Effect of Early Rehabilitation on Physical Function in Patients Undergoing Coronary Artery Bypass Grafting: A Nationwide Inpatient Database Study
Abstract
:1. Introduction
2. Materials and Methods
3. Group Assignment
4. Outcomes and Covariates
5. Multiple Imputation
6. Statistical Analysis
7. Results
8. Discussion
9. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Puthucheary, Z.A.; Rawal, J.; McPhail, M.; Connolly, B.; Ratnayake, G.; Chan, P.; Hopkinson, N.S.; Padhke, R.; Dew, T.; Sidhu, P.S.; et al. Acute Skeletal Muscle Wasting in Critical Illness. JAMA 2013, 310, 1591–1600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hermans, G.; van den Berghe, G. Clinical review: Intensive care unit acquired weakness. Crit. Care. 2015, 19, 274. [Google Scholar] [CrossRef] [Green Version]
- Stevens, R.D.; Dowdy, D.W.; Michaels, R.K.; Mendez-Tellez, P.A.; Pronovost, P.J.; Needham, D.M. Neuromuscular dysfunction acquired in critical illness: A systematic review. Intensiv. Care Med. 2007, 33, 1876–1891. [Google Scholar] [CrossRef]
- Gosselink, R.; Bott, J.; Johnson, M.R.; Dean, E.; Nava, S.; Norrenberg, M.; Schönhofer, B.; Stiller, K.; Van De Leur, H.; Vincent, J.L. Physiotherapy for adult patients with critical illness: Recommendations of the European Respiratory Society and European Society of Intensive Care Medicine Task Force on Physiotherapy for Critically Ill Patients. Intensiv. Care Med. 2008, 34, 1188–1199. [Google Scholar] [CrossRef] [PubMed]
- Heyland, D.K.; Hopman, W.; Coo, H.; Tranmer, J.; McColl, M.A. Long-term health-related quality of life in survivors of sepsis. Short Form 36: A valid and reliable measure of health-related quality of life. Crit. Care Med. 2000, 28, 3599–3605. [Google Scholar] [CrossRef] [PubMed]
- Schweickert, W.D.; Pohlman, M.C.; Pohlman, A.S.; Nigos, C.; Pawlik, A.J.; Esbrook, C.L.; Spears, L.; Miller, M.; Franczyk, M.; Deprizio, D.; et al. Early physical and occupational therapy in mechanically ventilated, critically ill patients: A randomised controlled trial. Lancet 2009, 373, 1874–1882. [Google Scholar] [CrossRef]
- Haykowsky, M.J.; Scott, J.; Esch, B.; Schopflocher, D.; Myers, J.; Paterson, I.; Warburton, D.E.R.; Jones, L.W.; Clark, A.M. A Meta-analysis of the effects of Exercise Training on Left Ventricular Remodeling Following Myocardial Infarction: Start early and go longer for greatest exercise benefits on remodeling. Trials 2011, 12, 92. [Google Scholar] [CrossRef] [Green Version]
- Heran, B.S.; Chen, J.M.; Ebrahim, S.; Moxham, T.; Oldridge, N.; Rees, K.; Thompson, D.R.; Taylor, R. Exercise-based cardiac rehabilitation for coronary heart disease. Cochrane Database Syst. Rev. 2011, 2016, CD001800. [Google Scholar] [CrossRef]
- Demopoulos, L.; Yeh, M.; Gentilucci, M.; Testa, M.; Bijou, R.; Katz, S.D.; Mancini, N.; Jones, M.; LeJemtel, T.H. Nonselective β-Adrenergic Blockade With Carvedilol Does Not Hinder the Benefits of Exercise Training in Patients With Congestive Heart Failure. Circulation 1997, 95, 1764–1767. [Google Scholar] [CrossRef]
