Leukocyte Telomere Length Is Not Reduced in Children and Adults with Cystic Fibrosis but Associates with Clinical Characteristics—A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Telomere Length Assessment
2.3. Statistical Analysis
3. Results
3.1. Telomere Length Assessment
3.2. Clinical Expression and Selected Measures of Disease Severity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Szostak, J.W.; Blackburn, E.H. Cloning Yeast Telomeres on Linear Plasmid Vectors. Cell 1982, 29, 245–255. [Google Scholar] [CrossRef]
- Lu, W.; Zhang, Y.; Liu, D.; Songyang, Z.; Wan, M. Telomeres-Structure, Function, and Regulation. Exp. Cell Res. 2013, 319, 133–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Domenico, E.G.; Romano, E.; del Porto, P.; Ascenzioni, F. Multifunctional Role of ATM/Tel1 Kinase in Genome Stability: From the DNA Damage Response to Telomere Maintenance. Biomed. Res. Int 2014, 2014, 787404. [Google Scholar] [CrossRef]
- Wills, L.P.; Schnellmann, R.G. Telomeres and Telomerase in Renal Health. J. Am. Soc. Nephrol. 2011, 22, 39–41. [Google Scholar] [CrossRef] [Green Version]
- Brouilette, S.; Singh, R.K.; Thompson, J.R.; Goodall, A.H.; Samani, N.J. White Cell Telomere Length and Risk of Premature Myocardial Infarction. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 842–846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossi, D.; Bodoni, C.L.; Genuardi, E.; Monitillo, L.; Drandi, D.; Cerri, M.; Deambrogi, C.; Ricca, I.; Rocci, A.; Ferrero, S.; et al. Telomere Length Is an Independent Predictor of Survival, Treatment Requirement and Richter’s Syndrome Transformation in Chronic Lymphocytic Leukemia. Leukemia 2009, 23, 1062–1072. [Google Scholar] [CrossRef] [PubMed]
- Polychronopoulou, S.; Koutroumba, P. Telomere Length and Telomerase Activity: Variations with Advancing Age and Potential Role in Childhood Malignancies. J. Pediatr. Hematol. Oncol. 2004, 26, 342–350. [Google Scholar] [CrossRef]
- Nault, J.-C.; Ningarhari, M.; Rebouissou, S.; Zucman-Rossi, J. The Role of Telomeres and Telomerase in Cirrhosis and Liver Cancer. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 544–558. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Dong, X.; Cao, L.; Sun, Y.; Qiu, Y.; Zhang, Y.; Cao, R.; Covasa, M.; Zhong, L. Association between Telomere Length and Diabetes Mellitus: A Meta-Analysis. J. Int. Med. Res. 2016, 44, 1156–1173. [Google Scholar] [CrossRef]
- Elborn, J.S. Cystic Fibrosis. Lancet 2016, 388, 2519–2531. [Google Scholar] [CrossRef]
- Sobczyńska-Tomaszewska, A.; Ołtarzewski, M.; Czerska, K.; Wertheim-Tysarowska, K.; Sands, D.; Walkowiak, J.; Bal, J.; Mazurczak, T. Newborn Screening for Cystic Fibrosis: Polish 4 Years’ Experience with CFTR Sequencing Strategy. Eur. J. Hum. Genet. 2013, 21, 391–396. [Google Scholar] [CrossRef] [Green Version]
- Marson, F.A.L.; Bertuzzo, C.S.; Ribeiro, J.D. Classification of CFTR Mutation Classes. Lancet Respir. Med. 2016, 4, e37–e38. [Google Scholar] [CrossRef] [Green Version]
- Walkowiak, J.; Lisowska, A.; Blaszczyński, M. The Changing Face of the Exocrine Pancreas in Cystic Fibrosis: Pancreatic Sufficiency, Pancreatitis and Genotype. Eur. J. Gastroenterol. Hepatol. 2008, 20, 157–160. [Google Scholar] [CrossRef]
