The Key Comorbidities in Patients with Rheumatoid Arthritis: A Narrative Review
Abstract
:1. Introduction
2. Search Strategy
3. CV Comorbidities in RA
3.1. Prevalence of CVD in Patients with RA
3.2. Impact of CV Comorbidities in Patients with RA
3.3. Risk Factors for CVD in Patients with RA
3.4. Effect of RA Treatments on CV Risk
4. Infections in Patients with RA
4.1. Prevalence of Infections in Patients with RA
4.2. Impact of Infections in Patients with RA
4.3. Risk Factors for Infections in Patients with RA
4.3.1. Comorbidities as a Risk Factor for Infection in Patients with RA
4.3.2. Disease Activity as a Risk Factor for Infection in Patients with RA
4.3.3. Treatment Regimens and the Risk of Infection in Patients with RA
GCs Increase the Risk of Infection in Patients with RA
csDMARDs and the Risk of Infection in Patients with RA
bDMARDs and the Risk of Infection in Patients with RA
TNF Inhibitors and the Risk of Infection in Patients with RA
tsDMARDs and the Risk of Infection in Patients with RA
RA Treatment Regimens and the Risk of Reactivating Latent Infections
The Impact of RA Treatment Regimens on the Severity of COVID-19 Infection
5. Lymphoma and NMSC in RA
5.1. Prevalence of Lymphoma in Patients with RA
5.2. Impact of RA on Outcomes in Patients with Lymphoma
5.3. Risk Factors for Development of Lymphoma in Patients with RA (Including Effect of TNF Inhibitors)
5.4. Prevalence of NMSC in Patients with RA
5.5. Risk Factors for NMSC in Patients with RA
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dougados, M.; Soubrier, M.; Antunez, A.; Balint, P.; Balsa, A.; Buch, M.H.; Casado, G.; Detert, J.; El-Zorkany, B.; Emery, P.; et al. Prevalence of comorbidities in rheumatoid arthritis and evaluation of their monitoring: Results of an international, cross-sectional study (COMORA). Ann. Rheum. Dis. 2014, 73, 62–68. [Google Scholar] [CrossRef] [Green Version]
- Norton, S.; Koduri, G.; Nikiphorou, E.; Dixey, J.; Williams, P.; Young, A. A study of baseline prevalence and cumulative incidence of comorbidity and extra-articular manifestations in RA and their impact on outcome. Rheumatology 2013, 52, 99–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radner, H.; Lesperance, T.; Accortt, N.A.; Solomon, D.H. Incidence and prevalence of cardiovascular risk factors among patients with rheumatoid arthritis, psoriasis, or psoriatic arthritis. Arthritis Care Res. 2017, 69, 1510–1518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramos, A.L.; Redeker, I.; Hoffmann, F.; Callhoff, J.; Zink, A.; Albrecht, K. Comorbidities in patients with rheumatoid arthritis and their association with patient-reported outcomes: Results of claims data linked to questionnaire survey. J. Rheumatol. 2019, 46, 564–571. [Google Scholar] [CrossRef] [PubMed]
- FDA. Highlights of Prescribing Information: Enbrel® (Etanercept). Available online: www.fda.gov/medwatch. (accessed on 2 November 2020).
- Burmester, G.R.; Landewé, R.; Genovese, M.C.; Friedman, A.W.; Pfeifer, N.D.; Varothai, N.A.; Lacerda, A.P. Adalimumab long-term safety: Infections, vaccination response and pregnancy outcomes in patients with rheumatoid arthritis. Ann. Rheum. Dis. 2017, 76, 414–417. [Google Scholar] [CrossRef] [PubMed]
- Massalska, M.; Maslinski, W.; Ciechomska, M. Small molecule inhibitors in the treatment of rheumatoid arthritis and beyond: Latest updates and potential strategy for fighting COVID-19. Cells 2020, 9, 1876. [Google Scholar] [CrossRef]
- Putrik, P.; Ramiro, S.; Kvien, T.K.; Sokka, T.; Pavlova, M.; Uhlig, T.; Boonen, A. Inequities in access to biologic and synthetic DMARDs across 46 European countries. Ann. Rheum. Dis. 2014, 73, 198–206. [Google Scholar] [CrossRef]
- Benjamin, O.; Bansal, P.; Goyal, A.; Lappin, S.L. Disease Modifying Anti-Rheumatic Drugs (DMARD) [Updated 6 January 2020]; StatPearls Publishing: Treasure Island, FL, USA, 2019. [Google Scholar]
- Singh, J.A.; Saag, K.G.; Bridges, S.L.; Akl, E.A.; Bannuru, R.R.; Sullivan, M.C.; Vaysbrot, E.; McNaughton, C.; Osani, M.; Shmerling, R.H.; et al. 2015 American College of Rheumatology guideline for the treatment of rheumatoid arthritis. Arthritis Rheumatol. 2016, 68, 1–26. [Google Scholar] [CrossRef]
- Smolen, J.S.; Landewé, R.B.M.; Bijlsma, J.W.J.; Burmester, G.R.; Dougados, M.; Kerschbaumer, A.; McInnes, I.B.; Sepriano, A.; Van Vollenhoven, R.F.; De Wit, M.; et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2019 update. Ann. Rheum. Dis. 2020, 79, S685–S699. [Google Scholar] [CrossRef] [Green Version]
- Baillet, A.; Gossec, L.; Carmona, L.; De Wit, M.; Van Eijk-Hustings, Y.; Bertheussen, H.; Alison, K.; Toft, M.; Kouloumas, M.; Ferreira, R.J.O.; et al. Points to consider for reporting, screening for and preventing selected comorbidities in chronic inflammatory rheumatic diseases in daily practice: A EULAR initiative. Ann. Rheum. Dis. 2016, 75, 965–973. [Google Scholar] [CrossRef] [Green Version]
- Murdaca, G.; Negrini, S.; Pellecchio, M.; Greco, M.; Schiavi, C.; Giusti, F.; Puppo, F. Update upon the infection risk in patients receiving TNF alpha inhibitors. Expert Opin. Drug Saf. 2019, 18, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Harigai, M. Growing evidence of the safety of JAK inhibitors in patients with rheumatoid arthritis. Rheumatology 2019, 58, i34–i42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bongartz, T.; Sutton, A.J.; Sweeting, M.J.; Buchan, I.; Matteson, E.L.; Montori, V. Anti-TNF antibody therapy in rheumatoid arthritis and the risk of serious infections and malignancies: Systematic review and meta-analysis of rare harmful effects in randomized controlled trials. J. Am. Med. Assoc. 2006, 295, 2275–2285. [Google Scholar] [CrossRef] [PubMed]
- Taylor, P.C. 20 Years of TNF Inhibitors in Rheumatoid Arthritis. Available online: https://rheumatology.medicinematters.com/rheumatoid-arthritis-/tnf-inhibitors/20-years-of-tnf-inhibitors-in-rheumatoid-arthritis/16448980 (accessed on 6 November 2020).