- McKelvie, R.S.; Teo, K.K.; McCartney, N.; Humen, D.; Montague, T.; Yusuf, S. Effects of exercise training in patients with congestive heart failure: A critical review. J. Am. Coll. Cardiol. 1995, 25, 789–796. [Google Scholar] [CrossRef] [Green Version]
- Belardinelli, R.; Georgiou, D.; Cianci, G.; Berman, N.; Ginzton, L.; Purcaro, A. Exercise training improves left ventricular diastolic filling in patients with dilated cardiomyopathy: Clinical and prognostic implications. Circulation 1995, 91, 2775–2784. [Google Scholar] [CrossRef] [PubMed]
- Coats, A.J.; Adamopoulos, S.; Radaelli, A.; McCance, A.; E Meyer, T.; Bernardi, L.; Solda, P.L.; Davey, P.; Ormerod, O.; Forfar, C. Controlled trial of physical training in chronic heart failure. Exercise performance, hemodynamics, ventilation, and autonomic function. Circulation 1992, 85, 2119–2131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McMahon, S.R.; Ades, P.A.; Thompson, P.D. The role of cardiac rehabilitation in patients with heart disease. Trends Cardiovasc Med. 2017, 27, 420–425. [Google Scholar] [CrossRef] [PubMed]
- Servey, J.T.; Stephens, M. Cardiac Rehabilitation: Improving Function and Reducing Risk. Am. Fam. Physician 2016, 94, 37–43. [Google Scholar]
- Kasapis, C.; Thompson, P.D. The effects of physical activity on serum C-reactive protein and inflammatory markers: A systematic review. J. Am. Coll. Cardiol. 2005, 45, 1563–1569. [Google Scholar] [CrossRef] [Green Version]
- Badrov, M.B.; Wood, K.N.; Lalande, S.; Sawicki, C.P.; Borrell, L.J.; Barron, C.C.; Vording, J.L.; Fleischhauer, A.; Suskin, N.; McGowan, C.L.; et al. Effects of 6 Months of Exercise-Based Cardiac Rehabilitation on Autonomic Function and Neuro-Cardiovascular Stress Reactivity in Coronary Artery Disease Patients. J. Am. Hear. Assoc. 2019, 8, e012257. [Google Scholar] [CrossRef] [PubMed]
- Tariq, M.I.; Khan, A.A.; Khalid, Z.; Farheen, H.; Siddiqi, F.A.; Amjad, I. Effect of Early ≤ 3 Mets (Metabolic Equivalent of Tasks) of Physical Activity on Patient’s Outcome after Cardiac Surgery. J. Coll. Physicians Surg. Pak. 2017, 27, 490–494. [Google Scholar]
- Zanini, M.; Nery, R.M.; de Lima, J.B.; Buhler, R.P.; da Silveira, A.D.; Stein, R. Effects of different rehabilitation protocols in inpatient cardiac rehabilitation after coronary artery bypass graft surgery: A randomized clinical trial. J. Cardiopulm. Rehabil. Prev. 2019, 39, E19–E25. [Google Scholar] [CrossRef]
- Szmigielska, K.; Szmigielska-Kapłon, A.; Jegier, A. The Influence of Comprehensive Cardiac Rehabilitation on Heart Rate Variability Indices after CABG is More Effective than after PCI. J. Cardiovasc. Transl. Res. 2018, 11, 50–57. [Google Scholar] [CrossRef]