- Walkowiak, J.; Sands, D.; Nowakowska, A.; Piotrowski, R.; Zybert, K.; Herzig, K.-H.; Milanowski, A. Early Decline of Pancreatic Function in Cystic Fibrosis Patients with Class 1 or 2 CFTR Mutations. J. Pediatr. Gastroenterol. Nutr. 2005, 40, 199–201. [Google Scholar] [CrossRef]
- Barnes, R.P.; Fouquerel, E.; Opresko, P.L. The Impact of Oxidative DNA Damage and Stress on Telomere Homeostasis. Mech. Ageing Dev. 2019, 177, 37–45. [Google Scholar] [CrossRef]
- Palczewska, I.; Niedźwiecka, Z. Wskaźniki Rozwoju Somatycznego Dzieci i Młodzieży Warszawskiej. Med. Wieku Rozw. 2001, 5, 17–118. [Google Scholar]
- Walkowiak, J.; Nousia-Arvanitakis, S.; Cade, A.; Kashirskaya, N.; Piotrowski, R.; Strzykala, K.; Kouniou, M.; Pogorzelski, A.; Sands, D.; Kapranov, N. Fecal Elastase-1 Cut-off Levels in the Assessment of Exocrine Pancreatic Function in Cystic Fibrosis. J. Cyst. Fibros. 2002, 1, 260–264. [Google Scholar] [CrossRef] [Green Version]
- Walkowiak, J.; Glapa, A.; Nowak, J.K.; Bober, L.; Rohovyk, N.; Wenska-Chyży, E.; Sobkowiak, P.; Lisowska, A. Pancreatic Elastase-1 Quick Test for Rapid Assessment of Pancreatic Status in Cystic Fibrosis Patients. J. Cyst. Fibros. 2016, 15, 664–668. [Google Scholar] [CrossRef] [Green Version]
- Walkowiak, J. Assessment of Maldigestion in Cystic Fibrosis. J. Pediatr. 2004, 145, 285–287. [Google Scholar] [CrossRef] [PubMed]
- Debray, D.; Kelly, D.; Houwen, R.; Strandvik, B.; Colombo, C. Best Practice Guidance for the Diagnosis and Management of Cystic Fibrosis-Associated Liver Disease. J. Cyst. Fibros. 2011, 10, S29–S36. [Google Scholar] [CrossRef] [Green Version]
- Denham, J.; Marques, F.Z.; Charchar, F.J. Leukocyte Telomere Length Variation Due to DNA Extraction Method. BMC Res. Notes 2014, 7, 877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cawthon, R.M. Telomere Length Measurement by a Novel Monochrome Multiplex Quantitative PCR Method. Nucleic Acids Res. 2009, 37, e21. [Google Scholar] [CrossRef] [Green Version]
- Gagnon, D.D.; Dorman, S.; Ritchie, S.; Mutt, S.J.; Stenbäck, V.; Walkowiak, J.; Herzig, K.-H. Multi-Day Prolonged Low- to Moderate-Intensity Endurance Exercise Mimics Training Improvements in Metabolic and Oxidative Profiles Without Concurrent Chromosomal Changes in Healthy Adults. Front. Physiol. 2019, 10, 1123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stenbäck, V.; Mutt, S.J.; Leppäluoto, J.; Gagnon, D.D.; Mäkelä, K.A.; Jokelainen, J.; Keinänen-Kiukaanniemi, S.; Herzig, K.-H. Association of Physical Activity With Telomere Length Among Elderly Adults—The Oulu Cohort 1945. Front. Physiol. 2019, 10, 444. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Smith, D.L.; Esteves, K.; Drury, S. Telomere Length Measurement by QPCR—Summary of Critical Factors and Recommendations for Assay Design. Psychoneuroendocrinology 2019, 99, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Eisenberg, D.T.A.; Kuzawa, C.W.; Hayes, M.G. Improving QPCR Telomere Length Assays: Controlling for Well Position Effects Increases Statistical Power. Am. J. Hum. Biol. 2015, 27, 570–575. [Google Scholar] [CrossRef] [Green Version]