- Smolen, J.S.; Goncalves, J.; Quinn, M.; Benedetti, F.; Lee, J.Y. Era of biosimilars in rheumatology: Reshaping the healthcare environment. RMD Open 2019, 5, 900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeMizio, D.J.; Geraldino-Pardilla, L.B. Autoimmunity and inflammation link to cardiovascular disease risk in rheumatoid arthritis. Rheumatol. Ther. 2020, 7, 19–33. [Google Scholar] [CrossRef] [Green Version]
- Nikiphorou, E.; de Lusignan, S.; Mallen, C.D.; Khavandi, K.; Bedarida, G.; Buckley, C.D.; Galloway, J.; Raza, K. Cardiovascular risk factors and outcomes in early rheumatoid arthritis: A population-based study. Heart 2020, 106, 1566–1572. [Google Scholar] [CrossRef] [Green Version]
- Agca, R.; Hopman, L.H.G.A.; Laan, K.J.C.; van Halm, V.P.; Peters, M.J.L.; Smulders, Y.M.; Dekker, J.M.; Nijpels, G.; Stehouwer, C.D.A.; Voskuyl, A.E.; et al. Cardiovascular event risk in rheumatoid arthritis compared with type 2 diabetes: A 15-year longitudinal study. J. Rheumatol. 2020, 47, 316–324. [Google Scholar] [CrossRef]
- Khalid, Y.; Dasu, N.; Shah, A.; Brown, K.; Kaell, A.; Levine, A.; Dasu, K.; Raminfard, A. Incidence of congestive heart failure in rheumatoid arthritis: A review of literature and meta-regression analysis. ESC Hear. Fail. 2020, ehf2.12947. [Google Scholar] [CrossRef]
- Daniel, C.M.; Davila, L.; Makris, U.E.; Mayo, H.; Caplan, L.; Davis, L.; Solow, E.B. Ethnic disparities in atherosclerotic cardiovascular disease incidence and prevalence among rheumatoid arthritis patients in the United States: A systematic review. ACR Open Rheumatol. 2020, 2, 525–532. [Google Scholar] [CrossRef]
- Panafidina, T.A.; Kondratyeva, L.V.; Gerasimova, E.V.; Gorbunova, Y.N.; Popkova, T.V.; Nasonov, E.L. AB0259 characteristics and cardiovascular comorbidities in patients with rheumatoid arthritis in a local patient cohort in Russia. Ann. Rheum. Dis. 2013, 72, A865–A866. [Google Scholar] [CrossRef]
- Crowson, C.S.; Rollefstad, S.; Ikdahl, E.; Kitas, G.D.; van Riel, P.; Gabriel, S.E.; Matteson, E.L.; Kvien, T.K.; Douglas, K.; Sandoo, A.; et al. Impact of risk factors associated with cardiovascular outcomes in patients with rheumatoid arthritis. Ann. Rheum. Dis. 2018, 77, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Pappas, D.A.; Nyberg, F.; Kremer, J.M.; Lampl, K.; Reed, G.W.; Horne, L.; Ho, M.; Onofrei, A.; Malaviya, A.N.; Rillo, O.L.; et al. Prevalence of cardiovascular disease and major risk factors in patients with rheumatoid arthritis: A multinational cross-sectional study. Clin. Rheumatol. 2018, 37, 2331–2340. [Google Scholar] [CrossRef] [PubMed]
- Gomes, R.K.S.; Albers, A.C.; Salussoglia, A.I.P.; Bazzan, A.M.; Schreiner, L.C.; Vieira, M.O.; Silva, P.G.D.; Machado, P.H.; Silva, C.M.D.; Mattos, M.M.; et al. Prevalence of ischemic heart disease and associated factors in patients with rheumatoid arthritis in Southern Brazil. Rev. Bras. Rheumatol. Engl. Ed. 2017, 57, 412–418. [Google Scholar] [CrossRef]
- Lauper, K.; Courvoisier, D.S.; Chevallier, P.; Finckh, A.; Gabay, C. Incidence and prevalence of major adverse cardiovascular events in rheumatoid arthritis, psoriatic arthritis, and axial spondyloarthritis. Arthritis Care Res. 2018, 70, 1756–1763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solomon, D.; Reed, G.; Kremer, J.; Curtis, J.; Farkouh, M.; Harrold, L.; Hochberg, M.; Tsao, P.; Greenberg, J. Disease activity in rheumatoid arthritis and the risk of cardiovascular events. Arthritis Rheumatol. 2015, 67, 1449–1455. [Google Scholar] [CrossRef]
- Tinggaard, A.B.; de Thurah, A.; Andersen, I.T.; Riis, A.H.; Therkildsen, J.; Winther, S.; Hauge, E.M.; Bøttcher, M. Rheumatoid arthritis as a risk factor for coronary artery calcification and obstructive coronary artery disease in patients with chest pain: A registry based cross-sectional study. Clin. Epidemiol. 2020, 12, 679–689. [Google Scholar] [CrossRef]
- Hansen, P.R.; Feineis, M.; Abdulla, J. Rheumatoid arthritis patients have higher prevalence and burden of asymptomatic coronary artery disease assessed by coronary computed tomography: A systematic literature review and meta-analysis. Eur. J. Intern. Med. 2019, 62, 72–79. [Google Scholar] [CrossRef]
- Cioffi, G.; Ognibeni, F.; Dalbeni, A.; Giollo, A.; Orsolini, G.; Gatti, D.; Rossini, M.; Viapiana, O. High prevalence of occult heart disease in normotensive patients with rheumatoid arthritis. Clin. Cardiol. 2018, 41, 736–743. [Google Scholar] [CrossRef]
- Løgstrup, B.B.; Olesen, K.K.W.; Masic, D.; Gyldenkerne, C.; Thrane, P.G.; Ellingsen, T.; Bøtker, H.E.; Maeng, M. Impact of rheumatoid arthritis on major cardiovascular events in patients with and without coronary artery disease. Ann. Rheum. Dis. 2020, 79, 1182–1188. [Google Scholar] [CrossRef]
- Wang, H.; Li, X.; Gong, G. Cardiovascular outcomes in patients with co-existing coronary artery disease and rheumatoid arthritis: A systematic review and meta-analysis. Medicine (Baltimore) 2020, 99, e19658. [Google Scholar] [CrossRef]
- Mantel, Ä.; Holmqvist, M.; Jernberg, T.; Wållberg-Jonsson, S.; Askling, J. Long-term outcomes and secondary prevention after acute coronary events in patients with rheumatoid arthritis. Ann. Rheum. Dis. 2017, 76, 2017–2024. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.H.; Hsieh, C.Y.; Barnado, A.; Huang, L.C.; Chen, S.C.; Tsai, L.M.; Shyr, Y.; Li, C.Y. Outcomes of acute cardiovascular events in rheumatoid arthritis and systemic lupus erythematosus: A population-based study. Rheumatology 2020, 59, 1355–1363. [Google Scholar] [CrossRef] [PubMed]
- Mantel, Ä.; Holmqvist, M.; Jernberg, T.; Wållberg-Jonsson, S.; Askling, J. Rheumatoid arthritis is associated with a more severe presentation of acute coronary syndrome and worse short-term outcome. Eur. Heart J. 2015, 36, 3413–3422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ben-Zvi, I.; Goldenberg, I.; Matetzky, S.; Grossman, C.; Elis, A.; Gavrielov-Yusim, N.; Livneh, A. The impact of inflammatory rheumatic diseases on the presentation, severity, and outcome of acute coronary syndrome. Clin. Rheumatol. 2016, 35, 233–237. [Google Scholar] [CrossRef] [PubMed]
- Solomon, A.; Stanwix, A.E.; Castañeda, S.; Llorca, J.; Gonzalez-Juanatey, C.; Hodkinson, B.; Romela, B.; Ally, M.; Maharaj, A.B.; Van Duuren, E.M.; et al. Points to consider in cardiovascular disease risk management among patients with rheumatoid arthritis living in South Africa, an unequal middle income country. BMC Rheumatol. 2020, 4, 42. [Google Scholar] [CrossRef] [PubMed]
- Dalbeni, A.; Giollo, A.; Bevilacqua, M.; Cioffi, G.; Tagetti, A.; Cattazzo, F.; Orsolini, G.; Ognibeni, F.; Minuz, P.; Rossini, M.; et al. Traditional cardiovascular risk factors and residual disease activity are associated with atherosclerosis progression in rheumatoid arthritis patients. Hypertens. Res. 2020, 43, 922–928. [Google Scholar] [CrossRef] [PubMed]
- Arts, E.E.A.; Fransen, J.; Den Broeder, A.A.; Van Riel, P.L.C.M.; Popa, C.D. Low disease activity (DAS28≤3.2) reduces the risk of first cardiovascular event in rheumatoid arthritis: A time-dependent Cox regression analysis in a large cohort study. Ann. Rheum. Dis. 2017, 76, 1693–1699. [Google Scholar] [CrossRef]
- Mantel, Ä.; Holmqvist, M.; Nyberg, F.; Tornling, G.; Frisell, T.; Alfredsson, L.; Askling, J. Risk factors for the rapid increase in risk of acute coronary events in patients with new-onset rheumatoid arthritis: A nested case-control study. Arthritis Rheumatol. 2015, 67, 2845–2854. [Google Scholar] [CrossRef]
- Ahlers, M.J.; Lowery, B.D.; Farber-Eger, E.; Wang, T.J.; Bradham, W.; Ormseth, M.J.; Chung, C.P.; Stein, C.M.; Gupta, D.K. Heart failure risk associated with rheumatoid arthritis-related chronic inflammation. J. Am. Heart Assoc. 2020, 9, e014661. [Google Scholar] [CrossRef]
- Bajraktari, I.H.; Rexhepi, S.; Berisha, I.; Lahu, A.; Kryeziu, A.; Durmishi, B.; Bajraktari, H.; Bahtiri, E. Prevalence of asymptomatic arterial hypertension and its correlation with inflammatory activity in early rheumatoid arthritis. Open Access Maced. J. Med. Sci. 2017, 5, 641–644. [Google Scholar] [CrossRef] [Green Version]
- Berendsen, M.L.T.; van Maaren, M.C.; Arts, E.E.A.; den Broeder, A.A.; Popa, C.D.; Fransen, J. Anticyclic citrullinated peptide antibodies and rheumatoid factor as risk factors for 10-year cardiovascular morbidity in patients with rheumatoid arthritis: A large inception cohort study. J. Rheumatol. 2017, 44, 1325–1330. [Google Scholar] [CrossRef] [PubMed]
- Wahlin, B.; Meedt, T.; Jonsson, F.; Henein, M.Y.; Wållberg-Jonsson, S. Coronary artery calcification is related to inflammation in rheumatoid arthritis: A long-term follow-up study. Biomed Res. Int. 2016, 2016, 1261582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, Y.H.; Ngai, M.C.; Chen, Y.; Wu, M.Z.; Yu, Y.J.; Zhen, Z.; Lai, K.; Cheung, T.; Ho, L.M.; Chung, H.Y.; et al. Cumulative rheumatic inflammation modulates the bone-vascular axis and risk of coronary calcification. J. Am. Heart Assoc. 2019, 8, e011540. [Google Scholar] [CrossRef] [PubMed]
- Karpouzas, G.A.; Ormseth, S.R.; Hernandez, E.; Budoff, M.J. Impact of cumulative inflammation, cardiac risk factors, and medication exposure on coronary atherosclerosis progression in rheumatoid arthritis. Arthritis Rheumatol. 2020, 72, 400–408. [Google Scholar] [CrossRef]
- Pan, L.; Wang, T. Features of cardiac remodeling in patients with acute coronary syndrome complicated with rheumatoid arthritis. Sci. Rep. 2017, 7, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Carrio, J.; Alperi-López, M.; López, P.; Ballina-García, F.J.; Abal, F.; Suárez, A. Antibodies to high-density lipoproteins are associated with inflammation and cardiovascular disease in rheumatoid arthritis patients. Transl. Res. 2015, 166, 529–539. [Google Scholar] [CrossRef]
- Olumuyiwa-Akeredolu, O.O.; Soma, P.; Buys, A.V.; Debusho, L.K.; Pretorius, E. Characterizing pathology in erythrocytes using morphological and biophysical membrane properties: Relation to impaired hemorheology and cardiovascular function in rheumatoid arthritis. Biochim. Biophys. Acta Biomembr. 2017, 1859, 2381–2391. [Google Scholar] [CrossRef]
- Broadley, I.; Pera, A.; Morrow, G.; Davies, K.A.; Kern, F. Expansions of cytotoxic CD4(+)CD28(-) T cells drive excess cardiovascular mortality in rheumatoid arthritis and other chronic inflammatory conditions and are triggered by CMV infection. Front. Immunol. 2017, 8, 195. [Google Scholar] [CrossRef] [Green Version]
- Bezuidenhout, J.A.; Pretorius, E. The central role of acute phase proteins in rheumatoid arthritis: Involvement in disease autoimmunity, inflammatory responses, and the heightened risk of cardiovascular disease. Semin. Thromb. Hemost. 2020, 46, 465–483. [Google Scholar] [CrossRef]
- Agca, R.; Heslinga, S.C.; Rollefstad, S.; Heslinga, M.; McInnes, I.B.; Peters, M.J.; Kvien, T.K.; Dougados, M.; Radner, H.; Atzeni, F.; et al. EULAR recommendations for cardiovascular disease risk management in patients with rheumatoid arthritis and other forms of inflammatory joint disorders: 2015/2016 update. Ann. Rheum. Dis. 2017, 76, 17–28. [Google Scholar] [CrossRef] [Green Version]
- Myasoedova, E.; Crowson, C.; Sexton, J.; Rollefstad, S.; Grete Semb, A. Sex Differences in Cardiovascular Disease Prevention in Patients with Rheumatoid Arthritis: World-Wide Data from the SURF-RA [Abstract]. Available online: https://acrabstracts.org/abstract/sex-differences-in-cardiovascular-disease-prevention-in-patients-with-rheumatoid-arthritis-world-wide-data-from-the-surf-ra/ (accessed on 9 November 2020).