- Ximenes, N.N.P.S.; Borges, D.L.; Lima, R.O.; E Silva, M.G.B.; Da Silva, L.N.; Costa, M.D.A.G.; Baldez, T.E.P.; Nina, V.J.D.S. Effects of Resistance Exercise Applied Early After Coronary Artery Bypass Grafting: A Randomized Controlled Trial. Braz. J. Cardiovasc. Surg. 2015, 30, 620–625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Højskov, I.E.; Moons, P.; Egerod, I.; Olsen, P.S.; Thygesen, L.C.; Hansen, N.V.; La Cour, S.; Bech, K.H.; Borregaard, B.; Gluud, C.; et al. Early physical and psycho-educational rehabilitation in patients with coronary artery bypass grafting: A randomized controlled trial. J. Rehabilitation Med. 2019, 51, 136–143. [Google Scholar] [CrossRef] [Green Version]
- Yancy, C.W.; Jessup, M.; Bozkurt, B.; Butler, J.; Casey, D.E.; Colvin, M.M.; Drazner, M.H.; Filippatos, G.S.; Fonarow, G.C.; Givertz, M.M.; et al. 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure: A report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines and the Heart Failure Society of Amer. Circulation 2017, 136, e137–e161. [Google Scholar] [CrossRef]
- Benchimol, E.I.; Smeeth, L.; Guttmann, A.; Harron, K.; Moher, D.; Petersen, I.; Sørensen, H.T.; Von Elm, E.; Langan, S.M.; RECORD Working Committee. The REporting of studies Conducted using Observational Routinely-collected health Data (RECORD) Statement. PLoS Med. 2015, 12, e1001885. [Google Scholar] [CrossRef]
- Yasunaga, H. Real World Data in Japan: Chapter II The Diagnosis Procedure Combination Database. Ann. Clin. Epidemiology 2019, 1, 76–79. [Google Scholar] [CrossRef]
- Yamana, H.; Moriwaki, M.; Horiguchi, H.; Kodan, M.; Fushimi, K.; Yasunaga, H. Validity of diagnoses, procedures, and laboratory data in Japanese administrative data. J. Epidemiol. 2017, 27, 476–482. [Google Scholar] [CrossRef] [PubMed]
- Yagi, M.; Yasunaga, H.; Matsui, H.; Morita, K.; Fushimi, K.; Fujimoto, M.; Koyama, T.; Fujitani, J. Impact of rehabilitation on outcomes in patients with ischemic stroke: A nationwide retrospective cohort study in Japan. Stroke 2017, 48, 740–746. [Google Scholar] [CrossRef] [PubMed]
- Mahoney, F.I.; Barthel, D.W. Functional evaluattion: The Barthel Index. Md. State Med. J. 1965, 14, 61–65. [Google Scholar] [PubMed]
- Shigematsu, K.; Nakano, H.; Watanabe, Y. The eye response test alone is sufficient to predict stroke outcome—Reintroduction of Japan Coma Scale: A cohort study. BMJ Open 2013, 3, e002736. [Google Scholar] [CrossRef] [Green Version]
- Quan, H.; Li, B.; Couris, C.M.; Fushimi, K.; Graham, P.; Hider, P.; Januel, J.-M.; Sundararajan, V. Updating and Validating the Charlson Comorbidity Index and Score for Risk Adjustment in Hospital Discharge Abstracts Using Data From 6 Countries. Am. J. Epidemiol. 2011, 173, 676–682. [Google Scholar] [CrossRef] [Green Version]
- Rubin, D.B.; Schenker, N. Multiple imputation in health-are databases: An overview and some applications. Stat. Med. 1991, 10, 585–598. [Google Scholar] [CrossRef]
- Aloisio, K.M.; Micali, N.; Swanson, S.A.; Field, A.; Horton, N.J. Analysis of Partially Observed Clustered Data using Generalized Estimating Equations and Multiple Imputation. Stata J. Promot. Commun. Stat. Stata 2014, 14, 863–883. [Google Scholar] [CrossRef] [Green Version]