- Everaerts, S.; Lammertyn, E.J.; Martens, D.S.; de Sadeleer, L.J.; Maes, K.; van Batenburg, A.A.; Goldschmeding, R.; van Moorsel, C.H.M.; Dupont, L.J.; Wuyts, W.A.; et al. The Aging Lung: Tissue Telomere Shortening in Health and Disease. Respir. Res. 2018, 19, 95. [Google Scholar] [CrossRef] [PubMed]
- Fischer, B.M.; Wong, J.K.; Degan, S.; Kummarapurugu, A.B.; Zheng, S.; Haridass, P.; Voynow, J.A. Increased Expression of Senescence Markers in Cystic Fibrosis Airways. Am. J. Physiol. Lung Cell Mol. Physiol. 2013, 304, L394–L400. [Google Scholar] [CrossRef] [Green Version]
- Athanasoulia-Kaspar, A.P.; Auer, M.K.; Stalla, G.K.; Jakovcevski, M. Shorter Telomeres Associated with High Doses of Glucocorticoids: The Link to Increased Mortality? Endocr. Connect. 2018, 7, 1217–1226. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.; Fauce, S.R.; Effros, R.B. Reduced Telomerase Activity in Human T Lymphocytes Exposed to Cortisol. Brain Behav. Immun. 2008, 22, 600–605. [Google Scholar] [CrossRef] [Green Version]
- Ross, K.R.; Chmiel, J.F.; Konstan, M.W. The Role of Inhaled Corticosteroids in the Management of Cystic Fibrosis. Paediatr. Drugs 2009, 11, 101–113. [Google Scholar] [CrossRef] [Green Version]
- Boumehira, A.Z.; Hacène, H.; El-Enshasy, H.A. Rubromycins: A Class of Telomerase Inhibitor Antibiotics Produced by Streptomyces spp. In New and Future Developments in Microbial Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2019; pp. 141–150. ISBN 978-0-444-63504-4. [Google Scholar]
- Ueno, T.; Takahashi, H.; Oda, M.; Mizunuma, M.; Yokoyama, A.; Goto, Y.; Mizushina, Y.; Sakaguchi, K.; Hayashi, H. Inhibition of Human Telomerase by Rubromycins: Implication of Spiroketal System of the Compounds as an Active Moiety. Biochemistry 2000, 39, 5995–6002. [Google Scholar] [CrossRef]
- Helby, J.; Nordestgaard, B.G.; Benfield, T.; Bojesen, S.E. Shorter Leukocyte Telomere Length is Associated with Higher Risk of Infections: A Prospective Study of 75,309 Individuals from the General Population. Haematologica 2017, 102, 1457–1465. [Google Scholar] [CrossRef] [Green Version]
- Newton, C.A.; Zhang, D.; Oldham, J.M.; Kozlitina, J.; Ma, S.-F.; Martinez, F.J.; Raghu, G.; Noth, I.; Garcia, C.K. Telomere Length and Use of Immunosuppressive Medications in Idiopathic Pulmonary Fibrosis. Am. J. Respir. Crit. Care Med. 2019, 200, 336–347. [Google Scholar] [CrossRef] [PubMed]
- Gardner, M.; Bann, D.; Wiley, L.; Cooper, R.; Hardy, R.; Nitsch, D.; Martin-Ruiz, C.; Shiels, P.; Sayer, A.A.; Barbieri, M.; et al. Gender and Telomere Length: Systematic Review and Meta-Analysis. Exp. Gerontol. 2014, 51, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Nawrot, T.S.; Staessen, J.A.; Gardner, J.P.; Aviv, A. Telomere Length and Possible Link to X Chromosome. Lancet 2004, 363, 507–510. [Google Scholar] [CrossRef]
- Mayer, S.; Brüderlein, S.; Perner, S.; Waibel, I.; Holdenried, A.; Ciloglu, N.; Hasel, C.; Mattfeldt, T.; Nielsen, K.V.; Möller, P. Sex-Specific Telomere Length Profiles and Age-Dependent Erosion Dynamics of Individual Chromosome Arms in Humans. Cytogenet. Genome Res. 2006, 112, 194–201. [Google Scholar] [CrossRef]
