] [CrossRef] [Green Version]
- Walker, P.C.; DePestel, D.D.; Miles, N.A.; Malani, P.N. Surgical infection prophylaxis for left ventricular assist device implantation. J. Card. Surg. 2011, 26, 440–443. [Google Scholar] [CrossRef]
- Edwards, F.H.; Engelman, R.M.; Houck, P.; Shahian, D.M.; Bridges, C.R. The Society of Thoracic Surgeons Practice guideline series: Antibiotic prophylaxis in cardiac surgery, part i: Duration. Ann. Thorac. Surg. 2006, 81, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Stulak, J.M.; Maltais, S.; Cowger, J.; Joyce, L.D.; Daly, R.C.; Park, S.J.; Aaronson, K.D.; Pagani, F.D. Prevention of percutaneous driveline infection after left ventricular assist device implantation: Prophylactic antibiotics are not necessary. ASAIO J. 2013, 59, 570–574. [Google Scholar] [CrossRef]
- Bratzler, D.W.; Dellinger, E.P.; Olsen, K.M.; Perl, T.M.; Auwaerter, P.G.; Bolon, M.K.; Fish, D.N.; Napolitano, L.M.; Sawyer, R.G.; Slain, D.; et al. Clinical practice guidelines for antimicrobial prophylaxis in surgery. Am. J. Health Syst. Pharm. 2013, 70, 195–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engelman, R.; Shahian, D.; Shemin, R.; Guy, T.S.; Bratzler, D.; Edwards, F.; Jacobs, M.; Fernando, H.; Bridges, C. The Society of Thoracic Surgeons practice guideline series: Antibiotic prophylaxis in cardiac surgery, part ii: Antibiotic choice. Ann. Thorac. Surg. 2007, 83, 1569–1576. [Google Scholar] [CrossRef] [PubMed]
- Lazar, H.L.; Salm, T.V.; Engelman, R.; Orgill, D.; Gordon, S. Prevention and management of sternal wound infections. J. Thorac. Cardiovasc. Surg. 2016, 152, 962–972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sousa-Uva, M.; Head, S.J.; Milojevic, M.; Collet, J.P.; Landoni, G.; Castella, M.; Dunning, J.; Gudbjartsson, T.; Linker, N.J.; Sandoval, E.; et al. 2017 EACTS Guidelines on perioperative medication in adult cardiac surgery. Eur. J. Cardio-Thorac. Surg. Off. J. Eur. Assoc. Cardio-Thorac. Surg. 2018, 53, 5–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gelijns, A.C.; Moskowitz, A.J.; Acker, M.A.; Argenziano, M.; Geller, N.L.; Puskas, J.D.; Perrault, L.P.; Smith, P.K.; Kron, I.L.; Michler, R.E.; et al. Management practices and major infections after cardiac surgery. J. Am. Coll. Cardiol. 2014, 64, 372–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nurjadi, D.; Last, K.; Klein, S.; Boutin, S.; Schmack, B.; Mueller, F.; Heeg, K.; Ruhparwar, A.; Heininger, A.; Zanger, P. Nasal colonization with Staphylococcus aureus is a risk factor for ventricular assist device infection in the first year after implantation: A prospective, single-centre, cohort study. J. Infect. 2020, 80, 511–518. [Google Scholar] [CrossRef]
- Qu, Y.; McGiffin, D.; Kure, C.; McLean, J.; Duncan, C.; Peleg, A.Y. In vitro evaluation of medihoney antibacterial wound gel as an anti-biofilm agent against ventricular assist device driveline infections. Front. Microbiol. 2020, 11, 2927. [Google Scholar] [CrossRef]
- Dean, D.; Kallel, F.; Ewald, G.A.; Tatooles, A.; Sheridan, B.C.; Brewer, R.J.; Caldeira, C.; Farrar, D.J.; Akhter, S.A. Reduction in driveline infection rates: Results from the HeartMate II Multicenter Driveline Silicone Skin Interface (SSI) Registry. J. Heart Lung Transplant. 2015, 34, 781–789. [Google Scholar] [CrossRef]