- Jagpal, A.; Navarro-Millán, I. Cardiovascular co-morbidity in patients with rheumatoid arthritis: A narrative review of risk factors, cardiovascular risk assessment and treatment. BMC Rheumatol. 2018, 2, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Widdifield, J.; Abrahamowicz, M.; Paterson, J.M.; Huang, A.; Thorne, J.C.; Pope, J.E.; Kuriya, B.; Beauchamp, M.E.; Bernatsky, S. Associations between methotrexate use and the risk of cardiovascular events in patients with elderly-onset rheumatoid arthritis. J. Rheumatol. 2019, 46, 467–474. [Google Scholar] [CrossRef] [PubMed]
- Gualtierotti, R.; Ughi, N.; Marfia, G.; Ingegnoli, F. Practical management of cardiovascular comorbidities in rheumatoid arthritis. Rheumatol. Ther. 2017, 4, 293–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roubille, C.; Richer, V.; Starnino, T.; McCourt, C.; McFarlane, A.; Fleming, P.; Siu, S.; Kraft, J.; Lynde, C.; Pope, J.; et al. The effects of tumour necrosis factor inhibitors, methotrexate, non-steroidal anti-inflammatory drugs and corticosteroids on cardiovascular events in rheumatoid arthritis, psoriasis and psoriatic arthritis: A systematic review and meta-analysis. Ann. Rheum. Dis. 2015, 74, 480–489. [Google Scholar] [CrossRef]
- Low, A.S.L.; Symmons, D.P.M.; Lunt, M.; Mercer, L.K.; Gale, C.P.; Watson, K.D.; Dixon, W.G.; Hyrich, K.L. Relationship between exposure to tumour necrosis factor inhibitor therapy and incidence and severity of myocardial infarction in patients with rheumatoid arthritis. Ann. Rheum. Dis. 2017, 76, 654–660. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.L.; Sinnathurai, P.; Buchbinder, R.; Hill, C.; Lassere, M.; March, L. Biologics and cardiovascular events in inflammatory arthritis: A prospective national cohort study. Arthritis Res. Ther. 2018, 20, 171. [Google Scholar] [CrossRef] [Green Version]
- Nurmohamed, M.; Bao, Y.; Signorovitch, J.; Trahey, A.; Mulani, P.; Furst, D.E. Longer durations of antitumour necrosis factor treatment are associated with reduced risk of cardiovascular events in patients with rheumatoid arthritis. RMD Open 2015, 1, e000080. [Google Scholar] [CrossRef] [Green Version]
- Plein, S.; Erhayiem, B.; Fent, G.; Horton, S.; Dumitru, R.B.; Andrews, J.; Greenwood, J.P.; Emery, P.; Hensor, E.M.; Baxter, P.; et al. Cardiovascular effects of biological versus conventional synthetic disease-modifying antirheumatic drug therapy in treatment-naïve, early rheumatoid arthritis. Ann. Rheum. Dis. 2020, 79, 1414–1422. [Google Scholar] [CrossRef]
- Atzeni, F.; Gianturco, L.; Boccassini, L.; Sarzi-Puttini, P.; Bonitta, G.; Turiel, M. Noninvasive imaging methods for evaluating cardiovascular involvement in patients with rheumatoid arthritis before and after anti-TNF drug treatment. Futur. Sci. OA 2019, 5, FSO396. [Google Scholar] [CrossRef] [Green Version]
- Ljung, L.; Rantapää-Dahlqvist, S.; Jacobsson, L.T.; Askling, J. Response to biological treatment and subsequent risk of coronary events in rheumatoid arthritis. Ann. Rheum. Dis. 2016, 75, 2087–2094. [Google Scholar] [CrossRef]
- Jamnitski, A.; Visman, I.M.; Peters, M.J.L.; Dijkmans, B.A.C.; Voskuyl, A.E.; Nurmohamed, M.T. Beneficial effect of 1-year etanercept treatment on the lipid profile in responding patients with rheumatoid arthritis: The ETRA study. Ann. Rheum. Dis. 2010, 69, 1929–1933. [Google Scholar] [CrossRef] [PubMed]
- Deodhar, A.; Bitman, B.; Yang, Y.; Collier, D.H. The effect of etanercept on traditional metabolic risk factors for cardiovascular disease in patients with rheumatoid arthritis. Clin. Rheumatol. 2016, 35, 3045–3052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luque-Tevar, M.; Pérez-Sánchez, C.; Font, P.; Maria Patiño-Trives, A.; Romero-Gomez, M.; Ruiz-Vilchez, D.; Remuzgo-Martínez, S.; López-Mejías, R.; Arias de la Rosa, I.; Torres-Granados, C.; et al. Unsupervised Molecular Profile Clustering in the Serum of Rheumatoid Arthritis Patients Identifies Groups with Differential CV-Risk SCORE: Modulation by Biological Therapies [Abstract]. Available online: https://acrabstracts.org/abstract/unsupervised-molecular-profile-clustering-in-the-serum-of-rheumatoid-arthritis-patients-identifies-groups-with-differential-cv-risk-score-modulation-by-biological-therapies/ (accessed on 2 November 2020).