- Okuda, K.; Bardeguez, A.; Gardner, J.P.; Rodriguez, P.; Ganesh, V.; Kimura, M.; Skurnick, J.; Awad, G.; Aviv, A. Telomere Length in the Newborn. Pediatr. Res. 2002, 52, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Buxton, J.L.; Walters, R.G.; Visvikis-Siest, S.; Meyre, D.; Froguel, P.; Blakemore, A.I.F. Childhood Obesity Is Associated with Shorter Leukocyte Telomere Length. J. Clin. Endocrinol. Metab. 2011, 96, 1500–1505. [Google Scholar] [CrossRef] [Green Version]
- Ly, K.; Walker, C.; Berry, S.; Snell, R.; Marks, E.; Thayer, Z.; Atatoa-Carr, P.; Morton, S. Telomere Length in Early Childhood is Associated with Sex and Ethnicity. Sci. Rep. 2019, 9, 10359. [Google Scholar] [CrossRef]
Parameter Median (IQR) Children Aged 5–10 | CF n = 34 | HS n = 36 | p Value |
---|---|---|---|
Age, years | 7.5 (6.3–8.7) | 7.9 (6.5–9.2) | 0.587 |
Sex ratio F/M | 15/19 (44%) | 14/22 (39%) | 0.836 |
Body weight, kg | 23.5 (21.9–27.3) | 26.5 (22.3–32.5) | 0.059 |
Body height, cm | 123.0 (118.0–133.0) | 127.0 (122.5–136.0) | 0.095 |
BMI 1, kg/m2 | 15.5 (14.9–16.6) | 16.2 (15.5–17.5) | 0.048 |
Body weight, z score | −0.627 (−0.846–0.069) | −0.057 (−0.567–0.632) | 0.020 |
Body height, z score | −0.435 (−1.154–0.129) | 0.061 (−0.604–0.838) | 0.045 |
BMI, z score | −0.386 (−0.809–0.144) | −0.040 (−0.445–0.459) | 0.048 |
RTL 2, z score | −0.511 (−0.922–0.216) | −0.210 (−0.689–0.508) | 0.159 |
Parameter Median [IQR] Adults Aged 18–45 | CF n = 53 | HS n = 61 | p Value |
Age, years | 23.5 (20.8–31.1) | 23.6 (22.5–31.7) | 0.244 |
Sex ratio F/M | 27/26 (50.9%) | 40/21 (65.6%) | 0.114 |
Body weight, kg | 53.8 (48.5–62.0) | 60.0 (55.0–76.0) | <0.001 |
Body height, cm | 168 (163–175) | 170 (164–178) | 0.188 |
BMI, kg/m2 | 19.1 (17.9–22.2) | 21.6 (19.8–23.8) | <0.001 |
RTL, z-score | −0.06 (−0.61–0.94) | −0.03 (−0.51–0.67) | 0.792 |
Variables | N (%) | Relative Telomere Length Median [IQR] | p Value | |
---|---|---|---|---|
Yes | No | |||
Liver disease | 66 (75.9) | 0.806 (0.694–0.950) | 0.780 (0.651–0.943) | 0.6566 |
Liver cirrhosis | 5 (5.7) | 0.812 (0.709–0.910) | 0.794 (0.683–0.964) | 0.6314 |
Diabetes | 12 (13.8) | 0.879 (0.696–0.972) | 0.792 (0.683–0.950) | 0.7935 |
Nasal polyps | 10 (11.5) | 0.844 (0.749–0.910) | 0.786 (0.682–0.966) | 0.9940 |
Chronic sinusitis | 50 (57.5) | 0.799 (0.683–0.950) | 0.807 (0.715–1.005) | 0.5647 |
Meconium ileus | 7 (8.0) | 0.631 (0.574–1.130) | 0.809 (0.715–0.950) | 0.2530 |
DIOS * | 2 (3.8) | 0.744 (0.586–0.901) | 0.761 (0.652–0.914) | 0.6800 |
Prevalence of asthma | 3 (3.4) | 0.760 (0.714–0.833) | 0.805 (0.689–0.957) | 0.6294 |
Pancreatic insufficiency | 74 (85.1) | 0.799 (0.683–0.950) | 0.821 (0.729–0.943) | 0.7459 |
Children’s FEV1% ≤ median | 13 (52.0) | 0.694 (0.621–0.765) | 0.784 (0.707–0.904) | 0.1683 |
Adults’ FEV1% ≤ median | 26 (51.0) | 0.763 (0.603–0.904) | 0.763 (0.715–0.927) | 0.2828 |
Chronic or intermittent Pseudomonas aeruginosa infection | 44 (50.6) | 0.762 (0.660–0.908) | 0.824 (0.742–1.097) | 0.0569 |
F508del homozygote | 20 (23.0) | 0.803 (0.674–0.957) | 0.805 (0.683–0.968) | 0.8272 |
F508del heterozygote | 48 (55.2) | 0.787 (0.688–0.939) | 0.881 (0.683–0.973) | 0.3662 |
Other mutations | 12 (13.8) | 0.908 (0.755–1.022) | 0.792 (0.681–0.950) | 0.2032 |