- Rubin, D.B. Multiple Imputation for Nonresponse in Surveys; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Griswold, M.E.; Localio, A.R.; Mulrow, C. Propensity Score Adjustment With Multilevel Data: Setting Your Sites on Decreasing Selection Bias. Ann. Intern. Med. 2010, 152, 393–395. [Google Scholar] [CrossRef] [PubMed]
- Rosenbaum, P.R.; Rubin, D.B. Constructing a control group using multivariate matched sampling methods that incorporate the propensity score. Am Stat. 1985, 39, 33. [Google Scholar]
- Cole, S.R.; Hernán, M.A. Constructing inverse probability weights for marginal structural models. Am. J. Epidemiol. 2008, 168, 656–664. [Google Scholar] [CrossRef]
- Austin, P.C. Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score matched samples. Stat. Med. 2009, 28, 3083–3107. [Google Scholar] [CrossRef] [Green Version]
- Jelinek, H.J.; Huang, Z.Q.; Khandoker, A.H.; Chang, D.; Kiat, H. Cardiac rehabilitation outcomes following a 6-week program of PCI and CABG Patients. Front. Physiol. 2013, 4, 302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nydahl, P.; Sricharoenchai, T.; Chandra, S.; Kundt, F.S.; Huang, M.; Fischill, M.; Needham, D.M. Safety of Patient Mobilization and Rehabilitation in the Intensive Care Unit. Systematic Review with Meta-Analysis. Ann. Am. Thorac. Soc. 2017, 14, 766–777. [Google Scholar] [CrossRef]
- E Højskov, I.; Moons, P.; Hansen, N.V.; Greve, H.; Olsen, D.B.; La Cour, S.; Glud, C.; Winkel, P.; Lindschou, J.; Egerod, I.; et al. Early physical training and psycho-educational intervention for patients undergoing coronary artery bypass grafting. The SheppHeart randomized 2 × 2 factorial clinical pilot trial. Eur. J. Cardiovasc. Nurs. 2016, 15, 425–437. [Google Scholar] [CrossRef] [PubMed]
- Hodgson, C.L.; Stiller, K.; Needham, D.M.; Tipping, C.J.; Harrold, M.; Baldwin, C.E.; Bradley, S.J.; Berney, S.; Caruana, L.R.; Elliott, D.; et al. Expert consensus and recommendations on safety criteria for active mobilization of mechanically ventilated critically ill adults. Crit. Care 2014, 18, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Kirkeby-Garstad, I.; Sellevold, O.F.M.; Stenseth, R.; Skogvoll, E. Mixed venous oxygen desaturation during early mobilization after coronary artery bypass surgery. Acta Anaesthesiol. Scand. 2005, 49, 827–834. [Google Scholar] [CrossRef]
- Kirkeby-Garstad, I.; Stenseth, R.; Sellevold, O.F.M. Post-operative myocardial dysfunction does not affect the physiological response to early mobilization after coronary artery bypass grafting. Acta Anaesthesiol. Scand. 2005, 49, 1241–1247. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Unweighted Cohort | Weighted Cohort | ||||
---|---|---|---|---|---|---|
Usual Care (n = 17,418) | Early Rehabilitation (n = 13,150) | ASD | Usual Care (n = 17,547) | Early Rehabilitation (n = 13,021) | ASD | |
Age, years, mean (SD) | 71 (10) | 71 (10) | 4 | 71 (10) | 71 (10) | 0 |
Male, % | 73 | 74 | 3 | 73 | 73 | 0 |
Current/past smoker, % | 47 | 51 | 8 | 49 | 49 | 0 |