- Gabay, C.; McInnes, I.B.; Kavanaugh, A.; Tuckwell, K.; Klearman, M.; Pulley, J.; Sattar, N. Comparison of lipid and lipid-associated cardiovascular risk marker changes after treatment with tocilizumab or adalimumab in patients with rheumatoid arthritis. Ann. Rheum. Dis. 2016, 75, 1806–1812. [Google Scholar] [CrossRef] [Green Version]
- Souto, A.; Salgado, E.; Maneiro, J.R.; Mera, A.; Carmona, L.; Gõmez-Reino, J.J. Lipid profile changes in patients with chronic inflammatory arthritis treated with biologic agents and tofacitinib in randomized clinical trials: A systematic review and meta-analysis. Arthritis Rheumatol. 2015, 67, 117–127. [Google Scholar] [CrossRef] [PubMed]
- McInnes, I.B.; Thompson, L.; Giles, J.T.; Bathon, J.M.; Salmon, J.E.; Beaulieu, A.D.; Codding, C.E.; Carlson, T.H.; Delles, C.; Lee, J.S.; et al. Effect of interleukin-6 receptor blockade on surrogates of vascular risk in rheumatoid arthritis: MEASURE, a randomised, placebo-controlled study. Ann. Rheum. Dis. 2015, 74, 694–702. [Google Scholar] [CrossRef]
- Giles, J.T.; Sattar, N.; Gabriel, S.; Ridker, P.M.; Gay, S.; Warne, C.; Musselman, D.; Brockwell, L.; Shittu, E.; Klearman, M.; et al. Cardiovascular safety of tocilizumab versus etanercept in rheumatoid arthritis: A randomized controlled trial. Arthritis Rheumatol. 2020, 72, 31–40. [Google Scholar] [CrossRef]
- Xie, F.; Yun, H.; Levitan, E.B.; Muntner, P.; Curtis, J.R. Tocilizumab and the risk of cardiovascular disease: Direct comparison among biologic disease-modifying antirheumatic drugs for rheumatoid arthritis patients. Arthritis Care Res. 2019, 71, 1004–1018. [Google Scholar] [CrossRef]
- Kim, S.C.; Solomon, D.H.; Rogers, J.R.; Gale, S.; Klearman, M.; Sarsour, K.; Schneeweiss, S. Cardiovascular safety of tocilizumab versus tumor necrosis factor inhibitors in patients with rheumatoid arthritis: A multi-database cohort study. Arthritis Rheumatol. 2017, 69, 1154–1164. [Google Scholar] [CrossRef] [Green Version]
- Virone, A.; Bastard, J.P.; Fellahi, S.; Capeau, J.; Rouanet, S.; Sibilia, J.; Ravaud, P.; Berenbaum, F.; Gottenberg, J.E.; Sellam, J. Comparative effect of tumour necrosis factor inhibitors versus other biological agents on cardiovascular risk-associated biomarkers in patients with rheumatoid arthritis. RMD Open 2019, 5, e000897. [Google Scholar] [CrossRef] [Green Version]
- García-Gómez, C.; Martín-Martínez, M.A.; Castañeda, S.; Sanchez-Alonso, F.; Uriarte-Ecenarro, M.; González-Juanatey, C.; Romera-Baures, M.; Santos-Rey, J.; Pinto-Tasende, J.A.; Quesada-Masachs, E.; et al. Lipoprotein(a) concentrations in rheumatoid arthritis on biologic therapy: Results from the CARdiovascular in rheuMAtology study project. J. Clin. Lipidol. 2017, 11, 749–756.e3. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Fumery, M.; Singh, A.G.; Singh, N.; Prokop, L.J.; Dulai, P.S.; Sandborn, W.J.; Curtis, J.R. Comparative risk of cardiovascular events with biologic and synthetic disease-modifying antirheumatic drugs in patients with rheumatoid arthritis: A systematic review and meta-analysis. Arthritis Care Res. 2020, 72, 561–576. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, M.J.; Lee, C.H.; Tsai, M.L.; Kao, C.F.; Lan, W.C.; Huang, Y.T.; Tseng, W.Y.; Wen, M.S.; Chang, S.H. Biologic agents reduce cardiovascular events in rheumatoid arthritis not responsive to tumour necrosis factor inhibitors: A national cohort study. Can. J. Cardiol. 2020, 36, 1739–1746. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Kang, E.H.; Brill, G.; Desai, R.J.; Kim, S.C. Cardiovascular (CV) risk after initiation of abatacept versus TNF inhibitors in rheumatoid arthritis patients with and without baseline CV disease. J. Rheumatol. 2018, 45, 1240–1248. [Google Scholar] [CrossRef] [PubMed]
- Kang, E.H.; Jin, Y.; Brill, G.; Lewey, J.; Patorno, E.; Desai, R.J.; Kim, S.C. Comparative cardiovascular risk of abatacept and tumor necrosis factor inhibitors in patients with rheumatoid arthritis with and without diabetes mellitus: A multidatabase cohort study. J. Am. Heart Assoc. 2018, 7, e007393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mease, P.; Charles-Schoeman, C.; Cohen, S.; Fallon, L.; Woolcott, J.; Yun, H.; Kremer, J.; Greenberg, J.; Malley, W.; Onofrei, A.; et al. Incidence of venous and arterial thromboembolic events reported in the tofacitinib rheumatoid arthritis, psoriasis and psoriatic arthritis development programmes and from real-world data. Ann. Rheum. Dis. 1400, 79, 1400–1413. [Google Scholar] [CrossRef]
- EMA. Xeljanz-EMEA-H-A-20-1485-Assessment Report. Available online: www.ema.europa.eu/contact (accessed on 3 November 2020).
- Pfizer. XELJANZ 5 mg Film-Coated Tablets-Summary of Product Characteristics (SmPC)-Print Friendly-(EMC). Available online: https://www.medicines.org.uk/emc/product/2500/smpc/print (accessed on 3 November 2020).
- FDA. Highlights of Prescribing Information: Xeljanz. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/213082s000lbl.pdf (accessed on 10 November 2020).
- Xie, W.; Huang, Y.; Xiao, S.; Sun, X.; Fan, Y.; Zhang, Z. Impact of Janus kinase inhibitors on risk of cardiovascular events in patients with rheumatoid arthritis: Systematic review and meta-analysis of randomised controlled trials. Ann. Rheum. Dis. 2019, 78, 1048–1054. [Google Scholar] [CrossRef]
- Doran, M.F.; Crowson, C.S.; Pond, G.R.; O’Fallon, W.M.; Gabriel, S.E. Frequency of infection in patients with rheumatoid arthritis compared with controls: A population-based study. Arthritis Rheum. 2002, 46, 2287–2293. [Google Scholar] [CrossRef]
- Listing, J.; Gerhold, K.; Zink, A. The risk of infections associated with rheumatoid arthritis, with its comorbidity and treatment. Rheumatology 2013, 52, 53–61. [Google Scholar] [CrossRef] [Green Version]
- FORWARD. About FORWARD—The National Databank for Rheumatic Diseases. Available online: https://www.arthritis-research.org/about/about-forward—National-databank-rheumatic-diseases (accessed on 26 November 2020).
- Mehta, B.; Pedro, S.; Ozen, G.; Kalil, A.; Wolfe, F.; Mikuls, T.; Michaud, K. Serious infection risk in rheumatoid arthritis compared with non-inflammatory rheumatic and musculoskeletal diseases: A US national cohort study. RMD Open 2019, 5, e000935. [Google Scholar] [CrossRef]
- Ozen, G.; Pedro, S.; England, B.R.; Mehta, B.; Wolfe, F.; Michaud, K. Risk of serious infection in patients with rheumatoid arthritis treated with biologic versus nonbiologic disease-modifying antirheumatic drugs. ACR Open Rheumatol. 2019, 1, 424–432. [Google Scholar] [CrossRef] [Green Version]
- Chandrashekara, S.; Shobha, V.; Dharmanand, B.G.; Jois, R.; Kumar, S.; Mahendranath, K.M.; Haridas, V.; Prasad, S.; Singh, Y.; Daware, M.A.; et al. Influence of disease duration and socioeconomic factors on the prevalence of infection and hospitalization in rheumatoid arthritis: KRAC study. Int. J. Rheum. Dis. 2019, 22, 1216–1225. [Google Scholar] [CrossRef] [PubMed]
- Subesinghe, S.; Rutherford, A.I.; Ibrahim, F.; Harris, H.; Galloway, J. A large two-centre study in to rates of influenza and pneumococcal vaccination and infection burden in rheumatoid arthritis in the UK. BMC Musculoskelet. Disord. 2016, 17, 322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salt, E.; Wiggins, A.T.; Rayens, M.K.; Morris, B.J.; Mannino, D.; Hoellein, A.; Donegan, R.P.; Crofford, L.J. Moderating effects of immunosuppressive medications and risk factors for post-operative joint infection following total joint arthroplasty in patients with rheumatoid arthritis or osteoarthritis. Semin. Arthritis Rheum. 2017, 46, 423–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hashimoto, A.; Suto, S.; Horie, K.; Fukuda, H.; Nogi, S.; Iwata, K.; Tsuno, H.; Ogihara, H.; Kawakami, M.; Komiya, A.; et al. Incidence and risk factors for infections requiring hospitalization, including pneumocystis pneumonia, in Japanese patients with rheumatoid arthritis. Int. J. Rheumatol. 2017, 2017, 6730812. [Google Scholar] [CrossRef] [PubMed]
- Rutherford, A.I.; Subesinghe, S.; Hyrich, K.L.; Galloway, J.B. Serious infection across biologic-treated patients with rheumatoid arthritis: Results from the British Society for Rheumatology Biologics Register for Rheumatoid Arthritis. Ann. Rheum. Dis. 2018, 77, 905–910. [Google Scholar] [CrossRef] [PubMed]
- Richter, A.; Listing, J.; Schneider, M.; Klopsch, T.; Kapelle, A.; Kaufmann, J.; Zink, A.; Strangfeld, A. Impact of treatment with biologic DMARDs on the risk of sepsis or mortality after serious infection in patients with rheumatoid arthritis. Ann. Rheum. Dis. 2016, 75, 1667–1673. [Google Scholar] [CrossRef] [PubMed]
- Rutherford, A.I.; Patarata, E.; Subesinghe, S.; Hyrich, K.L.; Galloway, J.B. Opportunistic infections in rheumatoid arthritis patients exposed to biologic therapy: Results from the British Society for Rheumatology Biologics Register for Rheumatoid Arthritis. Rheumatology 2018, 57, 997–1001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furer, V.; Rondaan, C.; Heijstek, M.; Van Assen, S.; Bijl, M.; Agmon-Levin, N.; Breedveld, F.C.; D’Amelio, R.; Dougados, M.; Kapetanovic, M.C.; et al. Incidence and prevalence of vaccine preventable infections in adult patients with autoimmune inflammatory rheumatic diseases (AIIRD): A systemic literature review informing the 2019 update of the EULAR recommendations for vaccination in adult patients. RMD Open 2019, 5, e001041. [Google Scholar] [CrossRef]
- Furer, V.; Rondaan, C.; Heijstek, M.W.; Agmon-Levin, N.; Van Assen, S.; Bijl, M.; Breedveld, F.C.; D’amelio, R.; Dougados, M.; Kapetanovic, M.C.; et al. 2019 update of EULAR recommendations for vaccination in adult patients with autoimmune inflammatory rheumatic diseases. Ann. Rheum. Dis. 2020, 79, 39–52. [Google Scholar] [CrossRef]
- Roongta, R.; Ghosh, A. Managing rheumatoid arthritis during COVID-19. Clin. Rheumatol. 2020, 39, 1–8. [Google Scholar] [CrossRef]
- Sood, A.; Galestanian, A.; Murthy, V.; Gonzalez, E.; Mukaila, R. COVID-19 Infection among Patients with Rheumatic Disease on Biologic & Targeted Therapies: A Systematic Review [Abstract]. Available online: https://acrabstracts.org/abstract/covid-19-infection-among-patients-with-rheumatic-disease-on-biologic-targeted-therapies-a-systematic-review/ (accessed on 20 October 2020).