- Singh, A.; Russo, M.J.; Valeroso, T.B.; Anderson, A.S.; Rich, J.D.; Jeevanandam, V.; Akhter, S.A. Modified HeartMate II driveline externalization technique significantly decreases incidence of infection and improves long-term survival. ASAIO J. 2014, 60, 613–616. [Google Scholar] [CrossRef] [PubMed]
- McCandless, S.P.; Ledford, I.D.; Mason, N.O.; Alharethi, R.; Rasmusson, B.Y.; Budge, D.; Stoker, S.L.; Clayson, S.E.; Doty, J.R.; Thomsen, G.E.; et al. Comparing velour versus silicone interfaces at the driveline exit site of HeartMate II devices: Infection rates, histopathology, and ultrastructural aspects. Cardiovasc. Pathol. Off. J. Soc. Cardiovasc. Pathol. 2015, 24, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Rubinfeld, G.; Levine, J.P.; Reyentovich, A.; DeAnda, A.; Balsam, L.B. Management of rapidly ascending driveline tunnel infection. J. Card. Surg. 2015, 30, 853–855. [Google Scholar] [CrossRef] [PubMed]
- Asaki, S.Y.; Dean McKenzie, E.; Elias, B.; Adachi, I. Rectus-sparing technique for driveline insertion of ventricular assist device. Ann. Thorac. Surg. 2015, 100, 1920–1922. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, Y.; Fukushima, S.; Shimahara, Y.; Yamashita, K.; Kawamoto, N.; Kuroda, K.; Seguchi, O.; Yanase, M.; Fukushima, N.; Shimizu, H.; et al. Driveline angle is crucial for preventing driveline infection in patients with HeartMate II device. J. Artif. Organs Off. J. Jpn. Soc. Artif. Organs 2019, 22, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Abdulrhman, M.; Elbarbary, N.S.; Ahmed Amin, D.; Saeid Ebrahim, R. Honey and a mixture of honey, beeswax, and olive oil-propolis extract in treatment of chemotherapy-induced oral mucositis: A randomized controlled pilot study. Pediatric Hematol. Oncol. 2012, 29, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Wert, L.; Hanke, J.S.; Dogan, G.; Ricklefs, M.; Fleissner, F.; Chatterjee, A.; Feldmann, C.; Haverich, A.; Schmitto, J.D. Reduction of driveline infections through doubled driveline tunneling of left ventricular assist devices-5-year follow-up. J. Thorac. Dis. 2018, 10, S1703–S1710. [Google Scholar] [CrossRef]
- Fleissner, F.; Avsar, M.; Malehsa, D.; Strueber, M.; Haverich, A.; Schmitto, J.D. Reduction of driveline infections through doubled driveline tunneling of left ventricular assist devices. Artif. Organs 2013, 37, 102–107. [Google Scholar] [CrossRef]
- Sezai, A.; Niino, T.; Osaka, S.; Yaoita, H.; Arimoto, M.; Hata, H.; Shiono, M. New treatment for percutaneous sites in patients with a ventricular assist device: Nihon university crystal violet method. Ann. Thorac. Cardiovasc. Surg. Off. J. Assoc. Thorac. Cardiovasc. Surg. Asia 2016, 22, 246–250. [Google Scholar] [CrossRef] [Green Version]
- Hilker, L.; von Woedtke, T.; Weltmann, K.D.; Wollert, H.G. Cold atmospheric plasma: A new tool for the treatment of superficial driveline infections. Eur. J. Cardio-Thorac. Surg. Off. J. Eur. Assoc. Cardio-Thorac. Surg. 2017, 51, 186–187. [Google Scholar] [CrossRef]
- Joost, I.; Bothe, W.; Pausch, C.; Kaasch, A.; Lange, B.; Peyerl-Hoffmann, G.; Flüh, G.; Müller, M.; Schneider, C.; Seifert, H.; et al. Staphylococcus aureus bloodstream infection in patients with ventricular assist devices-Management and outcome in a prospective bicenter cohort. J. Infect. 2018, 77, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Pieri, M.; Scandroglio, A.M.; Müller, M.; Pergantis, P.; Kretzschmar, A.; Kaufmann, F.; Falk, V.; Krabatsch, T.; Arlt, G.; Potapov, E.; et al. Surgical management of driveline infections in patients with left ventricular assist devices. J. Card. Surg. 2016, 31, 765–771. [Google Scholar] [CrossRef] [PubMed]