Mutation class severity | 0.2869 | |||
mild/- | 2 (2.5) | 0.989 (0.905–1.072) | ||
severe/- | 11 (13.6) | 0.742 (0.660–0.820) | ||
severe/mild | 7 (8.6) | 0.881 (0.749–1.357) | ||
severe/severe | 61 (75.3) | 0.812 (0.683–0.973) | ||
Treatment | ||||
Present antibiotics | 48 (55.2) | 0.762 (0.648–0.908) | 0.832 (0.748–1.129) | 0.0172 |
Antibiotics in past 6–12 months * | 23 (43.4) | 0.749 (0.643–0.910) | 0.805 (0.667–0.927) | 0.3795 |
Present inhaled steroids treatment | 43 (49.4) | 0.765 (0.664–0.910) | 0.943 (0.813–1.191) | 0.0007 |
Inhaled steroids treatment in past 6–12 months * | 19 (35.8) | 0.749 (0.643–0.910) | 0.901 (0.747–1.012) | 0.0829 |
Present beta-mimetics | 79 (90.8) | 0.794 (0.681–0.964) | 0.935 (0.785–0.940) | 0.2812 |
Beta-mimetics in past 6–12 months * | 24 (45.3) | 0.749 (0.637–0.861) | 0.831 (0.667–0.950) | 0.3080 |
Present digestive medications *** | 59 (67.8) | 0.805 (0.667–0.950) | 0.885 (0.771–0.954) | 0.4450 |
Digestive medications in past 6–12 months */*** | 14 (26.4) | 0.749 (0.627–0.910) | 0.805 (0.667–0.927) | 0.5238 |
Present probiotics * | 32 (60.4) | 0.761 (0.624–0.908) | 0.883 (0.747–0.889) | 0.3624 |
Probiotics in past 6–12 months * | 13 (24.5) | 0.769 (0.643–0.910) | 0.761 (0.634–0.903) | 0.9366 |
Other medications **** | 85 (97.7) | 0.783 (0.683–0.940) | 0.778 (0.689–0.911) | 0.4699 |
Comorbidities ** | 55 (63.2) | 0.763 (0.643–0.905) | 0.950 (0.783–1.130) | 0.0006 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Glapa-Nowak, A.; Mutt, S.J.; Lisowska, A.; Sapiejka, E.; Goździk-Spychalska, J.; Wieczorek-Filipiak, M.; Drzymała-Czyż, S.; Nowak, J.K.; Thalmann, O.; Herzig, K.-H.; et al. Leukocyte Telomere Length Is Not Reduced in Children and Adults with Cystic Fibrosis but Associates with Clinical Characteristics—A Cross-Sectional Study. J. Clin. Med. 2021, 10, 590. https://doi.org/10.3390/jcm10040590
Glapa-Nowak A, Mutt SJ, Lisowska A, Sapiejka E, Goździk-Spychalska J, Wieczorek-Filipiak M, Drzymała-Czyż S, Nowak JK, Thalmann O, Herzig K-H, et al. Leukocyte Telomere Length Is Not Reduced in Children and Adults with Cystic Fibrosis but Associates with Clinical Characteristics—A Cross-Sectional Study. Journal of Clinical Medicine. 2021; 10(4):590. https://doi.org/10.3390/jcm10040590
Chicago/Turabian StyleGlapa-Nowak, Aleksandra, Shivaprakash Jagalur Mutt, Aleksandra Lisowska, Ewa Sapiejka, Joanna Goździk-Spychalska, Mirosława Wieczorek-Filipiak, Sławomira Drzymała-Czyż, Jan Krzysztof Nowak, Olaf Thalmann, Karl-Heinz Herzig, and et al. 2021. "Leukocyte Telomere Length Is Not Reduced in Children and Adults with Cystic Fibrosis but Associates with Clinical Characteristics—A Cross-Sectional Study" Journal of Clinical Medicine 10, no. 4: 590. https://doi.org/10.3390/jcm10040590
APA StyleGlapa-Nowak, A., Mutt, S. J., Lisowska, A., Sapiejka, E., Goździk-Spychalska, J., Wieczorek-Filipiak, M., Drzymała-Czyż, S., Nowak, J. K., Thalmann, O., Herzig, K. -H., & Walkowiak, J. (2021). Leukocyte Telomere Length Is Not Reduced in Children and Adults with Cystic Fibrosis but Associates with Clinical Characteristics—A Cross-Sectional Study. Journal of Clinical Medicine, 10(4), 590. https://doi.org/10.3390/jcm10040590