- Murray, K.; Quinn, S.; Turk, M.; O’Rourke, A.; Molloy, E.; O’Neill, L.; Mongey, A.; Fearon, U.; Veale, D. Covid-19 and Rheumatic and Musculoskeletal Disease Patients: Infection Rates, Attitudes and Medication Adherence [Abstract]. Available online: https://acrabstracts.org/abstract/covid-19-and-rheumatic-and-musculoskeletal-disease-patients-infection-rates-attitudes-and-medication-adherence/ (accessed on 20 October 2020).
- Hausmann, J.; Kennedy, K.; Surangiwala, S.; Larche, M.; Levine, M.; Liew, J.; Wallace, Z.; Sirotich, E. Characteristics of Adult Patients with Rheumatic Diseases during the COVID-19 Pandemic: Data from an International Patient Survey [Abstract]. Available online: https://acrabstracts.org/abstract/characteristics-of-adult-patients-with-rheumatic-diseases-during-the-covid-19-pandemic-data-from-an-international-patient-survey/ (accessed on 20 October 2020).
- Gianfrancesco, M.; Hyrich, K.L.; Al-Adely, S.; Carmona, L.; Danila, M.I.; Gossec, L.; Izadi, Z.; Jacobsohn, L.; Katz, P.; Lawson-Tovey, S.; et al. Characteristics associated with hospitalisation for COVID-19 in people with rheumatic disease: Data from the COVID-19 Global Rheumatology Alliance physician-reported registry. Ann. Rheum. Dis. 2020, 79, 859–866. [Google Scholar] [CrossRef] [PubMed]
- Akiyama, S.; Hamdeh, S.; Micic, D.; Sakuraba, A. Prevalence and clinical outcomes of COVID-19 in patients with autoimmune diseases: A systematic review and meta-analysis. Ann. Rheum. Dis. 2020. [Google Scholar] [CrossRef] [PubMed]
- Ferri, C.; Giuggioli, D.; Raimondo, V.; Fallahi, P.; Antonelli, A. COVID-19 in Italian patients with rheumatic autoimmune systemic diseases. Ann. Rheum. Dis. 2020. [Google Scholar] [CrossRef] [PubMed]
- Krasselt, M.; Baerwald, C.; Petros, S.; Seifert, O. Mortality of sepsis in patients with rheumatoid arthritis: A single-center retrospective analysis and comparison with a control group. J. Intensive Care Med. 2020, 088506662091758. [Google Scholar] [CrossRef] [PubMed]
- Holland-Fischer, M.; Thomsen, R.W.; Tarp, U.; Nørgaard, M. Prognosis of pneumonia in patients with rheumatoid arthritis: The role of medication and disease activity prior to admission a population-based cohort study. RMD Open 2020, 6, 1102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Abreu, M.M.; Maiorano, A.C.; Tedeschi, S.K.; Yoshida, K.; Lin, T.C.; Solomon, D.H. Outcomes of lupus and rheumatoid arthritis patients with primary dengue infection: A seven-year report from Brazil. Semin. Arthritis Rheum. 2018, 47, 749–755. [Google Scholar] [CrossRef]
- Iguchi-Hashimoto, M.; Hashimoto, M.; Fujii, T.; Hamaguchi, M.; Furu, M.; Ishikawa, M.; Ito, H.; Yamakawa, N.; Terao, C.; Yamamoto, K.; et al. The association between serious infection and disease outcome in patients with rheumatoid arthritis. Clin. Rheumatol. 2016, 35, 213–218. [Google Scholar] [CrossRef]
- Sharma, C.; Keen, H. Ten-year retrospective review of the incidence of serious infections in patients on biologic disease modifying agents for rheumatoid arthritis in three tertiary hospitals in Western Australia. Intern. Med. J. 2019, 49, 519–525. [Google Scholar] [CrossRef]
- Cohen, S.B.; Tanaka, Y.; Mariette, X.; Curtis, J.R.; Lee, E.B.; Nash, P.; Winthrop, K.L.; Charles-Schoeman, C.; Thirunavukkarasu, K.; DeMasi, R.; et al. Long-term safety of tofacitinib for the treatment of rheumatoid arthritis up to 8.5 years: Integrated analysis of data from the global clinical trials. Ann. Rheum. Dis. 2017, 76, 1253–1262. [Google Scholar] [CrossRef] [Green Version]
- Hasegawa, E.; Kobayashi, D.; Kurosawa, Y.; Taniguchi, S.; Otani, H.; Abe, A.; Ito, S.; Nakazono, K.; Murasawa, A.; Narita, I.; et al. Nutritional status as the risk factor of serious infection in patients with rheumatoid arthritis. Mod. Rheumatol. 2020, 30, 982–989. [Google Scholar] [CrossRef]
- Liao, T.L.; Chen, Y.M.; Chen, D.Y. Risk factors for cryptococcal infection among patients with rheumatoid arthritis receiving different immunosuppressive medications. Clin. Microbiol. Infect. 2016, 22, 815.e1–815.e3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Accortt, N.A.; Lesperance, T.; Liu, M.; Rebello, S.; Trivedi, M.; Li, Y.; Curtis, J.R. Impact of sustained remission on the risk of serious infection in patients with rheumatoid arthritis. Arthritis Care Res. 2018, 70, 679–684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strand, V.; Ahadieh, S.; French, J.; Geier, J.; Krishnaswami, S.; Menon, S.; Checchio, T.; Tensfeldt, T.G.; Hoffman, E.; Riese, R.; et al. Systematic review and meta-analysis of serious infections with tofacitinib and biologic disease-modifying antirheumatic drug treatment in rheumatoid arthritis clinical trials. Arthritis Res. Ther. 2015, 17, 362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, J.A.; Cameron, C.; Noorbaloochi, S.; Cullis, T.; Tucker, M.; Christensen, R.; Ghogomu, E.T.; Coyle, D.; Clifford, T.; Tugwell, P.; et al. Risk of serious infection in biological treatment of patients with rheumatoid arthritis: A systematic review and meta-analysis. Lancet 2015, 386, 258–265. [Google Scholar] [CrossRef] [Green Version]
- Minozzi, S.; Bonovas, S.; Lytras, T.; Pecoraro, V.; González-Lorenzo, M.; Bastiampillai, A.J.; Gabrielli, E.M.; Lonati, A.C.; Moja, L.; Cinquini, M.; et al. Risk of infections using anti-TNF agents in rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis: A systematic review and meta-analysis. Expert Opin. Drug Saf. 2016, 15, 11–34. [Google Scholar] [CrossRef]
- Hua, C.; Buttgereit, F.; Combe, B. Glucocorticoids in rheumatoid arthritis: Current status and future studies. Open 2020, 6, 536. [Google Scholar] [CrossRef] [Green Version]
- Baradat, C.; Degboé, Y.; Constantin, A.; Cantagrel, A.; Ruyssen-Witrand, A. No impact of concomitant methotrexate use on serious adverse event and serious infection risk in patients with rheumatoid arthritis treated with bDMARDs: A systematic literature review and meta-analysis. RMD Open 2017, 3, e000352. [Google Scholar] [CrossRef]
- Liao, H.; Zhong, Z.; Liu, Z.; Zou, X. Comparison of the risk of infections in different anti-TNF agents: A meta-analysis. Int. J. Rheum. Dis. 2017, 20, 161–168. [Google Scholar] [CrossRef] [Green Version]
- Subesinghe, S.; Rutherford, A.I.; Byng-Maddick, R.; Hyrich, K.L.; Galloway, J.B. Biologic prescribing decisions following serious infection: Results from the British Society for Rheumatology Biologics Register-Rheumatoid Arthritis. Rheumatology 2018, 57, 2096–2100. [Google Scholar] [CrossRef] [Green Version]
- Harrold, L.R.; Litman, H.J.; Saunders, K.C.; Dandreo, K.J.; Gershenson, B.; Greenberg, J.D.; Low, R.; Stark, J.; Suruki, R.; Jaganathan, S.; et al. One-year risk of serious infection in patients treated with certolizumab pegol as compared with other TNF inhibitors in a real-world setting: Data from a national U.S. rheumatoid arthritis registry. Arthritis Res. Ther. 2018, 20, 2. [Google Scholar] [CrossRef] [Green Version]
- Pawar, A.; Desai, R.J.; Solomon, D.H.; Santiago Ortiz, A.J.; Gale, S.; Bao, M.; Sarsour, K.; Schneeweiss, S.; Kim, S.C. Risk of serious infections in tocilizumab versus other biologic drugs in patients with rheumatoid arthritis: A multidatabase cohort study. Ann. Rheum. Dis. 2019, 78, 456–464. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.K.; Liao, K.P.; Liu, J.; Kim, S.C. Risk of hospitalized infection and initiation of abatacept versus tumor necrosis factor inhibitors among patients with rheumatoid arthritis: A propensity score-matched cohort study. Arthritis Care Res. 2020, 72, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Yun, H.; Xie, F.; Delzell, E.; Levitan, E.B.; Chen, L.; Lewis, J.D.; Saag, K.G.; Beukelman, T.; Winthrop, K.L.; Baddley, J.W.; et al. Comparative risk of hospitalized infection associated with biologic agents in rheumatoid arthritis patients enrolled in Medicare. Arthritis Rheumatol. 2016, 68, 56–66. [Google Scholar] [CrossRef]
- Bechman, K.; Subesinghe, S.; Norton, S.; Atzeni, F.; Galli, M.; Cope, A.P.; Winthrop, K.L.; Galloway, J.B. A systematic review and meta-analysis of infection risk with small molecule JAK inhibitors in rheumatoid arthritis. Rheumatology 2019, 58, 1755–1766. [Google Scholar] [CrossRef] [PubMed]
- Strangfeld, A.; Redeker, I.; Kekow, K.; Burmester, G.R.; Braun, J.; Zink, A. OP0238 Risk of Herpes Zoster in Patients with Rheumatoid Arthritis under Biological, Targeted Synthetic, and Conventional Synthetic DMARD Treatment | Annals of the Rheumatic Diseases. Available online: https://ard.bmj.com/content/79/Suppl_1/150.2 (accessed on 22 October 2020).