Body mass index, kg/m2, mean (SD) | 24 (4) | 24 (4) | 4 | 24 (4) | 24 (4) | 0 |
Barthel Index score at admission, mean (SD) | 80 (35) | 88 (28) | 23 | 83 (32) | 83 (32) | 2 |
Japan Coma Scale score at admission, % | ||||||
Alert | 95 | 98 | 12 | 96 | 97 | 2 |
Dizziness | 3 | 2 | 6 | 2 | 2 | 1 |
Somnolence | 1 | 0 | 6 | 1 | 0 | 1 |
Coma | 1 | 0 | 9 | 1 | 1 | 1 |
Calendar year, % | ||||||
2010–2011 | 21 | 8 | 37 | 16 | 15 | 2 |
2012–2013 | 30 | 21 | 21 | 26 | 25 | 1 |
2014–2015 | 26 | 31 | 11 | 28 | 29 | 1 |
2016–2017 | 23 | 40 | 37 | 30 | 31 | 2 |
Ambulance use, % | 19 | 12 | 17 | 16 | 16 | 1 |
Emergency admission, % | 32 | 23 | 19 | 28 | 28 | 1 |
Length of stay until surgery, % | ||||||
0 days | 16 | 7 | 30 | 12 | 12 | 3 |
1–7 days | 44 | 56 | 23 | 49 | 50 | 1 |
≥8 days | 39 | 37 | 4 | 39 | 39 | 1 |
Annual hospital volume, per year, mean (SD) | 23 (19) | 23 (18) | 3 | 23 (18) | 22 (17) | 1 |
Teaching hospital, % | 74 | 67 | 15 | 70 | 70 | 1 |
Charlson comorbidity index score, mean (SD) | 1.8 (1.3) | 1.8 (1.3) | 3 | 1.8 (1.3) | 1.8 (1.3) | 1 |
Comorbidities, % | ||||||
Chronic lung diseases | 3 | 4 | 4 | 3 | 4 | 0 |
Cerebrovascular diseases | 9 | 11 | 6 | 10 | 10 | 1 |
Peripheral vascular diseases | 10 | 12 | 5 | 11 | 11 | 0 |
Diabetes mellitus | 42 | 46 | 9 | 44 | 44 | 1 |
Hypertension | 49 | 56 | 15 | 52 | 52 | 1 |
Chronic kidney diseases | 20 | 18 | 6 | 19 | 19 | 0 |
Surgical characteristics | ||||||
Off-pump CABG, % | 32 | 35 | 8 | 34 | 34 | 1 |
Diseased vessels ≥2, % | 79 | 79 | 2 | 79 | 79 | 0 |
Concomitant valve replacement, % | 28 | 27 | 2 | 28 | 28 | 0 |
Total anesthetic time, minutes, mean (SD) | 526 (300) | 489 (285) | 13 | 511 (253) | 510 (434) | 0 |
Treatments within 2 days of CABG, % | ||||||
Invasive blood pressure monitoring | 89 | 89 | 1 | 89 | 90 | 1 |
Central venous pressure monitoring | 56 | 58 | 5 | 57 | 57 | 0 |
Pulmonary artery pressure monitoring | 69 | 62 | 15 | 66 | 66 | 0 |
Supplemental oxygen | 27 | 34 | 16 | 30 | 30 | 1 |
Mechanical ventilation | 83 | 79 | 12 | 82 | 82 | 0 |
Renal replacement therapy | 21 | 16 | 15 | 19 | 18 | 1 |
Mechanical circulatory support | 27 | 14 | 33 | 21 | 20 | 3 |
Dopamine | 76 | 71 | 11 | 74 | 74 | 0 |
Dobutamine | 68 | 61 | 13 | 65 | 65 | 0 |
Noradrenaline | 88 | 85 | 11 | 87 | 87 | 0 |
Adrenaline | 17 | 13 | 12 | 15 | 14 | 2 |
Vasopressin | 4 | 4 | 2 | 4 | 4 | 0 |
Beta blockers | 60 | 64 | 8 | 61 | 61 | 0 |
Diuretics | 69 | 72 | 6 | 70 | 70 | 0 |
Propofol | 89 | 89 | 0 | 89 | 89 | 0 |
Midazolam | 75 | 72 | 7 | 73 | 73 | 0 |
Dexmedetomidine | 53 | 53 | 0 | 53 | 54 | 1 |
Antipsychotics | 14 | 13 | 1 | 14 | 14 | 0 |
Stress ulcer prophylaxis | 99 | 99 | 1 | 99 | 99 | 0 |
Enteral nutrition | 4 | 4 | 2 | 4 | 4 | 0 |
Parenteral nutrition | 1 | 1 | 3 | 1 | 1 | 0 |
Insulin | 77 | 78 | 1 | 77 | 77 | 0 |
Red blood cells | 85 | 78 | 17 | 82 | 81 | 1 |
Fresh frozen plasma | 76 | 67 | 19 | 72 | 72 | 1 |
Platelets | 52 | 40 | 24 | 47 | 47 | 1 |