- Sezai, A.; Unosawa, S.; Taoka, M.; Osaka, S.; Kitazumi, Y.; Suzuki, K.; Nakai, T.; Tanaka, M. New treatment for driveline infection following implantation of a ventricular assist device. Heart Surg. Forum 2020, 23, e132–e134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ustunsoy, H.; Gokaslan, G.; Hafiz, E.; Koc, M.; Asam, M.; Kalbisade, E.O.; Delibas, L. An old friend in the treatment of drive line infection after left ventricular assist device implantation: Omentoplasty—A case report. Transplant. Proc. 2015, 47, 1540–1541. [Google Scholar] [CrossRef]
- Fakhro, A.; Jalalabadi, F.; Brown, R.H.; Izaddoost, S.A. Treatment of infected cardiac implantable electronic devices. Semin. Plast. Surg. 2016, 30, 60–65. [Google Scholar] [CrossRef] [Green Version]
- Kretlow, J.D.; Brown, R.H.; Wolfswinkel, E.M.; Xue, A.S.; Hollier, L.H., Jr.; Ho, J.K.; Mallidi, H.R.; Gregoric, I.D.; Frazier, O.H.; Izaddoost, S.A. Salvage of infected left ventricular assist device with antibiotic beads. Plast. Reconstr. Surg. 2014, 133, 28e–38e. [Google Scholar] [CrossRef]
- Howlin, R.P.; Brayford, M.J.; Webb, J.S.; Cooper, J.J.; Aiken, S.S.; Stoodley, P. Antibiotic-loaded synthetic calcium sulfate beads for prevention of bacterial colonization and biofilm formation in periprosthetic infections. Antimicrob. Agents Chemother. 2015, 59, 111–120. [Google Scholar] [CrossRef] [Green Version]
- Qu, Y.; Istivan, T.S.; Daley, A.J.; Rouch, D.A.; Deighton, M.A. Comparison of various antimicrobial agents as catheter lock solutions: Preference for ethanol in eradication of coagulase-negative staphylococcal biofilms. J. Med. Microbiol. 2009, 58, 442–450. [Google Scholar] [CrossRef]
- Moazami, N.; Milano, C.A.; John, R.; Sun, B.; Adamson, R.M.; Pagani, F.D.; Smedira, N.; Slaughter, M.S.; Farrar, D.J.; Frazier, O.H. Pump replacement for left ventricular assist device failure can be done safely and is associated with low mortality. Ann. Thorac. Surg. 2013, 95, 500–505. [Google Scholar] [CrossRef]
- Yost, G.; Coyle, L.; Gallagher, C.; Cotts, W.; Pappas, P.; Tatooles, A. Outcomes following left ventricular assist device exchange: Focus on the impacts of device infection. ASAIO J. 2020. [Google Scholar] [CrossRef]
- Lucke, L.; Bluvshtein, V. Safety considerations for wireless delivery of continuous power to implanted medical devices. IEEE Eng. Med. Biol. Soc. Annu. Conf. 2014, 2014, 286–289. [Google Scholar] [CrossRef]
- Sin, D.C.; Kei, H.L.; Miao, X. Surface coatings for ventricular assist devices. In Coatings for Biomedical Applications; Driver, M., Ed.; Woodhead Publishing: Cambridge, UK, 2012. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, Y.; Peleg, A.Y.; McGiffin, D. Ventricular Assist Device-Specific Infections. J. Clin. Med. 2021, 10, 453. https://doi.org/10.3390/jcm10030453
Qu Y, Peleg AY, McGiffin D. Ventricular Assist Device-Specific Infections. Journal of Clinical Medicine. 2021; 10(3):453. https://doi.org/10.3390/jcm10030453
Chicago/Turabian StyleQu, Yue, Anton Y. Peleg, and David McGiffin. 2021. "Ventricular Assist Device-Specific Infections" Journal of Clinical Medicine 10, no. 3: 453. https://doi.org/10.3390/jcm10030453
APA StyleQu, Y., Peleg, A. Y., & McGiffin, D. (2021). Ventricular Assist Device-Specific Infections. Journal of Clinical Medicine, 10(3), 453. https://doi.org/10.3390/jcm10030453