- Cantini, F.; Niccoli, L.; Goletti, D. Adalimumab, etanercept, infliximab, and the risk of tuberculosis: Data from clinical trials, national registries, and postmarketing surveillance. J. Rheumatol. 2014, 41, 47–55. [Google Scholar] [CrossRef]
- Pérez-Alvarez, R.; Díaz-Lagares, C.; García-Hernández, F.; Lopez-Roses, L.; Brito-Zerón, P.; Pérez-De-Lis, M.; Retamozo, S.; Bové, A.; Bosch, X.; Sanchez-Tapias, J.M.; et al. Hepatitis B virus (HBV) reactivation in patients receiving tumor necrosis factor (TNF)-targeted therapy: Analysis of 257 cases. Medicine (Baltimore) 2011, 90, 359–371. [Google Scholar] [CrossRef]
- Chung, S.J.; Kim, J.K.; Park, M.C.; Park, Y.B.; Lee, S.K. Reactivation of hepatitis B viral infection in inactive HBsAg carriers following anti-tumor necrosis factor-α therapy. J. Rheumatol. 2009, 36, 2416–2420. [Google Scholar] [CrossRef]
- Lan, J.L.; Chen, Y.M.; Hsieh, T.Y.; Chen, Y.H.; Hsieh, C.W.; Chen, D.Y.; Yang, S.S. Kinetics of viral loads and risk of hepatitis B virus reactivation in hepatitis B core antibody-positive rheumatoid arthritis patients undergoing anti-tumour necrosis factor alpha therapy. Ann. Rheum. Dis. 2011, 70, 1719–1725. [Google Scholar] [CrossRef] [Green Version]
- Papalopoulos, I.; Fanouriakis, A.; Kougkas, N.; Flouri, I.; Sourvinos, G.; Bertsias, G.; Repa, A.; Avgoustidis, N.; Sidiropoulos, P. Liver safety of non-tumour necrosis factor inhibitors in rheumatic patients with past hepatitis B virus infection: An observational, controlled, long-term study. Clin. Exp. Rheumatol. 2018, 36, 102–109. [Google Scholar]
- Cacciapaglia, F.; Zuccaro, C.; Iannone, F. Varicella-zoster virus infection in rheumatoid arthritis patients in the anti-tumour necrosis factor era. Clin. Exp. Rheumatol. 2015, 33, 917–923. [Google Scholar]
- Liao, T.L.; Chen, Y.M.; Liu, H.J.; Chen, D.Y. Risk and severity of herpes zoster in patients with rheumatoid arthritis receiving different immunosuppressive medications: A case-control study in Asia. BMJ Open 2017, 7, e014032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, M.H.; Chen, M.H.; Liu, C.Y.; Tsai, C.Y.; Huang, D.F.; Lin, H.Y.; Lee, M.H.; Huang, Y.H. Hepatitis B virus reactivation in rheumatoid arthritis patients undergoing biologics treatment. J. Infect. Dis. 2017, 215, 566–573. [Google Scholar] [CrossRef] [PubMed]
- FDA. FDA Drug Safety Communication: Boxed Warning and New Recommendations to Decrease Risk of Hepatitis B Reactivation with the Immune-Suppressing and Anti-Cancer Drugs Arzerra (Ofatumumab) and Rituxan (Rituximab) | FDA. Available online: https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-boxed-warning-and-new-recommendations-decrease-risk-hepatitis-b (accessed on 27 October 2020).
- Schillie, S.; Vellozzi, C.; Reingold, A.; Harris, A.; Haber, P.; Ward, J.W.; Nelson, N.P. Prevention of hepatitis B virus infection in the United States: Recommendations of the advisory committee on immunization practices. MMWR Recomm. Rep. 2018, 67, 1–31. [Google Scholar] [CrossRef] [PubMed]
- Sebastiani, M.; Atzeni, F.; Milazzo, L.; Quartuccio, L.; Scirè, C.; Gaeta, G.B.; Lapadula, G.; Armignacco, O.; Tavio, M.; Olivieri, I.; et al. Italian consensus guidelines for the management of hepatitis B virus infections in patients with rheumatoid arthritis. Jt. Bone Spine 2017, 84, 525–530. [Google Scholar] [CrossRef] [PubMed]
- Carlino, G.; Fornaro, M.; Santo, L.; Bucci, R.; Semeraro, A.; Quarta, L.; D’Onofrio, F.; Marsico, A.; Zuccaro, C.; Falappone, P.C.; et al. Occult HBV infection may negatively impact on drug survival in patients with rheumatoid arthritis on treatment with a first biologic drug. An appraisal from the Biologic Apulian Registry (BIOPURE). Reumatismo 2019, 71, 24–30. [Google Scholar] [CrossRef]
- Landewé, R.B.M.; MacHado, P.M.; Kroon, F.; Bijlsma, H.W.J.; Burmester, G.R.; Carmona, L.; Combe, B.; Galli, M.; Gossec, L.; Iagnocco, A.; et al. EULAR provisional recommendations for the management of rheumatic and musculoskeletal diseases in the context of SARS-CoV-2. Ann. Rheum. Dis. 2020, 79, 851–858. [Google Scholar] [CrossRef]
- Regierer, A.; Hasseli, R.; Hoyer, B.; Krause, A.; Lorenz, H.M.; Pfeil, A.; Richter, J.; Schmeiser, T.; Specker, C.; Strangfeld, A.; et al. EULAR Abstract Archive. Available online: http://scientific.sparx-ip.net/archiveeular/?c=a&view=1&searchfor=rheumatoid&item=2020CO0004 (accessed on 20 October 2020).
- Haberman, R.; Castillo, R.; Chen, A.; Yan, D.; Ramirez, D.; Sekar, V.; Lesser, R.; Solomon, G.; Neimann, A.; Blank, R.; et al. COVID-19 in Patients with Inflammatory Arthritis: A Prospective Study on the Effects of Comorbidities and DMARDs on Clinical Outcomes [Abstract]. Available online: https://acrabstracts.org/abstract/covid-19-in-patients-with-inflammatory-arthritis-a-prospective-study-on-the-effects-of-comorbidities-and-dmards-on-clinical-outcomes/ (accessed on 2 November 2020).
- Monti, S.; Balduzzi, S.; Delvino, P.; Bellis, E.; Quadrelli, V.S.; Montecucco, C. Clinical course of COVID-19 in a series of patients with chronic arthritis treated with immunosuppressive targeted therapies. Ann. Rheum. Dis. 2020, 79, 667–668. [Google Scholar] [CrossRef] [Green Version]
- Melong Pianta, C.; Lauper, K.; Courvoisier, D.; Cunningham, T.; Allali, D.; Finckh, A. Incidence of COVID-19 in Patients Treated with Infliximab Compared to Patients Treated with Rituximab [Abstract]. Available online: https://acrabstracts.org/abstract/incidence-of-covid-19-in-patients-treated-with-infliximab-compared-to-patients-treated-with-rituximab/ (accessed on 20 October 2020).
- López-Gutierrez, F.; García-Fernández, A.; Loarce-Martos, J.; Calvo-Sanz, L.; Del Bosque-Granero, I.; Garcia, V.; Blanco-Cáceres, B.; Pijoan-Moratalla, C.; Villalobos-Sánchez, L.; Bachiller-Corral, J.; et al. Does the Type of Rheumatic Disease or Biologic Treatment Increase the Risk of Developing Severe COVID-19? [Abstract]. Available online: https://acrabstracts.org/abstract/does-the-type-of-rheumatic-disease-or-biologic-treatment-increase-the-risk-of-developing-severe-covid-19/ (accessed on 20 October 2020).