Total fluids, L/day, mean (SD) | 6.8 (2.8) | 6.3 (2.3) | 22 | 6.6 (2.7) | 6.5 (2.5) | 2 |
Outcomes | Unweighted Cohort | Weighted Cohort | ||||
---|---|---|---|---|---|---|
Usual Care (n = 17,418) | Early Rehabilitation (n = 13,150) | Usual Care (n = 17,547) | Early Rehabilitation (n = 13,021) | Differences (95% CI) | p-Value | |
Primary outcome | ||||||
Barthel Index score at discharge, mean (SD) | 81.6 (34) | 88.8 (27) | 83.8 (32) | 86.8 (29) | 3.2 (1.5–4.8) | <0.001 |
Secondary outcomes | ||||||
In-hospital mortality, % | 8.1 | 3.8 | 6.7 | 4.9 | −1.8 (−2.6 to −1.0) | <0.001 |
Length of ICU stay, days, mean (SD) | 8.2 (10) | 7.0 (8) | 7.9 (9) | 7.4 (8) | −0.5 (−0.8 to −0.3) | <0.001 |
Length of hospital stay, days, mean (SD) | 43.8 (44) | 37.0 (29) | 42.3 (43) | 38.6 (31) | −3.7 (−5.2 to −2.2) | <0.001 |
Total hospitalization cost, ×105 yen, mean (SD) | 56.9 (34) | 48.1 (23) | 54.1 (31) | 50.5 (24) | −3.6 (−5.1 to −2.1) | <0.001 |
Outcomes | Unweighted Cohort | Weighted Cohort | ||||
---|---|---|---|---|---|---|
Usual Care (n = 12,908) | Early Rehabilitation (n = 10,442) | Usual Care (n = 17,547) | Early Rehabilitation (n = 13,021) | Differences (95% CI) | p-Value | |
Primary outcome | ||||||
Barthel Index score at discharge, mean (SD) | 82.9 (33) | 89.7 (25.8) | 84.8 (31) | 87.9 (28) | 3.1 (1.2–5.0) | 0.001 |
Secondary outcomes | ||||||
In-hospital mortality, % | 7.6 | 3.6 | 6.3 | 4.6 | −1.7 (−2.6 to −0.8) | <0.001 |
Length of ICU stay, days, mean (SD) | 8.0 (9) | 6.9 (8) | 7.7 (8) | 7.2 (9) | −0.5 (−0.8 to −0.2) | 0.003 |
Length of hospital stay, days, mean (SD) | 42.9 (44) | 36.3 (29) | 41.3 (43) | 38.1 (31) | −3.2 (−4.8 to −1.6) | <0.001 |
Total hospitalization cost, ×105 yen, mean (SD) | 55.4 (32) | 47.3 (22) | 52.7 (30) | 49.6 (24) | −3.1 (−4.6 to −1.6) | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ohbe, H.; Nakamura, K.; Uda, K.; Matsui, H.; Yasunaga, H. Effect of Early Rehabilitation on Physical Function in Patients Undergoing Coronary Artery Bypass Grafting: A Nationwide Inpatient Database Study. J. Clin. Med. 2021, 10, 618. https://doi.org/10.3390/jcm10040618
Ohbe H, Nakamura K, Uda K, Matsui H, Yasunaga H. Effect of Early Rehabilitation on Physical Function in Patients Undergoing Coronary Artery Bypass Grafting: A Nationwide Inpatient Database Study. Journal of Clinical Medicine. 2021; 10(4):618. https://doi.org/10.3390/jcm10040618
Chicago/Turabian StyleOhbe, Hiroyuki, Kensuke Nakamura, Kazuaki Uda, Hiroki Matsui, and Hideo Yasunaga. 2021. "Effect of Early Rehabilitation on Physical Function in Patients Undergoing Coronary Artery Bypass Grafting: A Nationwide Inpatient Database Study" Journal of Clinical Medicine 10, no. 4: 618. https://doi.org/10.3390/jcm10040618
APA StyleOhbe, H., Nakamura, K., Uda, K., Matsui, H., & Yasunaga, H. (2021). Effect of Early Rehabilitation on Physical Function in Patients Undergoing Coronary Artery Bypass Grafting: A Nationwide Inpatient Database Study. Journal of Clinical Medicine, 10(4), 618. https://doi.org/10.3390/jcm10040618