- Nuño, L.; Novella Navarro, M.; Bonilla, G.; Franco-Gómez, K.; Aguado, P.; Peiteado, D.; Monjo, I.; Tornero, C.; Villalba, A.; Miranda-Carus, M.-E.; et al. Clinical course, severity and mortality in a cohort of patients with COVID-19 with rheumatic diseases. Ann. Rheum. Dis. 2020, 79, 1659–1661. [Google Scholar] [CrossRef]
- Simon, T.A.; Thompson, A.; Gandhi, K.K.; Hochberg, M.C.; Suissa, S. Incidence of malignancy in adult patients with rheumatoid arthritis: A meta-analysis. Arthritis Res. Ther. 2015, 17, 212. [Google Scholar] [CrossRef] [Green Version]
- Klein, A.; Polliack, A.; Gafter-Gvili, A. Rheumatoid arthritis and lymphoma: Incidence, pathogenesis, biology, and outcome. Hematol. Oncol. 2018, 36, 733–739. [Google Scholar] [CrossRef]
- Mercer, L.K.; Regierer, A.C.; Mariette, X.; Dixon, W.G.; Baecklund, E.; Hellgren, K.; Dreyer, L.; Hetland, M.L.; Cordtz, R.; Hyrich, K.; et al. Spectrum of lymphomas across different drug treatment groups in rheumatoid arthritis: A European registries collaborative project. Ann. Rheum. Dis. 2017, 76, 2025–2030. [Google Scholar] [CrossRef] [PubMed]
- Hellgren, K.; Baecklund, E.; Backlin, C.; Sundstrom, C.; Smedby, K.E.; Askling, J. Rheumatoid arthritis and risk of malignant lymphoma: Is the risk still increased? Arthritis Rheumatol. 2017, 69, 700–708. [Google Scholar] [CrossRef] [PubMed]
- Ji, J.; Liu, X.; Sundquist, K.; Sundquist, J. Survival of cancer in patients with rheumatoid arthritis: A follow-up study in Sweden of patients hospitalized with rheumatoid arthritis 1 year before diagnosis of cancer. Rheumatology 2011, 50, 1513–1518. [Google Scholar] [CrossRef] [Green Version]
- Simard, J.F.; Baecklund, F.; Chang, E.T.; Baecklund, E.; Hjalgrim, H.; Olov Adami, H.; Glimelius, B.; Smedby, K.E. Lifestyle factors, autoimmune disease and family history in prognosis of non-hodgkin lymphoma overall and subtypes. Int. J. Cancer 2013, 132, 2659–2666. [Google Scholar] [CrossRef] [PubMed]
- Kleinstern, G.; Maurer, M.J.; Liebow, M.; Habermann, T.M.; Koff, J.L.; Allmer, C.; Witzig, T.E.; Nowakowski, G.S.; Micallef, I.N.; Johnston, P.B.; et al. History of autoimmune conditions and lymphoma prognosis. Blood Cancer J. 2018, 8, 73. [Google Scholar] [CrossRef]
- Kleinstern, G.; Averbuch, M.; Abu Seir, R.; Perlman, R.; Ben Yehuda, D.; Paltiel, O. Presence of autoimmune disease affects not only risk but also survival in patients with B-cell non-Hodgkin lymphoma. Hematol. Oncol. 2018, 36, 457–462. [Google Scholar] [CrossRef]
- Mikuls, T.R.; Endo, J.O.; Puumala, S.E.; Aoun, P.A.; Black, N.A.; O’Dell, J.R.; Stoner, J.A.; Boilesen, E.C.; Bast, M.A.; Bergman, D.A.; et al. Prospective study of survival outcomes in non-Hodgkin’s lymphoma patients with rheumatoid arthritis. J. Clin. Oncol. 2006, 24, 1597–1602. [Google Scholar] [CrossRef]
- Baecklund, E.; Ekbom, A.; Sparén, P.; Feltelius, N.; Klareskog, L. Disease activity and risk of lymphoma in patients with rheumatoid arthritis: Nested case-control study. Br. Med. J. 1998, 317, 180–181. [Google Scholar] [CrossRef] [Green Version]
- Baecklund, E.; Iliadou, A.; Askling, J.; Ekbom, A.; Backlin, C.; Granath, F.; Catrina, A.I.; Rosenquist, R.; Feltelius, N.; Sundström, C.; et al. Association of chronic inflammation, not its treatment, with increased lymphoma risk in rheumatoid arthritis. Arthritis Rheum. 2006, 54, 692–701. [Google Scholar] [CrossRef]
- Wolfe, F. Inflammatory activity, but not methotrexate or prednisone use predicts non-Hodgkins lymphoma in rheumatoid arthritis: A 25-year study of 1,767 RA patients. Arthritis Rheum. 1988, 41, S188. [Google Scholar]
- Calip, G.S.; Patel, P.R.; Adimadhyam, S.; Xing, S.; Wu, Z.; Sweiss, K.; Schumock, G.T.; Lee, T.A.; Chiu, B.C. Tumor necrosis factor-alpha inhibitors and risk of non-Hodgkin lymphoma in a cohort of adults with rheumatologic conditions. Int. J. Cancer 2018, 143, 1062–1071. [Google Scholar] [CrossRef]
- Curtis, J.R.; Mariette, X.; Gaujoux-Viala, C.; Blauvelt, A.; Kvien, T.K.; Sandborn, W.J.; Winthrop, K.; De Longueville, M.; Huybrechts, I.; Bykerk, V.P. Long-term safety of certolizumab pegol in rheumatoid arthritis, axial spondyloarthritis, psoriatic arthritis, psoriasis and Crohn’s disease: A pooled analysis of 11 317 patients across clinical trials. RMD Open 2019, 5, e000942. [Google Scholar] [CrossRef] [PubMed]
- Mercer, L.K.; Galloway, J.B.; Lunt, M.; Davies, R.; Low, A.L.; Dixon, W.G.; Watson, K.D.; Symmons, D.P.; Hyrich, K.L. Risk of lymphoma in patients exposed to antitumour necrosis factor therapy: Results from the British Society for Rheumatology Biologics Register for Rheumatoid Arthritis. Ann. Rheum. Dis. 2017, 76, 497–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hellgren, K.; Di Giuseppe, D.; Smedby, K.E.; Sundström, C.; Askling, J.; Baecklund, E. Lymphoma risks in patients with rheumatoid arthritis treated with biological drugs—A Swedish cohort study of risks by time, drug and lymphoma subtype. Rheumatology 2020. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Sun, J.; Yang, Y.; Huang, Y.; Liu, G. Malignancy risk of anti-tumor necrosis factor alpha blockers: An overview of systematic reviews and meta-analyses. Clin. Rheumatol. 2016, 35, 1–18. [Google Scholar] [CrossRef]
- Bernatsky, S.; Clarke, A.E.; Suissa, S. Hematologic malignant neoplasms after drug exposure in rheumatoid arthritis. Arch. Intern. Med. 2008, 168, 378–381. [Google Scholar] [CrossRef] [Green Version]
- Mellemkjær, L.; Linet, M.S.; Gridley, G.; Frisch, M.; Møller, H.; Olsen, J.H. Rheumatoid arthritis and cancer risk. Eur. J. Cancer Part A 1996, 32, 1753–1757. [Google Scholar] [CrossRef]
- Chakravarty, E.F.; Michaud, K.; Wolfe, F. Skin cancer, rheumatoid arthritis, and tumor necrosis factor inhibitors. J. Rheumatol. 2005, 32, 2130–2135. [Google Scholar]
- Askling, J.; Fored, C.M.; Brandt, L.; Baecklund, E.; Bertilsson, L.; Feltelius, N.; Cöster, L.; Geborek, P.; Jacobsson, L.T.; Lindblad, S.; et al. Risks of solid cancers in patients with rheumatoid arthritis and after treatment with tumour necrosis factor antagonists. Ann. Rheum. Dis. 2005, 64, 1421–1426. [Google Scholar] [CrossRef] [Green Version]
- Raaschou, P.; Simard, J.F.; Hagelberg, C.A.; Askling, J. Rheumatoid arthritis, anti-tumour necrosis factor treatment, and risk of squamous cell and basal cell skin cancer: Cohort study based on nationwide prospectively recorded data from Sweden. BMJ 2016, 352, i262. [Google Scholar] [CrossRef] [Green Version]
- Lange, E.; Blizzard, L.; Venn, A.; Francis, H.; Jones, G. Disease-modifying anti-rheumatic drugs and non-melanoma skin cancer in inflammatory arthritis patients: A retrospective cohort study. Rheumatology 2016, 55, 1594–1600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solomon, D.H.; Glynn, R.J.; Karlson, E.W.; Lu, F.; Corrigan, C.; Colls, J.; Xu, C.; MacFadyen, J.; Barbhaiya, M.; Berliner, N.; et al. Adverse effects of low-dose methotrexate: A randomized trial. Ann. Intern. Med. 2020, 172, 369–380. [Google Scholar] [CrossRef] [PubMed]
- Strangfeld, A.; Burmester, G.R. Methotrexate: What are the true risks of treatment? Ann. Rheum. Dis. 2020, 79, 1267–1268. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.L.; Yin, W.J.; Zhou, L.Y.; Zhou, G.; Liu, K.; Hu, C.; Zuo, X.C.; Wang, Y.F. Risk of non-melanoma skin cancer for rheumatoid arthritis patients receiving TNF antagonist: A systematic review and meta-analysis. Clin. Rheumatol. 2020, 39, 769–778. [Google Scholar] [CrossRef]
- Askling, J.; Fahrbach, K.; Nordstrom, B.; Ross, S.; Schmid, C.H.; Symmons, D. Cancer risk with tumor necrosis factor alpha (TNF) inhibitors: Meta-analysis of randomized controlled trials of adalimumab, etanercept, and infliximab using patient level data. Pharmacoepidemiol. Drug Saf. 2011, 20, 119–130. [Google Scholar] [CrossRef]
- Amari, W.; Zeringue, A.L.; McDonald, J.R.; Caplan, L.; Eisen, S.A.; Ranganathan, P. Risk of non-melanoma skin cancer in a national cohort of veterans with rheumatoid arthritis. Rheumatology 2011, 50, 1431–1439. [Google Scholar] [CrossRef] [Green Version]
Citation | Country | Study Type | Patients (n) | CV Event | Prevalence (%) |
---|---|---|---|---|---|
Daniel 2020 [22] | USA | Systematic review | 1,642,402 | Atherosclerotic CVD | 30%–47% |
Panafinda 2013 [23] | Russia | Prospective, observational | 200 | Ischaemic heart disease MI Coronary artery bypass graft Stroke | 19% 1.5% 3.5% 0.5% |
Crowson 2017 [24] | International | Prospective, cohort | 5638 | CVD events * | Men: 20.9% † Women: 11.1% † |
Pappas 2018 [25] | International | Registry CORRONA International CORRONA US | 25,987 | Any CVD ‡ | Latin America: 8.5% Eastern Europe: 21.3% India: 5.6% USA: 8.5% |
Dougados 2014 [1] | International | Cross-sectional, observational COMORA | 4586 | MI or stroke | 6.0% |
Gomes 2017 [26] | Brazil | Cross-sectional, population-based | 296 | MI | 4.4% |
Lauper 2018 [27] | Switzerland | Mixed retrospective and prospective cohort | 3070 | MACE § | 2.67 per 1000 person-years ¶ |
Nikiphorou 2020 [19] | England | Retrospective, case–control | 6591 | MI, stroke or heart failure | 10.62 per 1000 person-years |
Agca 2020 [20] | Netherlands | Prospective cohort CARRÉ | 326 | CV event ‖ | 32 per 1000 person-years ¶ |
Solomon 2015 [28] | USA | Registry CORRONA US | 24,989 | MI, stroke or CV death | 7.79 per 1000 person-years |
Citation | Study Type | Patients (n) | CV Event | Disease Activity Parameters with a Significant Impact on Risk of CVD | |
---|---|---|---|---|---|
Parameter | Impact on Risk | ||||
Crowson 2017 [24] | Prospective, cohort | 5638 | Fatal or nonfatal CV events * | DAS28 RF/ACPA-positive | PAR: 12.6% PAR: 12.2% |
Solomon 2015 [28] | Registry CORRONA US | 24,989 | Composite of MI, stroke or CV death | CDAI | Risk reduced by 21% per 10 pt reduction in time-averaged CDAI |
Dalbeni 2020 [39] | Prospective | 137 | Ultrasound-detected atheromatous plaques | DAS28 (CRP) ≥ 2.6 | Worsening of atherosclerosis only detected in patients with active disease |
Arts 2017 [40] | Prospective, inception cohort | 1157 | Fatal or nonfatal CV events † | DAS28 ≤ 3.2 | Reduced risk of CVD (HR: 0.65; 95% CI: 0.43–0.99) ‡ |
Mantel 2015 [41] | Nested, case–control | 138 | ACS | Mean DAS28 EULAR ≥ 5.2 § ESR > 23/> 22 ¶ SJC > 6/> 4 ¶ | OR: 1.32 (95% CI: 1.06–1.64) OR: 2.59 (95% CI: 1.04–6.43) OR: 3.01 (95% CI: 1.54–5.88) OR: 1.32 (95% CI: 1.06–1.64) |
Ahlers 2020 [42] | Electronic health record analysis | 6161 | Heart failure | CRP | OR: 1.29 (95% CI: 1.16–1.44) |
Bajraktari 2017 [43] | Cross-sectional | 179 | Hypertension | CRP, ESR, anti-CCP, DAS28 | Significantly higher values reported in hypertensive patients (p < 0.001) |
Berendsen 2017 [44] | Inception cohort | 929 | Fatal or nonfatal CV events ‖ | RF positivity | HR: 1.52 (95% CI: 1.01–2.30) ** |
Citation | Country | Study Type | Patients (n) | Infection Event | Prevalence, n (%) * |
---|---|---|---|---|---|
Doran 2002 [85] | USA | Retrospective, cohort | 609 | IRH | 290 (47.6) |
Mehta 2019 [88] | USA | Prospective, cohort | 20,361 | SI † | 1600 (7.9) |
Ozen 2019 [89] | USA | Prospective, cohort | 11,623 | SI | 694 (5.9) |
Chandrashekara 2019 [90] | India | Cross-sectional | 2081 | Non-tubercular infection | 54 (2.9) |
Subesinghe 2016 [91] | UK | Cross-sectional | 929 | SI ‡ | 72 (7.8) |
Salt 2017 [92] | USA | Retrospective, case–control | 55,861 | Postoperative joint infections § | 1127 (2.0) |
Hashimoto 2017 [93] | Japan | Retrospective, single-centre | 2688 | IRH ¶ | 274 (10.2) |
Rutherford 2018 [94] | UK | Prospective, cohort, registry: BSRBR-RA | 19,282 ‖ | SI ** | 5.51/100 patient-years |
Richter 2016 [95] | Germany | Observational, cohort, registry: RABBIT | 12,097 | SI †† | 947 (7.8) |
Citation | Study Type | Patients (n) * | Infection Event | Treatments with an Impact on the Risk of Infection | |
---|---|---|---|---|---|
Treatment | Impact on Risk | ||||
Hashimoto 2017 [93] | Retrospective, single-centre | 342 | IRH | GC | OR (95% CI): 3.0 (2.1–4.4); p < 0.0001 (2 mg/day) |
bDMARD | OR (95% CI): 1.4 (1.0–2.0); p = 0.033 | ||||
MTX | OR (95% CI): 0.7 (0.6–1.0); p = 0.034 | ||||
Mehta 2019 [88] | Prospective, cohort | 20,361 | SI | GCs | HR (95% CI) for patients with RA vs. NIRMD:
|
Richter 2016 [95] | Observational, cohort, registry: RABBIT | 1017 | Sepsis and mortality following SI | GCs | OR (95% CI) for sepsis:
|
TNF inhibitor | OR (95% CI) sepsis vs. ref ‡: 0.6 (0.4–1.0) OR (95% CI) death vs. ref ‡: 0.5 (0.2–1.0) | ||||
Other bDMARD | OR (95% CI) sepsis vs. ref ‡: 0.5 (0.3–0.8) OR (95% CI) death vs. ref ‡: 0.2 (0.1–0.5) | ||||
Ozen 2019 [89] | Prospective, cohort | 11,623 | SI | TNFis | Adjusted HR (95% CI) vs. ref ‡: 1.3 (1.1–1.7) |
Non-TNFi bDMARD | Adjusted HR (95% CI) vs. ref ‡: 1.5 (1.0–2.2) | ||||
Strand 2015 [115] | Meta-analysis | 66 RCTs; 22 LTS | SI | Tofacitinib 5 mg BID Tofacitinib 10 mg BID Abatacept TNFis Rituximab Tocilizumab | Risk differences (95% CI) vs. placebo §:
|
Singh 2015 [116] | Meta-analysis | 106 studies (n = 42,330) | SI | bDMARD: low dose; standard dose; high dose | OR (95% CI) vs. ref ‡: 0.9 (0.7–1.3); 1.3 (1.1–1.6); 1.9 (1.5–2.4) |
Minozzi 2016 [117] | Meta-analysis | 71 RCTs; (n = 22,720); 7 OLE (n = 2236) ¶ | SI | TNFis vs. placebo | Fixed-effects model (OR: 1.4; 95% CI: 1.2–1.7) Random-effects model (OR: 1.3; 95% CI: 1.0–1.6) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taylor, P.C.; Atzeni, F.; Balsa, A.; Gossec, L.; Müller-Ladner, U.; Pope, J. The Key Comorbidities in Patients with Rheumatoid Arthritis: A Narrative Review. J. Clin. Med. 2021, 10, 509. https://doi.org/10.3390/jcm10030509
Taylor PC, Atzeni F, Balsa A, Gossec L, Müller-Ladner U, Pope J. The Key Comorbidities in Patients with Rheumatoid Arthritis: A Narrative Review. Journal of Clinical Medicine. 2021; 10(3):509. https://doi.org/10.3390/jcm10030509
Chicago/Turabian StyleTaylor, Peter C., Fabiola Atzeni, Alejandro Balsa, Laure Gossec, Ulf Müller-Ladner, and Janet Pope. 2021. "The Key Comorbidities in Patients with Rheumatoid Arthritis: A Narrative Review" Journal of Clinical Medicine 10, no. 3: 509. https://doi.org/10.3390/jcm10030509